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ON DISTRIBUTION-FREE STATISTICAL INFERENCE
WITH UPPER AND LOWER PROBABILITIES!

By R. J. BERAN

University of California, Berkeley

1. Introduction. This paper sets forth a new theory of distribution-free inference
for the general statistical model

Ly - x =T, le.

By assumption, {7,:0€Q} is a known family of nonsingular transformations
mapping RY into RY, Q is a Borel subset of a real Euclidean space, x = (x;, ***, xy)
is a sample of N observations, and the components of e = (e;, * -+, ey) are realized
values of N independent, identically distributed random variables with common
continuous distribution function F on the real line.

The scientific background for model (1.1) is as follows. An experiment is per-
formed, resulting in N measurements x. The observed x are generated from under-
lying realized errors e by the transformation (1.1). While the vector x is an observed
constant, the values of e and 6 giving rise to x through (1.1) are unknown. Our
main goal in this paper is to draw inferences about the unknown constant 6 from
the observed x and the model, first with no knowledge of the distribution function
F, apart from continuity, and secondly under the additional assumption that F is
symmetric about the origin.

The theory described in this paper both extends and applies ideas introduced by
Fraser [3] and by Dempster [1]. While technically the results fall within the general
framework of Dempster’s upper and lower probabilities, the statistical rationale
differs. Upper and lower probabilities are introduced in Section 2 to measure the
reliability of certain simple decision procedures, with reliability being assessed by
relative frequency of success. This approach gives a well-defined statistical interpre-
tation to upper and lower probabilities and has the advantage of leading naturally
to a decision theory.

Model (1.1) encompasses many of the common models treated in classical
nonparametric theory. As examples, one and two-sample versions of location
models, scale models, regression models, and auto-regressive models are analyzed
in Section 3 and Section 4. In particular, an optimality property is established for
the one and two-sample Wilcoxon tests, for the Hodges and Lehmann [4] location
parameter estimates (based on the Wilcoxon tests), for a test of scale parameter
studied by Sukhatme [6], and for a regression parameter estimate proposed by
Theil [5] and Sen [7].
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158 R. J. BERAN

2. Statistical analysis.

2.1. No assumptions on F. Consider first the analysis of model (1.1) under no
assumptions on the distribution function F, apart from continuity. Let F~! be the
inverse of F, let UY = {ueR¥:0 < u; < 1} be the N-dimensional unit cube, and
let F~! be the function that maps ue U into (F~'(u,), -+, F '(uy)). If u is a
realization of a random variable distributed uniformly over U¥, the components
of F~!(u) are realizations of independent random variables, each distributed
according to F. Model (1.1) can then be rewritten as
@n x=T,"{F~'(w)}.

Thus, performing the experiment mentioned in the Introduction amounts to
realizing, through physical operations, a specific triple (x, (6, F), u), where xe R",
ue UV, 0eQ and Fe &, the set of all continuous distribution functions on the real
line. Before the experiment is carried out (or before the outcome x is noted), the
following prospective assertions can be made about the triple to be realized: the
chance that u lies in a measurable subset B< U" is P(B), where P is the uniform
probability measure on U"; (0, F) is an unspecified element of Q x & ; the observ-
able x is related to u and (0, F) through (2.1).

Once the experiment has been performed and x has been observed, the par-
ticular triple (x, (0, F), u) that was realized can be described more precisely. The
first component, x, is now known. Typically, not every combination of ue U" and
(6, F)eQx # will result in the observed x, under model (2.1). If
(2.2) S, (u)={0,FeQx F:x=T,"{F '(u)}},
it is clear that the u realized in the experiment must lie in U, = {ue U": S,(u) # ¢}
and, whatever that u is, the realized (6, F) must belong to S,(u).

To obtain a more convenient description of U,, we introduce the following
definition and notations.

DErINITION 2.1. The Q-region associated with a rank vector r by the sample x
under ‘model (2.1) is {#eQ:rank(Tgx) =r}.
Let Q,, Q,, -+, Q,, where M < N!, denote the non-void Q-regions associated
with r as r is varied over the N! permutations of {1,2, -+ N}. Under the model,
M > 0 with probability one. Clearly Q; n Q; = ¢ ifi # j. Define Q, to be the residual
st Qo = Q— UM, Q;. For any 0€Q,, at least two components of T,x will be.equal.

Let r; denote the (unique) rank vector associated with Q-region Q;, 1 < i < M,
and let I, = {r,, r,, ---, r)}. Let I, denote the set of all distinct improper rank
vectors associated, as in Definition 2.1, with the various 0eQ,.

Since F is continuous, F~! is strictly monotone and the model (2.1) implies that
rank (u) = rank (7gx). Consequently,
(2.3) U, = {ueU":rank (u)el,Ul,}.
Let P[B| U,] denote the conditional probability that ue B, given that ue U,; for
any measurable subset B U,,

(2.4) P[Bl Ux] = P[B]/P[Ux];
where P is the uniform probability measure on U".
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After the experiment has been performed and x has been observed, the following
statements can be made about the realized triple (x, (0, F),u): x is as observed;
ue U, and the chance that ue B, where B is a measurable subset of U,, is P[B| U.l;
whatever u is, (0, F) is an unspecified element of the corresponding set S,(u). This
collection of assertions about the triple (x, (6, F), u) will be called the reduced model
for the experiment. Both Fraser [3] and Dempster [1] have previously considered
reductions of this type, though without explicitly introducing experimental triples.

Since the realized experiment (x, (6, F), u) is described more precisely by the
reduced model than by the original model, we propose to evaluate statistical pro-
cedures of interest by their average behavior over a hypothetical sequence of
independent experiments, each of which is generated under the assumptions of the
reduced model. We begin by examining the reliability of the simple decision that
the realized (0, F)e D, where Dc Qx #. Let {(x,(0; F),w;); i=1,2,---} be a
sequence of independent experiments generated under the reduced model; in other
words, u,, u,, - -+ are independent and each is distributed according to the con-
ditional probability P[- | U.l; (6,, F)) is selected arbitrarily from S.(u;); x is the
observed value. For each i, the equation x = Ty, '{F,;”(u;)} will necessarily be
satisfied.

Let the general notation prop,(I1;) denote the proportion of true propositions
among the propositions {II;, IT,, - -+, I1,}. Evidently, for every n > 0,

(2:5) prop, [S.(w) =D, S.(w;) # ¢] < prop, [(6:, F)eD]
< prop, [S:(w) N D # ¢].
As n— oo, the upper and lower bounds for prop, [(0;, F;) € D] converge w.p. 1 to
(2:6) P*(D)=Plu:S,(w)nD # ¢|U,]
P (D) = Plu:S,(w)=D,S,(w) # ¢|U,]

respectively, provided the arguments on the right are measurable. All cluster points
of the sequence {prop,[(6;F)eD]; n=1,2,--} lie between P,(D) and P*(D)
w.p. 1.

Thus, P.(D) and P*(D) measure, respectively, the smallest and largest possible
reliability to be attached to the assertion (6, F)e D; reliability is assessed relative
to the reduced model for the experiment. P* and P, are, in fact, Dempster’s [1],
[2] upper and lower probabilities for model (2.1). On those subsets D for which
P*(D) = P,(D) (see the remarks following Proposition 2.1 for examples), the
common value amounts to what Fraser [3] terms a structural probability. Unlike
the approach taken above, Dempster [1], [2] defines upper and lower probabilities
through a purely formal mapping of probability from U, to Q x #. Fraser [3] does
similarly within his framework. In this writer’s view, the frequency approach
described here is preferable in that it gives a well-defined statistical interpretation
to P* and P, which leads naturally (later in the section) to analogues of risk
functions and to a decision theory.
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In general, the computation of P*(D) and P,(D) may be quite complicated. For
inferences about 0 alone, however, it is often enough to consider sets D of the form
D= Ax%F, where AcQ. In such cases, P*(D) and P,(D) are more readily cal-
culated. For 1 £i< M, let

2.7 5*G,4) =1 if AnQ;# ¢,
=0 otherwise;
04(i,4)=1 if AoQ,,
=0 otherwise.
PROPOSITION 2.1. Let A be an arbitrary subset of Q. Then under model (2.1),
2.8) PY[Ax F]=M"'YN1, 5%G,A)
P JAx Fl=M"1YN1, 56,3, A).
ProOF. The result follows from the identities
2.9 {ueU,:S,(w)cA x F,S,(u) # ¢}
= {ueU,:rank(w) €A, U Ugsia 20y {Ti}}
and
(2.10) {uelU,:S,(W)nA x F # ¢}
= {ueU,:rank (W) e A* U U 50,4y 03 {Ti}}

where A, and A* are suitable subsets of .

Proposition 2.1 shows in particular that P.[Q;x F]= P*[Q,;x F] = 1/M for
1 £i < Mand Py [Qyx F] = P*[Qux F]=0. On the Boolean algebra generated
by the partition {Q,, Q,, - Q) } of Q, P* (or P,) is a probability measure. For
DcQx%,0< P(D) < P¥(D) £ 1, if defined. Further properties of upper and
lower probabilities are described in Dempster [2]. More generally, P* is a com-
pletely alternating set function while P, is a completely monotone set function.

It is possible, within the statistical framework of this paper, to set up an analog
to standard decision theory. Let & denote a space of decisions or actions, and let
1:Qx F x P — R* be a real-valued, nonnegative loss function. Suppose de 9 is a
decision whose consequences we wish to evaluate relative to the reduced model.

Let {(x,(0;, F;),u;};i=1,2,---} again denote a hypothetical sequence of
independent experiments generated under the reduced model. The average loss
incurred over the first n of these experiments as a result of taking action d is
n~1yr 16, F,d). Since [ >0,

(2.1 1) n_ ! Z?: 1 l(@i, Fi’ d) = j‘go pl‘Op,, [1(9,, Fi’ d) > t] dt-
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If A(t,d)={(0, F)eQxF:I(0, F,d)>t}, equation (2.11) and the inequalities
(2.5) imply that

(2.12) §& prop, [S.(u) = A(t, d), S\(u;) # $] dt
é n—l Z'i'=1 l(ois Fis d)
< [ prop, [S.(w) n A(t,d) # $] dv.

Subject to measurability restrictions, the upper and lower bounds converge w.p. 1,
as n— oo, to

2.13) R*(,d) = [§ P*[A(t, d)] dt
7 Ry(l,d) = .“gj P*[A(t’ d)]dt.

All cluster points of the sequence {n~') 7., I(0;, F;,d);n=1,2,--+} of average
losses are bounded w.p. 1 from above and below by R*(/, d) and R,(/, d), respectively.

Thus, the lower risk Ry(l, d) and the upper risk R*(l, d) measure, respectively,
the smallest and largest possible long-run average loss incurred as a consequence
of decision d. The evaluation is with respect to the reduced model. The relative
desirability of various decisions d may be assessed by reference to the corresponding
risks.

It is readily seen that R, and R* are equivalent, for nonnegative /, to the lower
and upper expectations defined by Dempster [1], [2]. (The considerations of (2.12)
could be extended to real-valued loss functions; in this more general case, the
analog of (2.13) would still be equivalent to Dempster’s upper and lower expecta-
tions). Dempster suggests in [1] that upper and lower expectations be used “as
guides for betting or decision procedures whose loss functions are linear in [the
parametric function],” but gives no example. From the viewpoint of this paper,
linearity in the loss function seems unimportant. The frequency interpretation for
R, and R* motivates the following definition of a minimax decision.

DEFINITION 2.2. A decision de 2 is minimax with respect to loss function / if
R*(l,d) < R*(I,d’) for every d'e 2 and if R,(l,d) £ R,(I,d") for every d’ €D
which satisfies R*(J, d’') = R*(l, d).

For decisions involving 6 alone, the loss function /(0, F, d) might be replaced by
one of the form /(0, d). The arguments of the upper and lower probabilities which
appear as the integrands of R*(/, d) and R(/, d) would then be product sets A x &,
with 4 = Q. Proposition 2.1 handles these. Examples of minimax decisions are given
in Section 3 and Section 4.

2.2. Symmetry assumption on F. We turn to the analysis of model (1.1) under the
assumptions that the distribution function F is symmetric about the origin and
continuous. Let F, be the distribution function of [e1[ and let F, ~! be its inverse.
Define the function sign (-) through

(2.14) sign(x)

1 if x>0
= 0 if x=0
=—-1 if x<O.
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Let V¥ = {veR": —1 £ v; £ 1} and let G be the function that maps ve V'~ into
(sign(v,)F, " '(jv,]), -+ sign(vy)Fs ~'(joy])). If v is a realization of a random
variable distributed uniformly over V¥, the components of G™!(v) are realizations
of independent random variables, each distributed according to F. Model (1.1)
can then be rewritten as

(2.15) x=T,” {G™(v)}.

The form (2.15) is preferred over (2.1) because it brings out explicitly the symmetry
of F. -

Thus, performing the experiment described in the Introduction amounts, in this
case, to realizing a triple (x, (0, F.), v), where xeRY, ve V"N, eQ and F* e F T,
the set of all continuous distribution functions on the positive real line. Prior to the
performance of the experiment, the following assertions can be made about the
triple to be realized: the chance that v lies in a measurable subset B = V¥ is P*(B),
where P* is the uniform probability measure over V'V; (6, F*) is an unspecified
element of Q x # *; the observable x is related to v and (0, F*) through (2.15).

Once the experiment has been carried out and x has been observed, the particular
triple (x, (0, F*), v) that was realized can be described more precisely. The first
component is the observed x. If

(2.16) ST ={0,FHeQx F*:x =T, {G™'(v)}},

it is evident that the v realized in the experiment necessarily lies in ¥V, =
{ve VN:S,*(v) # ¢} and, whatever that v is, the realized (9, F*) must belong to
St

The argument continues as in Section 2.1. Appropriate Q-regions are described
by

DErFINITION 2.3. The Q-region associated with a rank vector r and a sign vector
s by the sample x under model (2.15) is {#eQ:rank(|Tyx|) =r, sign(T;x) =s}.

In this definition, the notation |Z| stands for (|Z,|, |Z,|, - - | Zy|). Let @, *, Q,*, - -
Q,*, where L £ 2N, denote the non-void Q-regions associated with (r, s) as r is
varied over the N! permutations of {1,2, -+ N} and s is varied over the 2% N-
dimensional vectors with +1 components. Under the model, L > 0 with proba-
bility one. Clearly Q;* nQ;* = ¢ if i # j. Define Q,* to be the residual set Q,* =
Q- UL, Q*. For any 0eQ,™, at least two components of |Tox| will be equal, or
at least one component of T,x will be zero.

Let (r;, s;) denote the (unique) rank and sign vector pair associated with Q-region
Q" 1<i<L, and let I.* = {(r;,s,), (r5,8,), -~ (r;,5,)}. Let I, denote the
improper rank and sign vector pairs associated with the various e Q,".

It follows from (2.15) that

(2.17) V.= {veV":(rank(|v|),sign(v)) el * Ul,*}.
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Upper and lower probabilities or risks are now established as in Section 2.1, with
V. in place of U,. For 1 £i<Land AcQ, let

(2.18) 8*(i,A), =1 if AnQ," #¢,
=0 otherwise;
04(i,A), =1 if A>Q;",
=0 otherwise.

The analogue to Proposition 2.1 is
PROPOSITION 2.2. Let A be an arbitrary subset of Q. Then, under mode: (2.15),
(2.19) PAx F*)=L1'YL 6%G, A),
P lAx Ft=L"1YE 6., A4),.

3. Examples for Section 2.1. This section gives examples of upper and lower
probabilities and minimax decisions for several common models which are special
cases of (2.1). Ties and other anomalies arising because of round-off errors are
not discussed; the theoretical solution to such difficulties is to include the rounding-
off process in the model itself.

For later use, we define the median of a finite set 4 = {a,, a,, -, ar}, whose
elements are real and arranged in order of increasing magnitude, as follows:

3.1 median (4) = a,, , if T=2s+1
= ¥(a;+a,, ) if T =2s.

3.1. Two-sample location model. In this model x = (x;, ", Xpm V1> " "5 Vu)»
m+n=N, 0=p, Q=(—00,00) and T,x = (X, ", Xy V1 =M """, Yu— ). To
construct the Q-regions, define the differences {d;; = y;—x;, | £i<m, 1 £j < n}
and leta; < a, <+ <ay_,;, where M = mn+1, denote the ordered {d;;}. Under
the model, this strict ordering can be accomplished with probability one.

LEMMA 3.1. The Q-regions {Q;, 1 < i < M} for the two-sample location model are
the M open sets (— 0, a,), (ay, a,), "+, (ay_ 1, ©). The region Qy = {a, a,, -,
ap-1})-

ProOF. For any pair of observations x; and y;, the point d;; = y;—x; divides the
real line into two open half-lines. For values of u belonging to one of these half-
lines, y;—u > x;, while for values of u in the other half-line, the inequality is
reversed. ‘

An arbitrary set Q,, 1 £k < M (as defined in the lemma), may be constructed
by appropriately selecting, for each pair (i, j), one of the open half-lines defined by
d;; and by then forming the set-theoretic intersection of the mn half-lines chosen.
Therefore, rank (T,x) is constant for ueQ,.

Any other region Q,, /# k, 1 £/ < M, must be contained in a half-line (corre-
sponding to some pair i, j) which does not contain Q,. Hence, rank (7,x)is different
when peQ, than when peQ,. The lemma follows.
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Proposition 2.1, together with Lemma 3.1, gives the upper and lower proba-
bilities relevant to u alone. These may be applied to estimation as follows. Let the
loss function be I(u, d) = |y—d|. Replace Q = (— o0, o) by Q = [a,, ay], where
—0 < ay<a;, and ay_; <ay < 0. (This is to keep R*(/, d) < 00). Suppose
dela;, a;,,],05i< M—1. Then

(32 R¥(,d)= M™Y. |a;—d| if |d—a)| <|d—a|,
=M"'Y,si41]a;—d|  otherwise;

where j ranges from 0 to M, and

(3.3) Ry(L,d)= M1 a;—d|.

When M is even, any de [3(ay;; -1 +ap)2)s 3(@u)2 + a2 +1)] minimizes R*(/, d);
among such d, only d = median {a,, a,, ***, ay,_,} minimizes Ry(/, d). When M
is odd, d = median{a,,a,, " ay_,} is the unique value minimizing R*(/, d).
Thus, the minimax estimate of u with respect to the loss function /(u, d) = Iu—dl is

(34) A =median{a,a,, - -ay_,}.

It is noteworthy that fi is the Hodges and Lehmann [4] location shift estimate
derived from the Wilcoxon test.

In testing a hypothesis H:0e A versus the alternative K:0e%A4, AcQ, the
decisions are d, and d,—"“accept H” and ‘“‘reject H” respectively. The step loss
function is defined by

3.5) 1(0,do) = wo 144(6)
16,d,) = w, 1,(6)
where, conventionally, w; > w, > 0. Clearly
(3.6) R*(l,d) = wo P*(¥4) if d=d,,
= w; P*(4) if d=d,;

with a corresponding equation for R(/, d). The minimax decision under the step
loss is: reject H if woP*(¥A) > w,P*(A); accept H if the inequality is reversed;
base the decision on Ry(/, d) if there is equality.

In particular, for testing H:u <0 versus K:u > 0, the minimax test rejects H
if and only if the number of pairs {(x;, y;), | £i<m, 1 £j < n} for which y; > x;
is sufficiently large. This amounts to the Mann-Whitney or Wilcoxon tests.

3.2. Two-sample scale model. In this model, x = (x;, ***, X, V1, "> Vo), M+ 1 =
N, 0 =0, Q=(0, ) and T,x = (x;, ***, X ¥1/0, * * *, ¥u/0). Suppose m™* of the
X’s are positive and m™ are negative. Similarly suppose n* of the y’s are positive
and n~ are negative. Define the ratios {c;; = max(y;/x;,0), | Si<m, 1 <j<n}
and let b, <b, < - <by_,, where M = m*n* +m™n~ +1, denote the ordered
non-zero and non-infinite ratios {c;;}. Under the model, this strict ordering may
be accomplished with probability one. Arguing as in the proof of Lemma 3.1, we
establish
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LEMMA 3.2. The Q-regions {Q;, 1 < i < M} for the two-sample scale model are the
M open sets (0, by), (by, b,), *+*, (by— 4, ). The region Qo = {by, by, "=, by }.
Estimation and hypothesis testing are handled as in Section 3.1. If Q = (0, 00)
is replaced by Q = (0, b)), where by, _, < by, <0, the minimax estimate for ¢
under the loss (o, d) = |o—d| is
3.7 ¢ =median{b,,b,, "+, bp_1}.
The minimax test (step loss function) for H:o < 1 versus K:o > 1 rejects H if and
only if the number of pairs {(x;, y;), 1 £i<m, 1 £j=<n} for which sign(x;) =
sign(y;) and |y;| > |x;| is sufficiently large. Sukhatme [6] studied this test from a
classical viewpoint. Without further assumptions, the test is not nonparametric in
the classical sense.

3.3. Two-sample location-scale model. In this model, X = (X1, ***, Xp V15 *" "5 Vn)s
m+n=N, 0 =(u, 0), Q =(—00, 0)x(0, ), and T, ,x = (x;, """, X, (y1 — /o,
-++, (y,— W/o). The definition of the Q-regions is more complex than in the previous
two examples. M is defined implicitly in the following lemma, whose proof parallels
that of Lemma 3.1, with half-planes replacing half-lines.

LEMMA 3.3. The Q-regions {Q;, 1 <i< M} for the two-sample location-scale
model are the M open regions in Q partitioned off by the mn lines {u+ox;=y;,
1 £i<m, 1 £j < n}. The region Q, consists of the partitioning line segments them-
selves.

Upper and lower probabilities for (i, o) are provided by Proposition 2.1 and the
lemma above. For testing H:pu <0 versus K:u > 0, the minimax test (step loss
function) rejects H if and only if the number of Q-regions intersecting with
(0, 0) % (0, 0) is large enough. Other hypotheses on (u, 6) may be tested
analogously.

3.4. One-sample linear regression model. In this model, x = (xy, -, xy),
0=(u,p), Q=(—o0, 0)x(—o00, ), a regressor z = (z,,""*, zy) is given and
T, px =(xy—pu—pPz,, -+, xy—p—Pzy). Argument similar to that for Lemma 3.3
shows that the Q-regions are partitioned off by the lines {x;—u—fz; = x;—p—pz;,
all i # j}. Hence

LEMMA 3.4. The Q-regions {Q;, 1 < i £ M} for the linear regression model are the
M open regions in Q partitioned off by the lines {f = (x;—x)/(z;—z)), all i # j},
excluding the possible lines B = + 0. The region Q, consists of the partitioning lines
themselves.

The Q-regions for this model are strips parallel to the pu-axis. The sample x gives
no information about y in the following sense: if B<(— oo, o), the assertion
(ueB, fe(—o0, 0), FeF) has upper probability 1 and lower probability 0,
regardless of B, unless B = ¢ or B = (— o0, ).

Let ¢; < ¢, <'** <y, denote the finite values among {(x;—x;)/(z;—z;), all
i#j}. If B is restricted to a closed interval containing ¢, and ¢, _,, the minimax
estimate for f under the loss /(8, d) = |f—d| is

(3.8) B = median{c,, -, cp_ 1}
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Theil [7] and Sen [5] treated this estimate in a classical context. Under the step-loss
function of Section 3.1, the minimax test for H: < 0 versus K: f > 0 rejects H if
and only if the number of quadruples {(x;, z;, x;,z;), 1 £i<j=< N} for which
(x;—x,)/(z;—z;) > 0 is large enough.

3.5. First order auto-regressive model. In this model, x=(x, ", xy),
0=y p), Q=(—o, 0)x(—1,1), a starting value x, is given, and T, x =
(x;—p—p(xo—p), - -, xy—u—p(xy_,—u)). The Q-regions are described in the
following lemma, whose justification parallels that of Lemma 3.4.

LEMMA 3.5. The Q-regions {Q;, 1 <i < M} for the first order auto-regressive
model are the M open regions in Q partitioned off by those of the lines
{p = (x;—x)[(x;-y—x;_y), all i # j} which lie in Q. The region Q, consists of the
partitioning lines themselves.

In the sense of the preceding regression example, no information concerning p
is to be had from the upper and lower probabilities implied by Lemma 3.5. Optimal
decisions concerning # in the regression model have analogs in p for the auto-
regression model. Let d; < d, < --- < d\;_, denote, in increasing order of magni-
tude, those values among {(x;—x;)/(x;—;—x;_,), 1 £i<j< N} which lie in
(=1, 1). Under the loss function I(p, d) = |p—d|, the minimax estimate for p is

(3.9) ﬁ =median{d1,"',dM_l}.

3.6. A general two-sample model. In this model, x = (xy, ***, Xp, V15" *s Vu)s
m+n = Na 0= (H(yl)a T H(yn))a Q= {(219 ) Zn):zie(_w’ W), 1 é i é n,
and z; < z;if y; <y all i#j}, and Tpx = (x;, -+, X, H(yy), **+, H(y,)). Though
this statistical model appears unfamiliar, it is a restatement of the more usual
model in which x,, ‘-, x,, are realizations of independent identically distributed
random variables with continuous distribution function F, while y,,---, y, are
realizations of independent identically distributed random variables with con-
tinuous distribution function G, and H = F~1G.

For notational convenience in describing the Q-regions, relabel the observations
sothatx, <-+- < x,and y, <--- < y,; the strict orderings are possible with prob-
ability one. Then, Q = {z: —0 <z, <**- <z,< 0}. Let Qy =(—00, xy), Q; =
(x;, x;4) if 1 £i<m—1, and Q,, = (x,,, ). Denote all possible n-fold product
sets of the form {Q; x--'x Q; iy <+ < 1i,} by Ay, A, =", Ay

LEMMA 3.6. The Q-regions {Q;, 1 < i < M} for the general two-sample model are
Q= {zeQ:z€4;}, 1 £i < M. The region Q, consists of the remaining points in
Q.

ProoF. The sets {Q;, | <i < M} are associated, in the sense of Definition 2.1,
with every possible ranking of the components of Tpx that is compatible with the
relative order of x,, - -+, x,, and the relative order of y,, **-, y,.

Proposition 2.1 gives the upper and lower probabilities for (H(y,), ** -, H(y,))-
The hypothesis that both samples do not differ significantly in distribution may
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be formulated as H:(H(y,), -, H(y,)) € N(y) where N(y)= Q is a specified neigh-
borhood of y. The minimax test for hypothesis H versus alternative K: (H(y,), **,
H(y,)) ¢ N(y) under a step loss function is of the general form derived in Section 3.1.

4. Examples for Section 2.2. In this section, the unknown distribution function
Fis assumed to be symmetric about the origin. Several special cases of model (2.15)
are treated.

4.1. One-sample location model. In this model x = (x,, ", xy), 0 =p, Q=
(=00, ), T,x = (x;—p, ", Xxy—H), and F is symmetric about the origin. To de-
fine the Q-regions, construct the averages {a;; = 3(x;+x;), 1 Si<jsS N } and
let d, <d, < - <d,_,, where L =N(N+1)/2+1, denote the ordered averages.
This strict ordering can be accomplished with probability one.

LEMMA 4.1. The Q-regions {Q;*, 1 i< L} for the one-sample location model
with symmetric error are the L open sets (—, dy), (dy,d,), ", (dy_,, ). The
region Q,* = {d,, dy, -, dy_}.

PRroOF. For any pair i # j, the points x;, x; and 4(x;+ x;) divide the real line into
four open sets L,, L,, L3, L,. Without loss of generality, assume i < jand x; < x;.
Then L, =(—o0,a;), L, =(ay, a;}), Ly =(a;;, a;;) and L, = (a;;, ). For all
peLy, |xi—u| <|x;j—u| and sign(x;—p, x;—p) = (1, 1). For all peL,, |xi—u| <
|xj—u| and sign(x;—p, x;—pu) = (=1, 1). For all peLs, |xi—u| > |x;—u| and
sign(x;—p, Xx;—p) = (—1,1). Finally, for all peL,, |x;—u|>|x;—p| and
sign (x;—p, x;—p) = (=1, =1).

An arbitrary set Q,*, 1 £k £ L (as defined in the lemma), may be constructed
by appropriately selecting, for each pair i # j, one of the open line segments defined
by a;;, a;; and a;; (or aj; if i > j) and by forming the set-theoretic intersection of
these chosen segments. Therefore, (rank(|Tux|), sign(7,x)) is constant for ueQ,”.

Any other region Q;*,/# k, 1 <1< L, must be contained in a line segment
(corresponding to some pair i # j) which does not contain €, . Hence, (rank(lT ”xl,
sign(7,x)) is different when peQ;* than when peQ,*. The lemma follows.

Proposition 2.2 and the lemma above give the upper and lower probabilities
concerning y alone. Optimal decisions involving 4 may be found as in Section 3.1.
For example, if p is restricted to a closed interval containing d; and d; _ ,, the mini-
max estimate for u under the loss function /(u, d) = |y—d | is

4.1) A = median {d,, -+, d; _,}.

This estimate was proposed on classical grounds by Hodges and Lehmann [4].
The minimax test for H: u < 0 versus K: u > 0 rejects H if and only if the number
of pairs {(x;, x;), 1 £i<j< N} for which x;+x; >0 is sufficiently large. This
amounts to the one-sample Wilcoxon test.

4.2. One-sample linear regression model. This is the model of Section 3.4, with the
additional assumption that F is symmetric about the origin.
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LEMMA 4.2. The Q-regions {Q,;*, 1 < i < L} for the linear regression model with
symmetric error are the L open regions in Q partitioned off by the lines {u+pBz; = x;,
p+Bz; = xj, p=(xi—x)/(zi—2p), 2u+ Pz +z)) = x;+x;, all i # j}, excluding the
possible lines § = + . The region Q,* consists of the partitioning lines themselves.

ProoF. For any pair i # j, the four lines {u+ fz; = x;, p+fz; = xj, u+Pz;—x; =
p+Bz;—x;, p+Pz;—x; = —pu—Pz;+x;}, which amount to the lines in the state-
ment of the lemma, intersect in a point, thereby dividing Q into eight regions
(except when the point is at infinity). Each of these regions is characterized by
whether ‘|x;— p— Bz;| > |x;—p—Pz;| or vice versa, whether sign (x;—pu—pz) is 1
or —1, and by whether sign (x;—pu— Bz;) is 1 or — 1. The rest of the proof parallels
that of Lemma 4.1.

Unlike the upper and lower probabilities of Section 3.4, those implied by
Lemma 4.2 and Proposition 2.2 bear information about both y and . Minimax
tests (step loss function) for hypotheses concerning (u, f) are easily found theoreti-
cally, but require considerable computation to apply.

4.3. First order auto-regressive model. This is the model of Section 3.5, with the
additional assumption that F is symmetric about the origin. Essentially the same
argument as for Lemma 4.2 establishes

LEMMA 4.3. The Q-regions {Q;*, 1 £i < L} for the first order auto-regressive
model with symmetric error are the L open regions in Q partitioned off by the lines
(i =ptp(xio =), x;=p+p(x;_1—p), p=0;—x)/(X;—1—X;-1), XitX;=
2u+p(x;_+xj-1—2p), all i # j}, excluding the possible lines p = + co. The region
Q,* consists of those points in Q that lie on the partitioning lines themselves.

The remarks following the previous regression example carry over, with the
obvious changes, to this model.
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