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A CHI-SQUARE STATISTIC WITH RANDOM
CELL BOUNDARIES'

By D. S. MOORE
Purdue University

In testing goodness of fit to parametric families with unknown para-
meters, it is often desirable to allow the cell boundaries for a chi-square
statistic to be functions of the estimated parameter values. Suppose M
cells are used and m parameters are estimated using BAN estimators
based on the sample. Then A. R. Roy and G. S. Watson showed that in the
univariate case the asymptotic null distribution of the chi-square statistic

is that of XM-m-1Z2+3M-1),7,2, where Z, are independent standard

normal and the constants A, lie between 0 and 1. They further observed
that in the location-scale case the 2, are independent of the parameters if the
cell boundaries are chosen in a natural way, and that in any case all 4,
approach 0 as M is appropriately increased. We extend all of these results
to the case of rectangular cells in any number of dimensions. Moreover,
we give a method for numerical computation of the exact cdf of the
asymptotic distribution and provide a short table of critical points for
testing goodness-of-fit to the univariate normal family.

1. Introduction. Standard statistics of chi-square type are defined in terms of
cells which are fixed prior to taking observations. Moreover, if parameters are to
be estimated from the data they must be estimated by asymptotically good
estimators based on the observed cell frequencies. Typically the maximum likelihood
estimator (MLE) is used. Chernoff and Lehmann [2] showed that if MLE’s based
on the full sample are used, the asymptotic distribution of the statistic need no
longer be chi-square. In fact, if M cells are used and m parameters are estimated,
the asymptotic null distribution is that of

(1.1) MmN ZA+ Y M 2,

where Z,, - -+, Z),_ are independent standard normal random variables and the A’s,
which may depend on the parameters, lie between 0 and 1.

It is desirable in practice to allow the cell boundaries to be functions of the
estimated parameter values. For univariate observations A. R. Roy [11] and G. S.
Watson [12, 13, 14] showed that the asymptotic null distribution of the chi-square
statistic is given by (1.1) in this case also. In Section 2 we extend this result to the
case of rectangular cells in any number of dimensions. This extension is made
possible by the use of modern random function methods, which also result in a
shorter rigorous proof in the one-dimensional case.
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148 D. S. MOORE

Section 3 gives two auxiliary results. Roy and Watson both showed that in
location-scale problems the A; are independent of the parameters if the cell
boundaries are chosen in a natural way. This result extends immediately to the
multivariate case. Watson also observed that in general all A; approach 0 as the
number of cells is appropriately increased, though he gave no full proof. This result
also extends to our case.

Section 4 presents a method of numerically computing the exact cdf of (1.1) in
certain cases. This method is used to obtain a short table of critical points of the
asymptotic distribution for testing goodness of fit to the univariate normal family.
The table assumes equiprobable cells, a common recommendation discussed in this
setting by Watson in Section 1 of [12].

In the body of the paper we adopt certain conventions of notation. All vectors
are column vectors, with prime denoting transpose. Matrices other than vectors
are boldface, but vectors are not. If 4 is a vector, E[A4] is the vector of expected
values of the components of 4. £(X) is the law or distribution of the random
variable X. N(u, ) denotes the normal law with vector of means u and covariance
matrix . Finally, X, = o,(1) or X, = 0(P) denote convergence to 0 in probability.

I am very grateful to Professor Herman Rubin for informing me of Roy’s work
and suggesting this generalization; and to Professor Carl de Boor for assistance
with the numerical analysis required to produce Table 1.

2. Asymptotic distribution. Let F(x | 0) be a k-variate distribution function
depending on an m-dimensional parameter 6 which is an element of a parameter
space Q. We will assume that Q is an open set in Euclidean m-space R,,. F will be
called regular if it satisfies the assumptions

(A1) F(x|6) has density function f(x|6) which is continuous in x x 6 and
continuously differentiable in 6.

(A2) Fori=1,-,m

0

0
go—‘Jf(xl())dx = Ee—if(xlﬂ)dx.

(A3) The integrals

Olog/\? o1
J( 6, )f(x|0)dx i=1,",m

are finite for all 8eQ and the information matrix
J=llll ii=tem

dlogfologf
f 20, 20, f(x|6)dx

ij

is positive definite for all 6eQ.
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Let us partition the x;-axis by functions of 0,
— 0 = &io(0) < En(0) <+ < & 0,-1(0) < £, (0) = o0,
foreachi=1,---, k. We assume
(A4) 0¢&,;/00, exist and are continuous in Q for
i=1,-,kj=1,---,v; and s=1,---,m.

A partition of R, into M = []f-,v; cells is formed by the Cartesian products of
the cells of the partitions of the coordinate axes. We will index the cells of this
partition by ¢ running from 1 to M (the particular assignment of indices to cells is
immaterial). The probability p,(0) that an observation on F (x|0) falls in the oth
cell can be expressed by a familiar difference operator. Let us define the operator
A°H by writing

P.(6) = A,°F(z] 0).

The superscript specifies the value of 6 at which the partitioning functions &;,(6)
are evaluated. We assume that all p,(8) > 0 for all #eQ and that

(A5) M > m and for any fixed 6,eQ the m x M matrix W with entries
Wi = iA "°F(z|0)
ic ael g

has rank m.

Suppose that X;, -, X, is a random sample from F(x|6) and that 8, =0,
(X, ., X,) is a sequence of estimators of 8. We wish to allow the observations to
choose the cells by replacing 0 in &;;(6) by 0,, and to consider the resulting statistic
of chi-square type

T;, — Z [Na - npz(en):lz ,
s npy(0,)
where N, is the number of X, - -, X, falling in the ath cell.
We must require that 8, be an asymptotically minimum variance estimator. Let
us begin by requiring only asymptotic efficiency in the sense of C. R. Rao ([10] and
references therein). Suppose A(x) is the vector of logarithmic derivatives of f,

Ay = <6logf(x|0) 6logf(x|0)) |

00, T 00,
Then Rao’s definition of asymptotic efficiency is

(A6) There is a nonsingular m x m matrix of constants B(#), which may depend
on 0, such that

n*0,—0) = n~EY I BA(X)+0,(1).
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This says that n*(§,—60) is asymptotically a linear transformation of the vector
of derivatives of the log likelihood function. Rao has shown that (A6) implies that
the information in , approaches the total information in the sample. But (A6)
does not imply asymptotic efficiency in the usual “minimum variance” sense. For if
Fis regular, E[BA(x)] = 0 and each component of BA(x) has finite variance, so that

Z4{n*(0,~6)} > N(0,BIB),

we will therefore require more of B (see the statement of Theorem 1). Our require-
ments are satisfied in particular when 8, is the MLE and the usual conditions for
asymptotic efficiency of the MLE hold. In that case 6, satisfies (A6) with B = J 1,

THEOREM 1. Suppose (A1)-(A6) are satisfied and that the matrix B+B'—BJB' is
positive definite for all 0€Q. Then

2{T,} - -?{Z?i'x"‘“ Z2+ 4 Z12n—m+"'+'1mz12n—1}

where Zy, -+ *, Zy_ are independent N (0, 1) 1v’s and the A;, which may depend on 0,
satisfy 0 < 4; < 1.

PRroOF. Denote the gth cell of the partition generated by &;;(6) by I,(6). N, is the
number of X, ---, X, falling in 7,(8,) and we let n, be the number of X, ‘-, X,
falling in 1,(6,), where 6, is the true parameter value. Then if F,(x) is the empiric
cdf,

Na' _npa(gn) = n[Aaé n(x) —AUGF(X l 0)]

ng—npy(6) = n[A,F,(x)— A, F(x | 6,)].
Defining the empiric c¢df process W,(x) = n*[F (x)—F(x | 0,)], we have
(2.1) n7*[N,=npy(8,)] = n™¥[n, —np,(66)]+[A, W, (x) = A, W,(x)]
—n*A[F(x|8)—F(x|6,)].
We wish to show that

(2.2) AL W(x) = AP W,(x) = 0,(1).

Since &;; are continuous and 8, — 0,(P), this will follow if #,— c¢(P) implies
W.(n,)— W,(c) = 0,(1). Define a continuous function H mapping R, onto the unit
cube in such a way that the rv’s ¥; = H(X;) have uniform marginal distributions in
each direction. If U (u) is the common cdf of Y5, - -+, ¥, and U,(u) is the empiric cdf,
then the empiric process W,*(u) = n*(U,(u)— U(u)) satisfies W,(x) = W,*(H(x)).
The path functions of W, * fall in the space D, of functions on the unit cube having
only jump discontinuities. It is possible to define on D, a metric of Skorohod type
such that D, is complete and separable, convergence to a continuous limiting
function is uniform, and W,* converges weakly to a Gaussian process W * such
that W *(u) is continuous w.p. 1. These results are contained in Neuhaus [8] and
the weak convergence result is in fact a consequence of the stronger results of
Dudley [4].
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Now 1, - ¢(P) implies H(n,) - H(c)(P). This with W,* - W * weakly implies
by Theorem 4.4 of [1] that the joint distribution of (W, *, H (n,)) converges weakly
on D, x R, to that of (W*, H(c)). Since W *(u) is continuous w.p. 1 and con-
vergence to a continuous limit is uniform, the function ¢: D, X R, — R, defined
by o(f, a) = f(a)—f(H(c)) is continuous w.p. 1 with respect to the distribution of
(W*, H(c)). Thus by Theorem 5.1 of [l], o(W,*, H (ny)) = W, *(H(n,))—
W, *(H (c)) converges in law to o(W*, H(c)). Since @(W*, H(c)) = 0 this is just
the statement W,(n,)— W,(c) = W,*(H(n,))— W,*(H(c)) - O(P).

Define the vector JF by

S 6F(x|0)’m’6F(x|0)
a0, a0,

and agree that A,? 0F will mean the vector whose components are A, applied to
the components of dF. Then by Taylor’s theorem, continuity of 0F in 6, and
(2.2), (2.1) becomes

n —%[Na - npa(gn)] =n _*[na' - npa(OO)] - (Aao aF),n‘k(gn - 00) + op(l)'

Since n*(8,—0) is O,(1) and OF is continuous,

0=0o

(2.3) (A, OF) n*(8,—06) — (A" OF) n*(8,— 00) = 0,(1).

Furthermore, assumption (A2) implies that

A,%°[0F (x| 6)/26,] = a% AF(x|06)

2
2.4 = d
(24 2. 1,(oo)f(x|0) x

[ deln,
I5(00) s

Define the vector w,(6) as the ath column of the matrix W in (AS5):

, of (x|9) f of (x|0) )
0) = D ax, e, | S —dx ).
Wa( ) (j I+(60) 601 * I+(80) 50,,, *

Then by (A6), (2.3) and (2.4),
n- *[Na - npet(gn)] =n" *[na - npa(GO)] - w«(GO)’Bn —* Z:’= 1 A(Xi) + op(l)
=n" J Z:‘= 1 [Ca(Xi) - wa,BA(Xi)] + op(l)

where the argument 6, is assumed whenever 6 is suppressed and

Co(x)=1—p,(00)  xel.(6o)
= —p0o)  x¢L(60)
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It follows by the multivariate central limit theorem that
Loo(n}[N,—np,(0)]:0 = 1,---, M} > N(0,Z(6,))
where X(6,) is M x M with entries
(2:5) Zgq = Eq[(Co(X) —w, BA(X)) - (C(X)—w,BA(X))].
Finally p,(8,)/p,(8,) = 1(P), so that
goo{]%'g:)()?w =1, ,M}-»N(O,P-%EP-*),
where P is the M x M matrix with entries
Pyo=pb0), o=1,".M
P, =0, o#T.

It is well known that if an M x 1 vector U satisfies Z{U } = N(0, C) and C has’
characteristic roots Ay, **+, Ay, then L{U'U} =LY M, 2, Z>} where the Z;
are independent N (0, 1). Suppose that 4,, - -, 4, are the characteristic roots of
P *LP~ %, Then
Lol T} > & {Z;AL A Zi2}~

The remainder of the proof consists of an investigation of the 4;, and is a
straightforward generalization of Roy’s work for k = 1.

Let W be the m x M matrix with columns w, for e =1, -+, M. Let also p be

the M x 1 vector with entries p,(6,). Then straightforward computation from
(2.5) yields

X=P-pp'—WBW-WB'W+WBJB'W=P-C,
where
C=pp'+W(B+B —BJB)W.

It is easily seen that the A; are also the characteristic roots of P7'E. All 4; =0
since P"*XP"* is a covariance matrix. We observe that

zo'pcr:l; Ea(wa)s=0, s=1,,m.

The sum of the columns of X is therefore 0, so that at least one 4; = 0. Denote
by r(D) the rank of any matrix D. Set ¢ = r(P~'C) = r(C). Then it follows from

(2.6) det[AI-P~ L] = +det[(1-)I—P~'C]

that exactly M —q of the 4, =1.

To determine g we use the assumption that D = B+B'—BJB’ is positive
definite. Then W'DW has rank m since W does, and since the vectors p and w,
are linearly independent, ¢ = r(C) = 1 +m. Thus exactly M—m—14;=1.Cis
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nonnegative definite, since pp’ and W'DW are. It therefore follows from (2.6)
that all A; £ 1. This completes the proof.

3. Application of the statistic. The most useful case of Theorem 1 is of course
that for estimators asymptotically equivalent to the MLE. In the remainder of
this paper we will therefore assume that B=D = J~!. The applicability of
Theorem 1 is restricted by the dependence of the 4; on 6. We first remark that
this dependence vanishes in the location-scale case.

THEOREM 2. Suppose that (A1)~(A6) with B =3~ hold and
(A) F(x|0)=F(x—0) and ¢&;0)=0,+a;,a;; constants;

or

(B) F(x|0,¢) = F< (Pol ~~-,x'"q)_9'”) and
1 m

£ii(0,9) = 6;4a;;0;,a;; constants.

In either case the A; do not depend on the true values of the parameters.

Proor. We give only a sketch of the proof, which is straightforward. In the
location parameter case (A) it is easy to see that J and p,(6) are independent of
0 and that w,(0,) is independent of 6,. Since the A; are characteristic roots of
P—pp’—W'J~'W they are also independent of 6.

In the location-scale case (B) the matrices J and W depend on the scale
parameters @,, -, @,,. But it is easy to see that W'J~'W is independent of
(0, @) and hence that the A; are also parameter-free.

We next make the important observation that as we increase the number of
cells used (precisely, as we refine the partition of R,, generated by the £;,(6)) all
A; converge to zero. The chi-square distribution with M —m—1 degrees of
freedom therefore approximates the asymptotic distribution of T, for large M.

THEOREM 3. Suppose that (A1)-(A6) hold with B = J~ 1. Suppose that M — o
and that the &;(0) are chosen so that £;,(0) > — o0 and &; ,,_; — oo for all i and
all 0€Q, and so that sup;|&;(0)—¢&; ;_1(0)| - 0 for all i and all 6 Q. Then 4; -0
fori=1,--- , mandall 6eQ.

Proor. By matrix manipulations parallel to those performed by Watson
([13] pages 53-54) we obtain that the nonzero A; are one minus the nonzero
characteristic roots of

10
G-1 [0' J-%WP-IW'J-%]'

But computation shows that the (i, j)th entry of WP~ 'W’ is

62 2w )
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Use of the mean value theorem for integrals shows that (3.2) is approximately
a Riemann sum for the information integral J;;. It is routine to show that as the
partition is refined as in the statement of the theorem, each entry of WP~ 'W’
converges to the corresponding entry of J. (Details of a very similar argument
can be found in the proof of Theorem 2 in [6].) Thus (3.1) converges to the
identity matrix and 4, - --, 4,, therefore converge to zero.

4. Asymptotic cdf in the univariate normal case. It is desirable in practice to know
the critical points of the distribution of (1.1), especially in the common case in
which the underlying distribution is N(6,, 6,) with both parameters unknown.
Watson ([12] Section 5) gives an approximate method of calculation. We show
here how to effectively compute values of the cdf of (1.1) and use this method to
compile a short table of exact upper critical points.

We will of course define our cells in this example by £40) = 0, +a;0, and
estimate the parameters by the sample mean and sample standard deviation. We
adopt the common recommendation of equally probable cells, and choose to use
an odd number of cells for computational reasons which will become apparent.
The M —1 constants a, determining the cell boundaries can now be obtained by
inverse interpolation in tables ([7], for example) of the standard normal cdf. We
then compute 4, and 4, from the simple expressions given on page 345 of [12].

We will investigate the distribution of

(4.1) SMPZ2+MZY 2+, 7%, 0<i < <1

for M =5,7,9, 11, 15 and 21. The values of A, and A, obtained for each M are
given in Table 1. If L = (M —3)/2, the characteristic function of the random
variable (4.1) is

@) = (1—2iu) " [(1 =24, iu)(1—24, iu)]~*.

We choose M odd to obtain an integral power of (1 —2iu)~! here. The function
@(u) has a pole of order L at u = —i/2 and branch points at ¥ = —i/24, and
u = —il24,. If F(x) is the cdf of (4.1), then we have

—iux

(4.2) 1 —F(x) = %I f ¢ o(u)du

iu
where the integral is along a line u = r—id, 0 < 4 < 4, in the lower half-plane.
This result is an easy consequence of an inversion formula of Gurland (formula
(2) of [5]) which was pointed out to me by Professor Rubin.

Standard use of Cauchy’s theorem shows that the right side of (4.2) is the sum
of an integral around the pole and an integral around the branch points (avoiding
the cut along the imaginary axis between the branch points). Both contours are
described clockwise. The integral about the pole is —2ni times the residue of
the integrand at u = —i/2. The residue is computed in the usual way by multi-
plying the integrand by (v +i/2)" and differentiating L — 1 times.
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In computing the integral about the branch points, use is made of the fact
that the radical portion of ¢(u) changes sign in crossing the cut. Standard
manipulation reduces this integral to the real integral

1/22¢ e
n’lf =20)7LH(1 =24, (22, t—1)] " *dt.
1/22, t
A linear change of variables transforms this into
4.3) T (A A,) L H(s)[1—5*] "% ds
where

H(s) = exp[ —4x(4s+B)](As+B) '(1-As—B)~t

_AZ_AI _j'l +}.2
24,4, 2,4,

The integral (4.3) is easily evaluated by use of the Gaussian quadrature
formula ([3], page 75).

[ Hor-21a0=7 $ oo+ g e B

for some —1 < ¢ < 1. Here s, = cos((2k — 1)n/2n) are the zeros of Chebyshev
polynomials of the second kind. A table of any distribution of the form (4.1)
can now be produced very rapidly. We present only Table 1 of upper critical
points. Computation of this table required less than 4 seconds of central processor
time on Purdue University’s CDC 6500.

TABLE 1
Upper critical points x, such that F(x,) = p

p

M A Az 0.75 0.80 0.90 0.95 0.99 0.995 0.999

5 1030 .5317 3.559 4.023 5.442 6.844 10.077 11.464  14.683
7 .0655  .4037 5.908 6.518 8322 10.038 13.837 15423  19.034
9 .0470  .3259 8.241 8.961 11.055 13.007 17.234  18.971  22.885
11 0361 2737 10.544  11.358  13.694  15.843  20.430 22296  26.468
15 .0242 2077  15.084 16.052  18.792  21.270  26.463  28.547  33.158
21 0156 1530 21.777 22932 26.163  29.043 34981  37.332  42.489
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