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1. Introduction. The problem of extrapolation of a stationary Gaussian process
% using the whole past x(¢): ¢ < 0 was solved about 1940 by A. N. Kolmogorov [15],
M. G. Krein [16], and N. Wiener [27]. The purpose of this paper is to present the
mathematical tools needed to solve the extrapolation problem if only part of the
past is available. M. G. Krein [20] did this by applying the solution of the inverse
spectral problem as initiated by Gel’fand-Levitan [10] and perfected by himself
[17-19]. Dym-McKean [8] used a second method involving spaces of integral
(entire) functions, of the kind introduced and extensively studied by L. de Branges
[5, 6].

Both methods take advantage of the fact that the study of the short process
x(2): |t| < T+ is isomorphic, via the map x(t) — exp (iyt), to the study of the class of
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integral functions f of exponential type? <T belonging to Z(W) = L*(dW, R").
W stands for the spectral weight which goes with x, and it is supposed for the
moment that dW is non-singular with density A (relative to Lebesgue measure) and
that

fa+y*)""1gA(y)dy > — oo

which makes each of these function classes a closed subspace of Z(W). The projec-
tions upon these spaces form a spectral resolution which can be expressed by means
of eigendifferential expansions similar to the usual Fourier sine and cosine trans-
form for L?(dy, R'). The solution of the extrapolation problem using only part of
the past may be expressed in this language. By way of introduction, the solution of
the classical problem of extrapolation off a half-line is sketched.

An account of the interpolation problem is included in view of its close relation
to the above. To the best of our knowledge the recipe presented below is the first
proposal for a full solution of that problem.

The paper is offered as an outline only. The proofs of new material will be pre-
sented elsewhere. The bibliography makes no pretensions to completeness, but it is
hoped that all the major contributions to the field have been cited, expressly leaving
aside chains (integral time) and several-dimensional processes. The reader will find
an account of these and other topics not touched upon in Rozanov {26]. Proofs and
further developments will be the subject of a joint book of the authors to be
published at a later date.

2. Gaussian processes. Consider a 1-dimensional, centered, stationary Gaussian
process with sample paths ¢ — x(t)e R! and let W be its spectral weight, so that?
E[x(a)x(b)] = [ "~ dW(y).
The measure dW splits into two pieces, a Lebesgue piece and a singular piece:
dW = Ady+dw-.
Because z is a real process dW must be even, esp., A is even, as well as nonnegative

and summable.
The map x(¢) - exp(iyt) provides an isomorphism between the closure H of

finite sums y = ) c;%(¢;) under the norm

livll = (Ev*?
and the closure in Z(W) = L%(dW, R") of the trigonometric sums f = )" c;exp (iyt;)
under the norm
71l = 17 am)*.

The discussion will be carried out mostly in this second (trigonometrical) language,
still employing probabilistic names if appropriate: for instance,

Z~°(W) = Nrso [the span in Z(W) of the functions e”*: t < T]

2 This means that limsupg..» R~ maxoge52+18|f(Re)| = T.
3 E stands for expectation. | means integration over the whole line unless otherwise indicated.
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is still called the remote past. The reader should keep it in mind that in the present
(centered Gaussian) situation, statistical independence is the same as perpen-
dicularity in H (or Z). A second important geometrical point is that if A is a closed
subspace of H, if B is the smallest Borel field over which A is measurable, and if C
is the biggest subspace of H which is measurable over B, then the self-evident
inclusion C> A is actually an identity, and the projection upon A = C is the
conditional expectation y — E(y | B).

3. Szegi’s alternative. Define Z~ to be the “past™:
Z~ (W) = the span in Z(W) of the functions ¢™:¢ < 0.
A very important fact is Szegd’s alternative, as refined by Kolmogorov and Krein:*
EITHER Z2-°(W)=2(W) and  [(1+y)7'IgA@»)dy = — 0
OR Z7°(W)=2(W*) and J(1+y?)"'igA(y)dy > — 0.

The first possibility is the case of perfect prediction of the future knowing the whole
past. In the second case, the process splits into the sum of a perfectly predictable
piece corresponding to dW*® and an independent piece corresponding to
d(W— W?*) = Ady. Because of this it is natural for the classical prediction problem
to impose the so-called Hardy condition:

Ja+y)"tigA(y)dy > — o,

in order to exclude the first possibility, and simply to assume that W has no
singular part [dW = A dy]. These two assumptions will be in force until Section 10.
To emphasize the latter we shall write Z(A) in place of Z(W), etc. Szeg6’s alternative
implies that in the Hardy case

Z-°(A)=0 and Z~(A)+# Z(A).

The reader should notice that A =exp(— |y|) is the approximate dividing line
between the Hardy and the non-Hardy cases: for this weight, the polynomials®

(iy)" = 0"exp (iyt) evaluated at t =0
belong to Z~ and already span the whole of Z, so that also
Z "= nrgoeXP(i?T)z_ =12,
as it should.

4. Hardy functions. To proceed, you have to know something about the space
H2* of Hardy functions on the upper half-plane. This is the class of functions
h = h(y) = h(a+ ib) which are analytic on the upper half-plane R** = (a+ib:b > 0)
and satisfy the growth condition

|ik||* = supyso | |#(a+ib)|* da < co.

4 The proof may be found in [2:263]; see also [14] and [22:115].
S 9 stands for differentiation with regard to time.
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For such 4, the function A, = h(+ +ib) converges in L%(dy, R") as b | 0 to a function
ho .+, and the map h— hy, is 1:1, so you can permit yourself to identify 4 with its
boundary value. The Fourier transform

h— h(t) = 2m)~* = h(y)e~"" dy

of every element 4 in L?(dy, R!) arising this way vanishes on the left half-line, and
conversely. That is to say, with a self-evident notation,

(H?*)* = L*(dy, [0, 0)).
Another important point is that if 0 < AeL!(dy, R?) satisfies
{A+y»)"'1gA > — oo,

then A = |h|2 for some he H2* and vice versa (provided 4 % 0), so that you have a
simple test for the modulus of a function from H?*. The above facts go back to
Paley-Wiener [24].

The structure of H2* is further refined by the notion of inner and outer functions
introduced by Beurling [3]. A function 4 # 0 of class H2* always satisfies

Lo b 1g]hG)|

for b > 0 and is called outer if this is actually an identity. The reader will notice
that such an outer function is root-free on R**. Given ke H?*, you can find an
outer function 2e H2* with the same modulus as k on the line, namely,

1 [14yx dx
11(7)=6XP[;J ! lglk(X)IW]-

x=y

This outer function is completely determined by |k| up to a multiplicative constant
of modulus 1, and the ratio k/A is an inner function, meaning that its modulus is = 1
almost everywhere on the line and <1 above. To sum up, any function ke H2*
can be factored in (essentially) only one way into the product of an inner and
outer function.

A second way of expressing the fact that he H2* is an outer function is to say
that exp(iyt)h:t 2 0 spans H?*, which is the same as to say that A(s —1):7 >0
spans L2[0, c0). A third test states that if #e H2* is an outer function then

§61As)|? ds = [ | k(s)|* ds

for every t = 0 and every ke H?* with the same modulus as / on the line. This may
be interpreted as saying that the associated filtere — i xe = [} h(t—s)e(s) dsresponds
to the input signal e as rapidly as possible.

The reader will find nice proofs of everything but the third test for outer functions
in K. Hoffman [12]. The latter is due to Robinson [25].

5. Kolmogorov-Wiener extrapolation. The extrapolation (prediction) problem of
Kolmogorov [15] and Wiener [27] can now be solved following K. Karhunen [13]
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who was the first to make explicit use of outer functions in this connection; see also
[26: 109-129].

Given T > 0, the problem is to find the best approximation to x(7") from the
span of the past 2(¢): ¢ < 0, assuming that the remote past is trivial. As pointed out
in Section 3, this is the same as to say that W is non-singular and satisfies the
Hardy condition:

f+y)~tIgA > —oo.

This best approximation is the projection upon the past, or what is the same, the
conditional expectation E(x(T) | A), A being the smallest Borel field over which the
past is measurable. ,

H2* comes in as follows. Because A is a Hardy weight, you can express it as
|A|? for some he H?*, and since A is even, you can also impose the reality condition
h*(y) = h(—7) for ye R*.® This makes h real. Given a standard white noise e, the
process x,(t) = jfl(t——s)e(s) ds is centered and Gaussian, and since

E[x,(a)x,(b)] = [ A(a—s)h(b—s)ds
= je~™h(y) €"h*(y) dy
= [e"® D A(y) dy,

it is identical in law to the original process x. This permits you to identify x and x,.
Notice that this identification depends only upon the modulus of / on the line,
especially, h may be assumed to be an outer function. The field A of the past of x is
now part of the field B of the past of the white noise e, and it is easy to prove that
these two fields match if and only if 4 is an outer function. But this can just as well
be assumed to begin with, as noted above. Then the expectation of ¥(7") conditional
upon A is the same as the expectation conditional upon B:

E((T)|B) = |2, (T —1)e(r)dt

and the extrapolation problem is solved. The formula for the mean square predic-
tion error is

E[JT A(T — 1) e(t) df]* = [T |h()|? at.
WARNING. From now on, we reserve the letter 4 for the outer function in H2*

for which |h|?> = A on the line.

6." Interpolation. The problem of interpolation originates with Karhunen [14],
Kolmogorov [15], and Wiener [27]. The idea is to predict x inside the interval
|t| < T, knowing it on the whole complement |¢| 2 T. The problem is trivial in the
non-Hardy case in view of Szeg®’s alternative, so it is natural to take

fl+y»)"t1gA > —co.

6 * means complex conjugation.
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The condition for perfect interpolation is that
JIfPA™ =

for every integral function of exponential type <T. This fact is due to Karhunen
[14]. For additional discussion see Section 22 below. An alternative condition for
imperfect interpolation is that exp (2iyT)h*/h should agree on the line with the ratio
h*|h~ of a function h* e H?* and a function A~ from the class H2~ = (H2*)*7
of Hardy functions on the lower half-plane. The proof can be found in [1]. A
recipe for the effective solution of the interpolation problem is presented later in
Section 22. The special case of a rational weight A is treated in [28]; see also [1]
and [26: 129-135]. :

7. Past, future, and splitting field. The subject of the present section is the degree
of dependence between the past

Z~(A) = the spanin Z(A) of the functions ¢”*:t <0,
and the future
Z*(A) = the span in Z(A) of the functions ;¢ > 0
under the Hardy condition
f+y»)"11gA > —co.

This may be measured by the projection Z*/~ of the future upon the past. The
probabilistic meaning is that the field B*/~ of the projection of the future upon the
past is the smallest subfield of the past, conditional upon which past and future are
independent. B*/~ is called the splitting field [22: 101-102]. Z*/~ provides a way
of saying how big this field is, and * may be said to be more or less Markovian
accordingly. For example, x would be highly Markovian if dimZ*/~ < o0 and
highly non-Markovian if Z*/~ = Z~. In any case Z*/~>Z~nZ*. The following
facts from Levinson—-McKean [22: 103-105] are apropos of this idea:

(a) Z~ # Z*/~ iff h*/h agrees on the line with the ratio of 2 inner functions.

(b) 2/~ =2~ N2Z" iff h*/h agrees on the line with the reciprocal of an inner
function.

(c) dimZ2~nZ™* = 1iff 4 is the only outer function with phase A*/h.

(d) dimZ*/~ < oo iff A is a rational function.

The so-called germ ‘
Z°*(A) = Nr>o [thespanin Z(A) of the functions ¢”':|¢| < T]
is also of importance in this connection. Z°* is a subspace of Z"nZ*<Z*/~ and

may be identified as the space of integral functions f of minimal exponential type®

T h#(y) = h*(%).
8 This means that lim supg-, R~!maxo ge5z2x | f(Re®)| = 0.
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which belong to Z [22: 111-115]. Z°* describes the germ of the process. The
principal facts about it are as follows:

(a) Z*/~ =2°* iff 1/h is an integral function of minimal exponential type
[22: 121-123].

(b) 2 n2Z* =2Z°* if A™! is locally summable [22: 115-118].

(c) 2°* contains only functions of genus 0 if f(1+y%)~'l1g* |y|1gA>—o0
[22: 118-120].

Z°+ = Z*/~ expresses the condition that the process splits over its germ, that is to
say that the splitting field B*/~ coincides with the germ field:

*=r>0BT, BT =field [x(1): ]t = T].

A final point of interest, amplifying the above, is the statement of [8: 340]
that, for any T >0, the process splits over the field of %(t): —2T <t <0 iff
[exp (iyT)h]~! is an integral function of exponential type < 7.

8. Rational weights. The spectral density A is rational iff dimZ*/~ < o0, as
noted above. This is a case of particular importance from the electrical point of
view. The following material is adapted from [22: 120~121], though the actual facts
have been known for a long time; see, for example, [11], [26], [27], and [28]

A rational weight A satisfies

J+y»)"'IgA> -0

automatically, and the corresponding outer function £ is rational and root-free on
the open upper half-plane. The roots of # in the closed lower half-plane control the
disposition of the subspaces

2t~ 52" n2t>2°*:

(a) 2°* =2~ NZ" iff h is root-free on the line.
(b) 2 n2Z* = Z*/7 iff his root-free on the open lower half-plane.
(c) 2°* =2"n2Z* = Z*/~ iff h has no roots at all.

The third statement may be amplified by the following alternative conditions:
(d) A = |p|~2 for some polynomial p with no roots in the closed upper half-plane.
(e) D[x] = a standard white noise for some differential operator with constant
coefficients [D = (2n) " *p(—i0)].°
() B*/~ = field [0*x(0): k < n] for some n(=degree of p) < co.

The last statement (f) expresses the fact that the n-dimensional process
y = (x, 0%, -+, 0" 'x) is Markovian in the customary sense.

9. Germ and gap. An important part of the germ Z°* is the span of the
polynomials:

Z_.(A) = the span in Z(A) of the functions (iy)*:k <n,

9 9 stands for differentiation with regard to time.
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in which jyz"A is the first (even) moment of A to diverge (n < o0). This corresponds
to the field of 9*x(0): k < n, and it is an open problem to find an effective test for
deciding if Z°* = Z_, or not. The factor space Z°*/Z , is called the gap. The reader
should not think that just because each function in Z°* is integral and can be
expressed by a nice power series that such a gap cannot be present: the power series
may not converge in Z! Be that as it may, the gap is either absent or infinite-
dimensional. The gap is absent if A is the reciprocal of an (even) power series with
nonnegative coefficients; see Dym-McKean [8: 320-325] for proofs and additional
information.

Levinson-McKean [22:130-133] found a Hardy weight A = |h|> with 1/h
integral and of minimal exponential type, dimZ, = oo, and a gap. A simpler
example with a gap is presented below. Both examples depend upon the fact that if
A has a lot of spikes placed not too far apart, then the distance

/1l = 171* o

will discriminate very delicately between integral functions of small exponential
type and make polynomial approximation very difficult. Carlson’s theorem [4: 153]
which states that an integral function of small exponential type with roots at the
integers 0, 1, 2, etc., can only be identically 0, is closely related to this kind of thing.

The example is made as follows: for each #n = 1, A has a sharp rectangular spike
centered about the point n2, of height n~3 exp (nn), and width nexp(—nn), while
between the nth and (n+1)st spike it drops to the level n~3exp(—2nn). A is
extended to the left so as to be even after making it =1 between 0 and spike no. 1.
The reader will easily check that

(@) JA< oo,

(®) J(1+y)7'IgA > —oo,

(© [y*A= oo,

(@) f[sinn(y*)sh(z(p)H)*A < co.

(a) and (b) are self-evident, and (c) states that Z , contains only constants, but by
(d) Z°* contains a non-constant integral function: f = sin (n(y)?) sh (n(y)?).

The probabilistic significance of the gap is unclear, except that it describes
the part of the germ which is independent of the differential coefficients 9*x(0):
k < n(Z o0) but naturally is still local! The reader should note that for 1/A integral
and of minimal exponential type, the possibly co-dimensional process (x, 9x, 8%z, etc.)
is Markovian iff there is no gap.

An interesting problem is to decide (in the non-Hardy case) if 2°*(A) = Z(A)
or not. Levinson-McKean [22: 123-124] proved that this happens if

Iy ey Akl = -
for some ke H2* whose modulus is a decreasing function on the half-line. If A
itself is decreasing on the half-line, the condition is the same as

fA+y)7IgA = — 0.



EXTRAPOLATION AND INTERPOLATION OF STATIONARY GAUSSIAN PROCESSES 1825

10. Extrapolation off a bounded segment of the past. The problem is to project
%(R) for fixed R > 0 upon the span of x(¢): —27 < t < 0, or what is the same after a
self-explanatory shift of the time scale, to project exp [iy(T+ R)] upon

Z"(A) = the spanin Z(A) of the functions €”':|tf| < T.
This space is closely related (and sometimes identical) to the class of integral
functions of exponential type <T which belong to Z; see [20], [22: 135-142], and
for a simpler proof [8: 319-320]. M. G. Krein [20] computed this projection by
identifying the spectral density A of the process x with the derivative of the spectral
function of a generalized second-order differential operator
G:f—>df*/dm,

the idea being to express the projections by means of the eigendifferential expan-
sions for G. From this point of view, the fundamental problem is to determine G
from its spectral function. This so-called inverse spectral problem was initiated by
Gel'fand-Levitan [10] and perfected by Krein himself [17-19]. In our discussion of
this problem below, we shall denote the spectral function (weight) which goes with
G by W, and, following Krein, impose only the condition

fA+y®»~1dW < .

Another way of computing the projection upon ZT(A) is by identifying it as a
space of integral functions of the kind introduced by L. de Branges [5, 6]. This was
done by Dym-McKean [8] under extra technical assumptions. The case of a
rational spectral density is done by counting roots and poles in Rozanov [26:
135-142]. The purpose of the remainder of this paper is to elucidate the deep
structure of the spaces ZT(W) and the allied spaces

2T (W) = Nr>1 Z°(W)

following M. G. Krein [20], as supplemented with finer details from the standpoint
of Dym-McKean [8].

11. The inverse spectral problem. The principal tools of Krein’s investigations
on the inverse spectral problem [17-19] are explained below in a form adapted to
the present needs.

A weighted string is described by a nonnegative mass distribution m loaded up
on a closed interval 0 £ x £ ! £ oo having mass at or near both x =0 and x ={,
and subject to the proviso that m(l) = 0 unless both { < o0 and m[0,!) < co.

This data is supplemented by the choice of a nonnegative number k < oo subject
also to provisos as indicated in the second column of the accompanying table.

Each permissible choice of k determines a self-adjoint non-positive differential
operator G acting in Q = L3(dm, [0,1]). The domain D(G) of G is the class of all
functions fe Q which have 1-sided slopes f~ and f* satisfying

(@ f*(0)—f7(0) = Gf (O)m(0),
®) f*(B)—f*(a) = |51 Gfdm for 0sa<b<l|,
© fTO—-f~(1) = Gf(Om()
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TABLE 1

Igmdx‘ jg‘ xdm m(t) k

< 0 < 0 0=m< 0=k=

k = 0 is permitted
onlyif m=0

< = =0 =0

=00 < 00 =0

=w | =o =0\

* 12 mdx stands for fml0, x]dx.

for some Gfe Q, subject to the boundary conditions

(d) f7(0)=0,
(&) O+ (Y =0.
The map

[ Gf =df *|dm

is well defined by this neat-looking recipe, but a lot of stuffis concealed by means of
tricky conventions, and this must now be explained in detail.

To begin with, (b) implies that for 0 < b < {, f *(b—) exists and agrees with the
left-hand slope f ~(b):

fr- )—hm(b a)~? f (x)dx—hmf() f()

ath b

=f"(b).
Notice also that f* = f~ except perhaps at the (countably many) jumps of m:

SH®)=f7(b) = limgy, [f *(b)—f *(@)] = lim,y, fa3 Gf dm = Gf (b)m(b).

This formula holds for 0 < » <! and is extended to b = 0 and to b ={ by (a) and
(c) respectively. The latter are to be regarded as defining f ~(0) and f*(l) with the
understanding that Gfm = 0 if m = 0. (d) is now self-explanatory, but () still needs
some clarification.

Cast 1. [{mdx = [{ xdm = co. k is not specified and neither (c) nor (e) is
imposed, as the shaded box in the table is meant to indicate.

CASE 2. [§mdx = 00 > [§~ xdm. f~(l) is defined as lim,..f*(x) which exists
in view of (b) and the fact that Gf'is summable:

(5™ [Gf | dm)* < [§ |Gf|*dm [§~ dm < 0.
m(l) is now 0, (c) means that f*({) = f~(), k = o0, and (e) says that f ~({) = 0.



EXTRAPOLATION AND INTERPOLATION OF STATIONARY GAUSSIAN PROCESSES 1827

CasE 3. fémdx < 0o = [§~ xdm. kis now 0 as is m(l), (c) means that f () = £~ ()
as before, and () says that f({) = f(1—) = 0.

Case4. [§mdx and [§” xdm < 0. f=(1) exists in the usual sense, (e) is self-
explanatory if 0 < k < 00, and if k = o0, it means that

ST =f~O)+GfHm® =0,

while if k = 0, in which case m(l) = 0, too, and f * () = £ ~({), it means that f({) = 0.

G is now defined, and it turns out that the possibilities cited under (e) provide a
complete list of all the non-positive self-adjoint contractions of G as defined by (a)
through (d) on the half-open interval 0 < x < 1.1°

Given a fixed complex number p, bring in the solution 4 = A(x,y) of
GA = —y*4 (0 £ x <), subject to A4(0,y) =1 and A~(0,y) =0, put A(l,y) =
A(l—, ) if m(t) > 0, and notice that A4 is an even cosine-like function of y. An even
nonnegative mass distribution dW on the line is a spectral weight for the weighted
string corresponding to m if

fA+yH™1dW <
and if the (cosine) transform
f=7@) =n"%§" A(x,7)f(x)dm(x)

provides a partial isometry between Q = LZ(dm,[0,!]) and Z = L?(dW,R?)
expressed by a Plancherel formula:

1£lin = ol f|*dm = ||7|[% = 17|*aw

for any compact function fe Q.!* W is a special spectral weight if this partial iso-
metry extends to an isomorphism of Q onto the class of even functions belonging
to Z. By the Weyl-Kodaira eigendifferential expansion, as adapted to the present
needs,? there is precisely one special spectral weight for each permissible choice
of k, i.e., for each choice of G. Krein [17] turns this around and proves that every
even nonnegative mass distribution dW subject to [ (1+y?) ™! dW < oo arises in this
way as the special spectral weight of some string. The inverse spectral problem is to
compute |, m, and k from W. The present statement is in the nature of an existence
proof only; for some hints on the actual computation of these quantities see
Krein [18, 19], Levinson [21], and also the final section below.

Krein [17] actually proves much more: every non-special spectral weight of a
weighted string is the special spectral weight of a longer string, i.e., a string with
I* > 1 and m* = m for x < {; esp., if either | = o0 or m[0,!) = oo, the string has
only one spectral weight, to wit, its special spectral weight. A string for which W
is a (non)-special spectral weight will be called a (short) long string for W.

10 The proof is made by imposing the condition G < 0 upon the list of all merely self-adjoint
candidates provided by W. Feller [9:491].

11 A compact function is one which vanishes near x = if either { = o0 or m({) = .

12 See McKean [23].



1828 H. DYM AND H. P. MCKEAN

12. Green functions. The connection between a weighted string and the associated
special spectral weights W may be clarified as follows. Given an admissible
0 < k £ 0 and a positive number a2, the Green function K, = K,(x, y) for a> -G
can be expressed as an eigendifferential expansion by means of the cosines 4 and
the special spectral weight associated with &:

K.(x,7) = J' L)

n(e® +y?) awe)

when x and y are points of growth of m. At the same time, the classical Green
function recipe provides us with a second expression for K,. Choose the positive
increasing solution A4 = A(«,ix) of GA = 2?4 (0 £ x < {) which meets the left-
hand boundary condition, and a positive decreasing solution D = D(.,ix) of
GD = o2D which meets the right-hand boundary condition and is subject also to
the normalization D™(0, i) = — 1. Then the Wronskian

A*D—AD* = A"D—AD" =1, and
K, (x, y) = A(x, i) D(y, ix)

for x £ y. This gives the formula

A(x, DA, 7)

A(x, ia)D(y, io) = f prww aw(y)

for points x < y of growth of m, esp., you can evaluate this at x =y = 0:
1
D(0, ix) = ;-J‘(a2 +y)rdw,
since x = 0 is a point of growth of m. An important formula is easily deduced from

this. D may be expressed as

D(x, i) = D(0, ia)A(x, i) — C(x, iat)
where

Clx, i) = A(x, i) [5 [A(y, i®)] "> dy
is the solution of GC = «>C subject to C(0, ix) = 0 and C~(0, i) = 1. Therefore,
C{l, i)+ kC* (L, i) or lim C(x, ie)+kC*(x, ix)
Al i)+ kAT i) s A(x, i)+ kAT (x, ic)

according as m({) > 0 or not, esp., for a? | 0, you find the formula

1
;J(a2+yz)'l AW = D(0, ia) =

1
(+k=—jy"2dW.
T

k need not be specified if [§mdx = [~ xdm = oo, as the expression for D(0) is
independent of k in that circumstance.

Krein [17] presents a similar description of the non-special spectral weights W
associated with the short string in case both { and m[0,!) are < oo. The long string
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associated with {* > { and m* for which W is a special spectral weight correspond-
ing to some permissible 0 < k* < co may be broken up into 3 pieces: the short
string associated with { and m, a possible (open) gap between { and {, > | containing
no * mass, and an extension string corresponding to {° = {* —{, and the restriction
m°® of m* to |, £ x £ *. Krein’s formula states that

O C(, i)+ KC*(l, ix)
- aw = ,
nj(“ +7) AQ, i)+ KA (1, i)
in which
D(ly, ia) 1 i}
K=l ,—l——2 " = k4= (a2 +y2)"LdW°.
* D~(,,ix) +nf(a +7)

0 = k° =, —1is the length of the gap and W° is the special spectral weight for the
extension string subject to f+k*f* = 0 at its upper end, esp., every function K of
the above general form appears in this way for some extension.

The special case of a string with lumps of mass loaded up on a series of points
0 =xo <x; <Xx; <etc. 11 £ oo is explained in detail by Krein [17]; it is of special
interest as it subsumes the classical investigations of Stieltjes into the problem of
moments and the associated continued fraction expansions; see Section 16.

13. Fourier transforms. Krein’s investigations actually go much deeper than the
preceding account indicates.

Consider the weighted string associated with m on 0 £ x £! < oo, pick an
admissible 0 < k < o0, and let W be the corresponding special spectral weight.
Then, as stated above, the transform

SeL(dm,[0,5) - feven = 77 57 A(x,9)f(x)dm>

is an isomorphism onto the class of even functions belonging to Z = L*(dW, R?),
and there is a Plancherel formula:

11l = §6* 1£Co) dm = || 715 = fIF | aw.

The next step is to develop the transform based upon the function B = B(x, y)
defined by 4* = —yB. Because A is something like a cosine and A* = —yB is
reminiscent of the familiar d(cosy?)/dt = —ysinyt, you may expect B to imitate
the customary sine, esp., B is an odd function of y and dB = +74 dm, which should
remind the reader of the familiar d(sinyt)/dt = ycosyt. The similarity is actually
very deep, as will become plain. To be precise, you can define a transform for odd
functions from Z which stands in the same relation to the customary sine transform
for L*(dy, R") as the even transform f— n~* [ Afdm does to the customary cosine
transform: namely, the map

SeL?(dx,[0,4]) > foaa = 77 * [§ B(x, ) f(x) dx

13 As for the customary cosine transform in L%(dy, R!), the integral [ Afdm has to be treated
with due caution.
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is an isomorphism onto the class of odd functions belonging to Z, and there is a
corresponding Plancherel formula:

17117 = §5 | Gol?dx = || 115 = §IF )|,

provided that you understand by fe L*(dx, [0,1)] that f is constant on any interval in
which dm = 0. The associated inverse transform formulas are easily derived:

Sx) = 7" [ A9 f eveny) AW
for even functions belonging to Z, and

f(x) = ﬂ—*_‘.B(X, 'J’)fodd ('}’)dW

for odd functions belonging to Z. As simple examples, the reader will note the
transforms

?~{(A(x,9)—1) = [§ B(y,7)dy
and
y7B(x,7) = [+ A(y,y) dm,
and the resulting Plancherel formulas which hold at growth points x of m:
[y~ A=D|Z ==x, |y~'Bl|[# = =m[0,x].

14. Integral subspaces. Krein[20] uses the odd/even transform pairs to investigate
integral subspaces of Z, that is to say closed subspaces populated by functions which
can be extended off the line into the whole complex plane so as to be integral
(entire). The present section is devoted to a statement of these results of Krein,
esp., to the counterpart of the classical Paley-Wiener theorem for L?(dy, R'). This
is applied presently to solve the problem of extrapolation (prediction) off a bounded
segment of the past, following Krein [20]. After a brief discussion of de Branges’
spaces of integral functions, it will be possible to go still more deeply into this
subject.

Given a number x <!, let B** = B**(W) be the class of functions fe Z(W) for
which both of the inverse transforms

fom=n"AfdW and f4=n"*|BfdW

vanish outside the closed interval [0, x], subject to the proviso that x = is allowed
iff both ¢ and m[0,!) are <oco. B*~ = B*~(W) is defined similarly except that the
inverse transforms vanish outside the half-closed interval [0, x). B** differs from
B*~ iff m(x) > 0, and then by multiples of 4(x,+) only. Moreover, each such
space B is closed in Z, and it is easy to prove that it is populated by integral
functions of exponential type not larger than'4

T = f5(mG)*dy,

14 ' stands for the density of the Lebesgue part of m.
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as follows from the fact that both A(x, +) and B(x, +) are integral functions of the
precise exponential type 7. These are the integral subspaces figuring in the section
title. »

Krein [20] deduces several simple but very important facts from this type formula.
To begin with, it is plain that the class Z7*(W) of integral functions of exponential
type < T < oo (which includes B** whenever [§(m'(y))*dy < T) is dense in Z iff

fo(m()tdy < T,

and that in the opposite case [T < | ¢ (m')*], such functions fill up a closed subspace
of Z which may be identified as the space B**, x = x(T'+) being the biggest root of
T = [5(m')*. This is the counterpart of the classical Paley-Wiener theorem for
L(dy, R"). Notice that the class of integral functions of minimal exponential type
Z°* (W) is dense in Z(W) iff m is singular with regard to Lebesgue measure.

The smallest root x = x(T—) of T = [§5(m’)* also plays an important role in
connection with

Z"(W) = the spanin Z(W) of the functions y~'(e” —1):|f| £ T.
Krein [20] states that functions of type < T span out the whole of Z(W) iff
either T > [§(m)*  or T = [§(m")t, x(T=) =1, and m(i) =0,

and that in the opposite case, this span is the same as ZT(W) and can be
identified as the integral subspace B*~ for x = x(7'—). By this and the preceding
identification,

27 (W) = Nr>1Z°(W)

as the notation is meant to suggest.

In case W is non-singular with a Hardy density A, ZT*(A) is a proper closed
subspace of Z(A); see Levinson-McKean [22:135]. By the preceding remarks
j'f, (m")* = oo is a necessary condition for this to happen.

The reader will notice that for T < |5 (m’)?, a gap existsbetween x(T—)and x(T'+)
iff m is singular on the intervening interval. This phenomenon is of the same nature
as the gap between Z_, and Z°* discussed before. The latter is reflected in the
possible existence of an interval of singular mass following immediately upon the
series of mass lumps which account for Z,, as described in Section 16.

15. Extrapolation off a bounded segment of the past: Krein’s solution. The
problem of extrapolation off a bounded segment of the past, posed in Section 10,
can now be solved. Given T < ¢, the problemiis to project the function f = exp (iy?)!*
upon the space ZT(A) =B*~(A). Here A, the spectral density, is Hardy and sum-
mable, x stands for the smallest solution x(T—) of T = [§(m’)*, and neither the
situation

T > f§(m')*

15 A is summable, so feL3(A, RY).
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nor the situation
T=[4(m), x(T-)=1! and m(f)>0

prevails, as the projection is trivial otherwise. Krein’s even and odd transforms are
precisely the tools for this: the projection of

=10t AfSendm+n ™ [ Bf g dx
upon B*~ is simply
17 fecxr—y A ven dM+7 ¥y coiroy Bf oha dx,
and the prediction error is the sum of 2 parts:
Jxzxr—) |foven > dM+ [az 1) |fc:::ldl Zdx
=e(+)+e(—)=e.
The additional technical assumption [y°A < oo makes it easy to check that

e 0Pe(+) 0%e(-)

or*  oxom @ omox

a fact of mysterious significance. 6
The above recipe can be expressed in terms of white noise integrals for ¥, much
as in the classical problem of extrapolation off a half-line; see [8: 339].

16. The investigation of Stieltjes. The mass distribution m often begins with a
number of isolated lumps accounting for the space Z . ; for example, if j p*dW < o0,

lfd W =m(0)"!,
n

1
;Jm(o)z,yz dW = (x,—x0)"?,

1 1
;j[l +92 (%, — xo)m(0)]* dW = D)’
and m places no mass between x, = 0 and x,. The case investigated by Stieltjes
corresponds to a spectral weight with [y?"dW < oo for all n=1,2, 3, etc. This is the
case in which m begins with positive lumps of mass placed upon a series of points
0=xp<xy <xp<etc.1x, £ < 0; it may serve as a model for the whole
investigation of Krein as it evidently did for Krein himself. If { and m[0, l) are < oo,
polynomials are dense in Z iff x, = { and m(l) = 0.
Consider, for simplicity, only this case. As a function of x, 4 (B) isa broken-line
(step function) with corners (steps) at the jumps of m. A(x,,+), is an even poly-

16 Dym-McKean [8:339].
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nomial of exact degree 2n, while B(x,,+) is an odd polynomial of exact degree
2n+1, and for any of the associated spectral weights W,

17 [ A | = mGx)™Y 7B )|[F = (o1 =%)"Y,

forn=0,1,2, etc.; indeed, at the jumps of m, 4 (B) coincides with the even (odd)
orthogonal polynomial for W of the appropriate degree. W can therefore be thought
of as the solution of a Stieltjes’ moment problem, and the most general solution
can be pictured as coming from a longer string. The classical facts about Stieltjes’
problem follow easily; for example, if { < 0o and k = 0, the Stieltjes transform

(P +y) " tdw

of the corresponding special spectral weight W can be expressed as an infinite
continued fraction:

D, 1], 1
|a2m(0) * |x

17. De Branges spaces. To probe more deeply into the spaces B*, you have to
know something about Hilbert spaces of integral functions as introduced and
extensively studied by L. de Branges. [6] contains the most up-to-date information
on the subject; for proofs of the more elementary material below, [7] and [8]
can also be consulted.

For the present purposes, a de Branges space is a class of integral functions f
described in terms of an integral function E of exponential type <oo satisfying
the following conditions:

(@) E0) = 1.

(b) E*(y) = E(—y).""

() |E| > |E*| on the open upper half-plane.

(d) E is root-free on the line (and so in the closed upper half-plane in view of
the line above).

© fA+y)"t1g*|E| < 00.18

The associated de Branges space B = B(E) is the class of integral functions f
satisfying

|
+ + +etc.
1~ Xo |a2m(x1) |x2—-x1 |“2m(x2)

71 = F1717 B2 < oo,

together with a growth condition to the effect that | f(w)|? is bounded by a constant
multiple of

|E(@)* — |E*(w)*
4nb

n~ ! |E(w)?* 6’ if b=0,

if b#0,

17 E#(y) stands for E(y*)*.
18 1g+ x means lgx if x = 1 and O otherwise.
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in which b is the imaginary part of w, and 6 is minus the phase of E. The constant
multiplier figuring in the growth conditions may be replaced by ||f||?, this fact
being the key to the proof that B is complete and therefore a Hilbert space. The
correspondence between B and E is 1: 1, though it is noted for future use that if the
condition E(0) = 1 is abandoned, then B(E) = B(F) (norm and all) iff the odd and
even parts of E and F are related according to the recipe:

Feyen = kEeven’ Fodd = k_lEodd

for some real number k # 0.°

Because of the growth condition, the point evaluation f— f(w) is a continuous
application of B into the complex numbers. This means that B is endowed with a
so-called reproducing kernel J = J(«, B) = J,(B) satisfying

(a) J,eB,
) flw) = ;o) = J11.* |E|72,
for every complex number w and every fe B. The explicit formula is
’ E*(@)E(B)—E(=*)E*(§)
—2ni(B—a*)
The reader may verify that for any non-real complex number w,

_ [E@)* - |E*(@)*

J(w,0) = nb = sup [|f(w)|*:feB, || f|| = 1].

J(@ p) =

A very striking fact about such spaces is the inclusion principle of de Branges
[5 (1962): 44] which states that for any 2 spaces B; and B, sitting isometrically
inside some Z(W) = L%(dW, R"), either B, =B, or B, <=B,, esp., the family of all
such spaces B which sit (isometrically) inside a fixed space Z forms a tower under
isometrical inclusion.

A simple example [dW = dy] described in the de Branges language will clarify
the above. Bring in the functions ET = exp(—i#yT) for T > 0 and the corresponding
de Branges spaces B(ET). Clearly B(ET) is isometrically included in Z = L*(dy, R"),
and since

2T o= 18T _ o=ia*T JpT
—27i(f—a*)
1 T
2n)_r

it follows that fe Z belongs to B(exp (—#yT)) iff
S@=(,J)=Qn) I [2n)~*[f(B)e* dpl e dt

JoB) =

o2 gy,

19 To check this, note that the formula for the reproducing kernel J(a, f) given below is
unaffected by this transformation.
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for every complex number a; in brief, B(exp(—iyT)) can be identified with
L?(dy, [— T, T)) via the classical Fourier transform. By the evaluation,
T sinh2bT

1
J(w,w) = o et = b
-7

for w = a+ib, every fe B(exp(—iyT)) satisfies

sinh2bT
2nb

and you can think of the above as a variant of the classical Paley-Wiener theorem.
Notice that 7 B(exp(—iyT)) =0, while Uy, B(exp(—iyT)) is dense in 2,
and therefore, by de Branges’ inclusion principle, B(exp(—i#yT)): T > 0 is a com-
plete list of all the de Branges’ subspaces of Z. Notice also that this scheme fits into
Krein’s plan with:

l=c0, dm=dx, T=[(m@)tdy=x

[f@* = |I71I"

A(x,y) = cosyx, B(x,y) = sinyx,

permitting us to identify B(exp(—iyT)) with Krein’s space B*. The general
connection between de Branges spaces and Krein’s spaces is explained in the next
section.

18. De Branges subspaces of Z(W). A bird’s eye view of the de Branges subspaces
isometrically included in Z = L%(dW, R!) may now be obtained in case W is the
special spectral weight of a weighted string. The discussion is adapted (in part)
from Dym-McKean [8: 314-319].

The chief point is that B** is the de Branges space B(E) based upon the function
E = A(x,+)—iB(x, +) for every growth point x of m. To begin with, it is plain
from the Plancherel formula that

J(B) = n71 [+ A*(@,y) A(B, y)dm+7 " [§ B*(a,y) B(B,y) dy
_ A*(x,0)B(x, B)— B*(x,0)A(x, B)
n(B—a*)
_ E*(@)E(B)—E(@*)E*(B)
—2rmi(f—a*)
is a reproducing kernel for B**. This means that
f(@)=(f,Jo)w

for fe B**. The conditions on E laid down at the beginning of the last section can
now be verified, and from the fact that J is likewise the reproducing kernel of B(E)
follows the identification of the 2 spaces (norms and all). A necessary step in this
verification is to check

JA+y)"E|"% < o0;
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see, for instance, Dym [7: (5.5)]. A side benefit is that |E|~2 now appears as a (non-
special) spectral weight for the short string associated with m to the left of x+.
The long string, of which it is the special spectral weight, is obtained by placing the
weight dm* = dx between x+ and {* = 0.

An application of Nevanlinna’s representation formula® gives
b log|E(x)|

for b > 0, where T is the type of E. It follows that the function
h=e "(1—iy)~tE~!

dx+bT

is an outer function belonging to the Hardy class H2*. The factor (1—iy)~?!
appearing in 4 is put in merely to insure that 4 belongs to L%(dy, R'); if

[|E|"? = am(0)~* = [aW < oo,
it can be dropped.

m[0,x]

\

[ ) T,
[ i L

FiG. 1.

The same discussion applies to B*~ with the proviso that B(x,+) = B(x+,+)
has to be replaced by B(x—, «) throughout, and it follows easily from de Branges’
inclusion principle that B**:x <l is a complete list of all the de Branges spaces
isometrically included in 2.

To illustrate how complicated the picture can be, consider for example the mass
distribution sketched in Figure 1.

In this situation (m’)* = 0 on the interval [a, c], so there is no change of the type
T = [§(m’)* between a and c, although a,b and c are points of growth of m and
all the inclusions

2T =B cB**cB’' cB'*cB¢‘” =B°¢t =2T*

20 Boas [4:92).
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are proper. The point is that the Krein spaces allow a finer decomposition of Z
than is possible if one simply restricts attention to the spaces 27 and 2T*. The
reader can readily envision the complexity of the gap between 27 and 27* which
can arise upon allowing arbitrary singular mass distributions on the interval
[a, ¢] in place of the 2 jumps dealt with above. This circle of ideas is closely related
to the discussion of germ and gap in Section 9, but unlike the gap between Z , and
Z°*, the gap between 2T and 2T* for positive 7, may be finite- or infinite-
dimensional.

Dym-McKean [8] discussed the inverse spectral problem for summable Hardy
weights under the technical assumption that m is not singular on any subinterval of
0 = x = L. The present discussion shows how far short of the general case this falls:
for example, if you take any mass distribution m on 0 < x < | < o0, add a mass
m@0) =n"" at x=0, and extend by putting dm =dx for ! < x < oo, then
A = |E(t,+)|"? is a summable Hardy weight; see Section 20 below.

19. Short strings and the sampling formula. Besides the weights W and |E|~2,
the short string associated with m to the left of x+ has its own special spectral
weights corresponding to the choice of the number 0 < k < o0. Both x and
m[0, x] are < oo, so each such weight W consists of an (even) series of mass lumps
placed upon the roots -

w= 7y, £7;, £7,,€tc. > + ©

of A(x,w)+kA*(x,w) = 0. This state of affairs reflects the fact that the differential
operator G associated with the boundary condition f(x)+kf *(x) = 0 has a simple
point spectrum

02 —y2> —y,2> —p,2 >etc. | —o0.
The corresponding Plancherel formula is easily computed:

17 eallm+ 1S saallz = NI £115 = S 1/ aW = E| f@)*I (@, 0)"".

This is the sampling formula referred to in the section title. The same formula can
be found in de Branges [6: 55] in a slightly different language. The classical version
(corresponding to dm = dx and k = o) states that for integral functions f of
exponential type < T belonging to L%(dy, R'),

AP =J1/1? = @IT) X — o | f (i T[>
As in this case, the general series 0 < yy < y; < 7, < etc. is (close to) arithmetic:
w=na[T '+o(1)] for nfoo and T = [§(m")*

The reader may be mystified upon reflecting that fe L>(dW, R"), which is merely
a series of numbers f(w), is supposed to be an integral function of exponential
type <T, but all this means is that the condition ||f|| < co implies that the series
f(w) can be uniquely interpolated by such a function.
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20. Hardy weights. Let Ady be the Lebesgue part of dW, as usual. The purpose
of this section is to investigate the connection between the Hardy condition

[A+y»)"1gA> — o0

and the mass distribution m of the associated long string for which W is the special
spectral weight. By Levinson-McKean [22: 135] or Dym-McKean [8: 319-320].
x(T+) < Lfor any type T < co whenever A is Hardy, since ZT*(W) is then a proper
subspace of Z(W). But this means that

o = [§(m'(»)tdy < t¥m[0, 1%,

esp., either { = co or m[0,!) = oo, and the string has precisely one spectral weight.
This will be assumed for the rest of the present section.
The principal conclusion of this section is that A is Hardy iff

0 = [5[k*dx+k~2dm—2(m")*dx] <

in which k2= —D*/D and D = D(x,i) is the positive decreasing solution of
GD = D with D~(0) = —1 introduced in connection with the Green function.
Notice that

k2dx+k™2m' dx—2(m")*dx = (k—k™'(m)})?dx 20,

so that the integrand of Q is nonnegative. A brief sketch of the proof is presented
below as it clarifies several interesting points.

Define e = e(x,y) = kA—ik~ !B for fixed x <. e defines the same de Branges
space B(e) = B** as E = A—iB for any real number k # 0. The special choice of k£
made above is the only one for which both

[lel?dwe =1 and

o
= |aw*
[n(1+v2) Je

[

Here, dW* stands for the jacked-up weight n(1+4y2)~'dW. This choice has the
additional advantage (of which the formula just above is an instance) that (1 —iy)e
stands in the same relation to W* as e does to W; namely, for 0 < x <{,
B[n*(1—iy)e(x+,7)] runs through a complete list of the Krein subspaces of
Z(W*) = L3(dW*, R"). This fortunate circumstance leads to the evaluation

» = T(xy1) i
iyT(x2) iyT(x1 2 - ¢ e(x,,l)
fley D e(x,,7)— €TV e(xy, y)|? AW _2[1—m

for x, > x,, esp., exp(— T(x))e(x,i) is an increasing function of x, and hence

f=exp[iyT(x)] e(x,7)
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converges in Z(W*) as x 11 iff exp(— T(x)) e(x, i) tends to a finite limit as x 11, or
equivalently iff

lim,_ lg[e™2"™ e(x, i)’] = Ige(0—, i)*+[§~ dlg[e™2T™ ¢(x, i)?]

= —1g D(0)+ [ non-jumps of m LK> dx + k=2 dm —2(m’)* dx]
+Y jumps of m 18 (1 +k™2m) < 00,
and this is the same as to say that Q < oo in view of the elementary estimate
x/2=<1g(1+x)<x forsmall x=0.

The actual limit of f ~! is now identified in the convergent case as the outer Hardy
function he(1—iy)H?* that figures in the factorization A = |h|%, leading to the
final formula:

Inon-jumps of m [k 2 dx + k -2 dm - 2(m’)i dx] + Zjumps of m lg (1 + k - zm)

J' J' IgAdy
n(1+y?) Ja(1+y%)’
A simple example is provided by the scale dx = (T+1)2dT and the loading
dm = (T+1)*dT for 0 £ T < oo. The reader is invited to verify that
A(T,y) =(T+1)cosyT—y~'sinyT,  B(T,y) =(T+1)"!sinyT,
dW = dy+a mass of magnitude = placed at 0.

I =[T+I(T+2J,
lim,,, " @e(x,y) =1 if y#0,
=0 if y=0,

and
Ig1
—_ 2=
¢- f (T+1)(T+2) -8 ‘gf +7%) f w1+79"
The reader should note the formula of Dym-McKean [8: 315] for the function

ein case W is non-singular with a Hardy density A = |h|2: forany 0 £ T < o0 and
x =x(T+),

e = the projection in Z(W *) of [exp(;yT)h]~! upon the class of
integral functions of exponential type <7, divided by the
W* norm of this projection.

21. De Branges subspaces of Z(W*). The function e is of special interest in view
of the fact, cited above under the special assumption _[0 (m")* = o that for
0 < x <!, B[r*(1—iy)e(x+,y)] runs through the complete list of the Krein sub-
spaces of Z(W* ). The corresponding string may be identified by noticing that

n¥(1—iy) e = n¥(kA—yk™'B)—in*(k~'B+7ykA)
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defines the same de Branges space as
(A—yk™?B)—in(B+yk®A) = A* —iB*
and checking the formulas
dA* = —yB* dx*, dB* = +yA* dm*

in which the new scale x* is defined by dx* = n~'k~*dm?' and the new mass
distribution m* by dm* = nk*dx.

The new scale dx* may jump and it may have flat stretches, so you have to
modify things a little to conform to Krein’s scheme. A jump is to be pictured as a
«-mass-free interval on which B* is constant and 4° is of constant slope. A flat
stretch is to be collapsed to a point and pictured as a jump of m* at which 4° has a
corner and B* jumps. To make the (left ) slope of 4* vanish at x = 0, you have
to place there an extra .-mass

m*(0) = nk?(0—) = nD(0)" !,
in agreement with the general formula [dW = nm(0)~*:
faw* = D(0) = k=2(0-).

At x = |, the situation is more complicated. To begin with, the (possible) jump
of the «-scale at x = { is pictured, in agreement with the above recipe, as a +-mass-
free interval and so does not contribute to the actual length of the « string:

I =[§dx* = [ n k™ *dm.

The recipe also says that you should count the total mass of dm*® = nk*dx placed
between x = { and the last preceding point of growth of m as a lump placed at the
end of the . string (such a lump can only be < o). A boundary condition is imposed
at the end iff both

= n k" *dm = = 67 (dk™2 4 dx) and
m*[0,{*] = [§nk*dx = n [§(dk >+ dm)

are <oo, and this happens only if { < co, m[0,{) < 00 and 0 <k~2({+) < co. The
appearance of k~%(l+) has to do with the fact that D({)+k~2(l+)D*() =0,
to wit, k~2({+) is the old number k which specifies the boundary condition for the
string having W as its special spectral weight. The actual boundary condition for
the « string is specified by the number

0k =n"[k 2(l+)—k™2(1-)] £ o,

21 k=*dm stands for [k(x+)k(x—)]"2dm at a jump of m. The formulas dk2+dm = k*dx and
dk~2+dx = k=*dm are helpful for the verification.
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in agreement with the general formula [y~ 2dW = n(l+k):

dw dw
“2gwe = | 2o | 2
Jy sz fﬂ(lﬂz)

=l+k2(l+)—k™%0-)
=(* (dx+dk™?)

=n[6t dx°

=nl* +[k™2(t4+)—k~2(1-)].

The remarkable feature of this development is that, aside from the factors
(nk*)*1, the roles of x and m are reversed.

22. A fresh look at the interpolation problem. At this stage it is possible to take a
much deeper look at the interpolation problem, as advertised in Section 6. Recall
that the problem is to project f = exp (iy?) for fixed |¢| < T upon the subspace

TZ(A) = the span in Z(A) of the functions €”':|i| 2 T,

naturally, the spectral density A is assumed to be even, summable, and Hardy, so
that A = |A|* with an outer function he H2* subject to h*(y) = h(—y) when 7 is
real. Also, it suffices to compute the co-projection, i.e., the projection upon the
annihilator (T2)°.

The key to the whole problem is to notice that A(Z)° can be identified as the
class ZT*(A™") of integral functions of exponential type < T belonging to Z(A™1).
The point is that fe(TZ)° iff fA belongs to Z(A~!)<=L(dy, R!) and can be extended
off the line to an integral function of exponential type < T as the reader can easily
check using the standard Paley—Wiener theorem for L!(dy, R'). The condition for
perfect interpolation mentioned earlier, namely, that Z7*(A~!) = 0, should now
be clear. 2°*(A™!) = 0, and you can prove much as in Dym-McKean [8: 319-320]
that for 7> 0, ZT*(A™!) is the de Branges space based upon the function

e = the projection in Z[(A™?!)* ] of exp (—iyT)h upon the class of
integral functions of exponential type <T, divided by the
(A™1)* norm of this projection.

This suggests that you should look for a connection with strings as in the inverse
spectral problem, though the situation is necessarily more complicated. To begin
with

o =((1+y)™H? < JA[[1+y)A]™
so A™! cannot be a spectral weight in Krein’s sense. Additional discouragement is
provided by the example A =y~ %sin?y for which 2ZT*(A™!) =0 for T<1 and
dimZT*(A™") = o0 for T > 1,22 the chief point being that an integral function f

22 1., Pitt [private communication].
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of type <1 cannot have enough roots to make | f|?A™! < 00.2% This is bad news,
since in any picture similar to Krein’s, the type differential should look like
dT = (m')tdx so that T cannot suddenly jump up to T = 1.

A picture similar to Krein’s can be verified using the methods of Dym-McKean
[8] under additional technical assumptions; for example, it is enough to suppose
that for every T > 0

(@) 2T (A7) #0,
(b) e is root-free on the line,
() ZT*(A™Y) is spanned by functions of type <T;

any rational weight which is root-free on the line meets these conditions. The
corresponding string is extended between x = —o0 and x =! < o0 and [° , xdm
is > — oo so that you have the usual boundary condition at the left [f*(— c0) = 0],
while [§(m')* = 0 which means that there is only one spectral weight.
T = [§(m')* as usual and is nowhere flat. The relation between the present x and
m and those for the string associated with A is not known. A simple example is
provided by A = (1+9?)"1:
% = 3—: = (2m) " 'coth?T.

De Branges’ methods [5, 6] should help to eliminate the conditions (a), (b), (¢)
above, but this lies in the future. An interesting problem is to find out what it means
for h that the interpolation should be imperfect for every T > 0.

23. Effective solution of the inverse spectral problem. The following method
adapted from Levinson [21] solves the inverse spectral problem in the neighborhood
of a known solution, Levinson treated only weights close to A = 1[dx =dm =
dT(0 £ T < o0)]. The basic idea is due to Gel’fand-Levitan [10] and has been
extended by Krein in the course of his investigations [17-19]. The plan is to pick a
spectral weight W° for which the corresponding (long) string with scale x°, mass
distribution m°, and boundary condition number k° is known and to try to express
the cosines A for the (long) string having a neighboring spectral weight W by means
of the cosines A° for the o string. More explicitly, the proposal is that

A=LA°+KA°
for an appropriate function L = L(x) and (triangular) integral operator

K:f- |5 K(x, y)fydm®,

provided that W is sufficiently close to W °. The computations below are merely
formal but can be justified under extra technical assumptions.

23 An alternative proof (including the case T = 1) is obtained from the sampling formula
NP =n2e _ | f(am)?

for functions of type < 1.
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The relation A4 = (L+ K)A° can be inverted to express 4°(x, ) as a superposition
of the functions A(y,7) for y < x. But [A(x,7) A(y,7)dW =0 for x #y, so the
(formal) transform

f Ay, P A(x,v)dW

should also vanish for x > y, and substituting the expression 4 = (L+ K)A°, you
find that

K+LQ+KQ=0
for x = y, in which Q is the symmetric operator

Q:f > [ O(x,y)fy dm°

based upon the (known) kernel

Q(x’ y) = 5 Ao(x’ ?)A°(.V, )’)(dW— dWo)'

The problem f+ Qf =0 is easily proved to have only the trivial solution on any
subinterval, so K is completely determined in accordance with the Fredholm
alternative, by the (known) kernel Q and the (unknown) function L.

At the same time, A4 is supposed to satisfy d4* = —y%>4 dm,’in which x and m
characterize the string having W as special spectral weight. By (formal) differentia-
tion of 4 = (L+K)A°, you find that this can be guaranteed only if

(a) dx = L*dx°,

(b) dm = L™ %dm°

© d[dL+Jdm ]+dem _o,
dx dx

in which J is short for K(x, x). L, x, and m can now be determined by means of these
identities and the (known) reiation beiween L and K.
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