The Annals of Mathematical Statistics
1970, Vol. 41, No. 6, 1889-1895

A NON-LINEAR CHARACTERIZATION OF THE
NORMAL DISTRIBUTION

By ALBERT KINGMAN! AND FRANKLIN A. GRAYBILL?

Colorado State University

1. Introduction. There are many characterization theorems of the normal
distribution that are based on linear combinations of independent, identically
distributed (i.i.d.) random variables. For example, some theorems deal with
characterizations by one linear function of i.i.d. random variables; some theorems
deal with a characterization by the independence of two linear functions of i.i.d.
random variables; some theorems deal with characterizations by constant regres-
sion. In this paper we shall generalize a characterization first obtained by Skitovich
(see [1]) which is as follows.

THEOREM 1.1. Let Y, Y,, -, Y, be i.i.d. random variables with cdf denoted by F
and let n be a positive integer. Suppose that L, and L, are defined by

L=} a7 Ly= )i bY;
where the a; and b; are constants such that
di=1a:b;=0 and 1, (a;b)? # 0.

Then F is the cdf of a normally distributed random variable if and only if L, and L,
are independent.

We shall state and prove a characterization of the normal distribution that can be
considered as an extension of this theorem. We consider the case when the a; and
b, are not constants but are functions of the random variables Y.

2. Bivariate case. First we shall consider the case of two random variables
Y, and Y,.

THEOREM 2.1. Assume that Y, and Y, are i.i.d. random variables. Let Y, be
another random variable which is distributed independently of Y, and Y, jointly. Let
fand g be two measurable functions of the random variable Y such that the functions
fand g satisfy
2.1 D fA)+4(Y) =1 ae

(i) E[¢* N(Y3)]#0 for n=1,2,3,---.
Define the random variables U and V by
U=f(YyY,+49(Y5)Y,

V =9(Y3)Y,—f(Y5)Y,.
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Then U and V are independent standard normal random variables if and only if Y,
and Y, are independent standard normal random variables.

PrOOF. Suppose that Y, and Y, are i.i.d. N(0, 1). Let ¢y y(t,,1,) denote the joint
characteristic function of the random variables U and V. Then

duv(ts, t2) = E{exp(it,U +it,V) } = E{E[exp(it,U +it,V)| Y;]}
= E{E[exp(it, f(Y3) Y, +it,g(Ys) Y, + it,9(Y3) Y, — ity f(Y3) V) | Y]}
= E{E[exp(i(t, f(Y3) +1,9(Y3)) Y, +i(t,9(Y3)— 1, £ (Y3)) Y,) | 3]}

(2.2) = E{E[exp(i(t, f(Y3)+1,9(Y3))Y,) | Ys1E[exp (i(t;9(Ys) — 12/ (Y5))Y>) | Y31}
= E{exp [—3(1,f(Y3) +1,9(Y3))*] - exp [ - }(t,9(Y3) = 1. £ (Y3) }*]} .
= E{exp[—3(t,f 2(Ya) + 1,207 (Ya) + 1,29 (Ya) + 1% (Y3)) ]}
=exp(—3t,2—4t,2) forall t; and t,.

Also, by using a similar argument, we obtain

(23) duv(t1, 0) = exp(—1t,?)
for any ¢,, and

24 $u.v(0, t2) = exp(—1t,%)
for any 1,.

Hence, for all ¢, and ¢,
Sy (tss 13) = Gy v(ts, 0y (0, t2)

which is a necessary and sufficient condition for the random variables U and ¥ to be
independent. Furthermore, using (2.3) and (2.4), it is easily seen that U and ¥V are
each distributed as a standard normal random variable.

Conversely, suppose that U and V are i.i.d. N(0, 1). Then

(2.5) U+1? =Y, 2+ Y,2 ~ £*(2),

where y2(k) denotes a chi-square distribution with k degrees of freedom, and since
Y, and Y, were assumed i.i.d., it clearly follows that

(2:6) Y2~ Q).

That is, the even moments of Y, coincide with those of a standard normal random
variable. The proof will be complete if it can be shown that

2.7 E(Y,*" =0

for all positive integers n, since this sequence of moments uniquely determines the
distribution of a standard normal random variable. The proof is by induction on n.
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Let n =1 and consider the following expectations.

@8)  E(U) = E{f (Y)Y, +g(Yy)Y;} = E{f(Y;)}E{Y,} + E{g(Y;)} E{Y,}
= [E{f(Y3)} + E{g(Y3)}]E{Y,} = 0.

Also

29 E(V)=E{g(Y)Y,—f(Y)Y,} = E{g(Y;)}E{Y,} — E{f (Y:)} E{Y,}
= [E{9(Y3)} —E{f(Y3)}]E{Y,} = 0.

It follows that

2E{g(Y3)}E{Y,} =0
- and hence by condition (ii) of (2.1), that
E(Yy) =0.

Next, let k be some fixed positive integer greater than 1, and assume that for all
positive integers j < k

(2.10) E{Y,? "1} =0.
It will then be shown that
E{Y,* Hi=0.
Consider the (2k — 1)st moment of U.
E{U1} = E{T355 G4 OV ()] 777 [ Yag(Y3) )
(2.11) = Y350 CFTHE{ 27 Y(Y3)g (Y3 E{ Y, T~ 11 E{ Y, '}
= E{f* T (Y)}E{Y,* "} + E{g** " (Y5)}E{Y,**"} = 0,

since the odd order moments of U vanish and because of the induction hypothesis
(2.10).
Similarly, the (2k — 1)st moment of ¥ is given by

E{V*71} = E{¥ 350" (5 H[Yi9(Ya)1* 7 [ - Yo f (Y9) )}
(2.12) = 25N (— DI HE{g™ I (Ya) fA(Y3) E{ Y, 2T~ 1Y E{ Y/}
_E{ng 1(Y3)}E{Y12k l} E{ka 1() )}E{)22k l} 0.
It follows that
(2.13) 2E{g* " Y(Y3)}E{Y,* '} =0
and hence by condition (ii) of the theorem,
E{Y* 1} =0

and the result in (2.7) is proved and hence the theorem is proved.
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ExAMPLE. Suppose that the random variables Y,, Y5, Y; are i.i.d. such that the
random variables

N, L he™

U= (Y32+e—2}’3)§ (Y32+e—2Y3)*} and
, Ye ¥ Y,Y,

V= -
(Y32+e-—2Y3)«} (Y32+e-—2Y3)%

are i.i.d. N(0, 1). Then the random variables Y,, Y,, Y; are also i.i.d. N(O, 1).

ProOF. The result follows trivially by defining g(y;) by
-Y;
9(y3) = (mm .

3. Multivariate case. The next theorem in one sense generalizes the result
obtained in Theorem 2.1, and in another sense is somewhat different from the one
obtained there.

Assume that X, X5, Xy Xyt 15 Xps25" 7" s Xnam 15 @ set of random variables
such that X, X,, -, X, are i.i.d. Let y,' = (X}, X5, ", X,) and let y,’ = (X,+,,
X412, Xp+m) denote two vector random variables obtained from the set of
random variables X, X,, ", X, 1 -

THEOREM 3.1. Suppose that the random variables y, and y, are independently
distributed and that the component random variables X,,X,," "+, X,, are i.i.d. random
variables. Let

a;; = JifXns1s Xns2o " s Xpam)

for i=1,2,---,nandj=1,2,---,n be Borel measurable functions of the variables
X115 s Xpym Define the random variables Uy, U,, -+, U, by

Uy=a, X +a,X,++a,,X,
U’z = aZIXI +022X2+"'+612"X,,

Un = aanl +an2X2+' : '+anan
which we shall write as
U = Ay,

where A = (a;;) is the n x n “‘random” coefficient matrix. Suppose that the matrix A
is orthogonal with probability one and that there exists an index i such that

E[}j-1a;] #0.
Then U ~ N(0, L) if and only if y, ~ N(0, L,).
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PROOF. Assume that y; ~ N(0, L) and let ¢,(t) denote the joint characteristic
function of the random variables U,, U,,* -, U,. Now

¢u(t) = E{exp(it'U)} = E{E[exp(it'U)|y,]}
= E{E[exp (it AY,)|,]} = E{exp(— 3t AA'D)}
= E{exp(—1t't)} = exp(—1t't).

That is, U ~ N(0, L,).
Conversely, assume that U ~ N(0, L), and, without loss of generality, assume
that

3.0 E[} -1 ay;] #0.
Now

U'U=y,A’Ay, =y,'y; ~ ¥*(n)
by the condition U ~ N(0, I,). That is,

(3.2 2i=1 X2~ P(n).
Since the X;’s were assumed to be a set of i.i.d. random variables, it follows that
(3.3) X2~ ().

Therefore, the even moments of X, coincide with those of a standard normal
random variable. The proof will be complete if it can be shown that

(34) E(X12k+1)=0

for all nonnegative integers k. Mathematical induction will be used to show that
(3.4) holds for all nonnegative integers k.
For k = 0, one need only compute

E(U,) =E{}j-1a,;X;} = -1 E{a,;X;}
=Yi-1E{a,;}E{X;} = E(X,) Y%=, E(a;;) = 0

and use (3.1) to obtain that E(X;) = 0. Next, assume that k is a fixed positive integer
greater than one, and that for all nonnegative integers j < k,

3.5) E{X%*1} =0.
Since U ~ N(0, I), it follows that, for any set of nonnegative integers ry, 75, * *, 7,
(3.6) E{U,"U,>-- U} =0

provided at least one r, is odd. Hence, the expectation
E{U,(U >+ U,*+--+ U = 0.
But
3.7 E{UI(U12 +oo0t Unz)k} = E{Ul(X12 +X22+ o ‘+Xn2)k}
= E{Z;!=1 a XX 2+ X2+ + X)) =0
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Consider the ith term in (3.7).
E{a ;XX >+ X2+ +X,2)9

k!
Xl 2"X2 2rz, el X'.2n, TR Xn2"n}

=E{al,-X-Z = _—
PLaritc+rpa=k;rj20
SRLE R PR VOS RIS

= ritrate e dramkiry20 rT-_k-_!-?;!E{a”Xlzn cee X PR x 2y
k!
= E{a,;} Zr1+° ot ra=kiry20 ﬁ:!E{Xlz"} s E{X 2 E{X,*}
= E{a;}E{X;***'}, by the induction hypothesis.
Hence, (3.7) becomes
2i-1E{a JE{X 21} = E{X P JE{} -1 a,,} =0
and since E{}}-, a;;} # 0, it follows that
E{X**1} =0.
Therefore, by mathematical induction,
E{X,**'} =0
for all nonnegative integers k, and the theorem is proved.
ExamPLE 3.1. Let X, X,, X3, X4, X5, X be i.i.d. random variables. Let
2’ =[e™, In|X,X;|, sin X4]
and define the matrix B by
B =aa'/a’a.
Hence, the matrix A defined by
A=1-2B
is a symmetric orthogonal matrix with probability one. Now if

E sin® X¢+(In| X, X 5)*> —e™ 24— 2e~**In| X, X 5| —2¢~*4sin X ¢ 20
e” X4 (In | X, X 5|)* +sin? X

then the conditions of the theorem hold for the random variables U,, U,, U,
defined by

U= AX
where U’ = (U, U,, U3) and X' = (X, X5, X 3). Thus U ~ N(0, I,) if and only if
X ~ N, I,).
If one compares the assumptions made on.the variables U,, U,,---, U, in this
example with those given in many of the previously known characterizations, it
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seems as though the conditions of Theorem 3.1 are much too stringent. This
certainly would be the case if the random variables X, , X,12," ", X, +m Were
always assumed to be dengerate random variables. However, if one allows the a;;’s
in the matrix A to be non-degenerate random variables (as was done in Theorem
3.1), much stronger assumptions on the distributional properties of the random
variables U,, U,," -, U, are needed than those given previously. For example,
suppose it had been assumed that the random variables Uy, -, U, were i.i.d.
random variables (not necessarily normally distributed). The following example
shows that under these conditions, it is not necessary that X; and X, should be
normally distributed.

ExaMPLE 3.2. Let X, and X, be i.i.d. random variables with common charac-
teristic function

¢(t) = cost

for all real z. Suppose that X; is a random variable which is independent of the
joint distribution of X, and X, and has the distribution given by

X501 3n

e
P(X;) || 3 |

Define U, and U, by
Ul =X18inX3+X2COS)(3
U2=X1COSX3—X2SinX3.

Then the distributions of sin X, and cos X, are given by

sinX; ||0 |1 cosX; || 0|1
PsinX;) || 3|3  PosXs) | 3|3
Now E{sin X;+cos X3} = 1 and the matrix A given by
A=[sinX3 cosX_,,]
cos X, —sin X,

is clearly orthogonal with probability one.

It is easily shown that both U, and U, have the same ch.f. as X, and X, and that
they are independent.

It is also of interest to determine if the condition

E{3%-,a;} #0 forsome i
is required in Theorem 3.1. We have not been able to show this.
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