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AN ALGORITHM FOR COMPUTING THE NON-LINEAR PREDICTOR!

By JAMES B. ROBERTSON

University of California, Santa Barbara

1. Introduction. Let {f,, —o0 <n< oo} be a (strictly) stationary stochastic
process and let v be a positive integer. Subject to certain restrictions on the
stochastic process Masani and Wiener [6] have given an algorithm for calculating
the non-linear predictor, f, = E( fvl < f-1,/o), of f, given the past and present of
the stochastic process. In [8] we showed that in theory f, can be determined if
E(| va < 0. The main purpose of this paper is to give an algorithm for computing
f, which is perhaps more naive than the one given by Masani and Wiener but
which is valid for the stochastic processes considered in [8].

In Section 2 we describe the algorithm in an informal way. In Section 3 we give
precise definitions and prove that the algorithm converges to the non-linear
predictor whenever the stochastic process is ergodic. In Section 4 we show that the
algorithm is valid for non-ergodic stochastic processes. In Section 5 we extend our
results to non-linear prediction in L,, 1 <p < co. In Section 6 we make some
additional remarks. In particular we indicate that our methods apply to multi-
variate, non-linear prediction theory (cf. (6.3)).

The author wishes to express his appreciation to the referee, D. L. Hanson, and
P. Masani for their many helpful comments on the original manuscript.

2. Description of the algorithm. The purpose of this section is to give a non-
technical description of the algorithm, and the remainder of the paper is independent
of this section. We suppose that we are given an infinite sequence of numbers
(-, f- (), fo(w)) which is the realization of the past and present of a stationary
stochastic process {f,, —o0 <n < c}. Also we are given a function g of infinitely
many variables, g = g(-- -, f_1, fo), and a positive integer v. We interpret g,(w) =
g(- -, fr—1(w), f(w)) as some numerical attribute of the stochastic process at time
v. Our problem is to calculate the least squares predictor §(w) of g,(w), i.e. §, is
the function of the form g,=Ah(---,f_,,f,) which minimizes the expression
E{(g,—h)?}. It is well known (cf. e.g. [6] Section 6) that g, = E(g,| ", /-1, fo)-
The problem treated by Masani and Wiener is obtained on setting g, = f,.

We proceed by making three successive approximations. First by taking »
sufficiently large, we approximate E(g, |, /-y, /o) by E(g,| fon+1, ***».f0)- Next
the o-field determined by f_,., ‘", fp is approximated by a discrete o-field & ,,.
For example if m is a sufficiently large fixed integer the atoms of &, may be taken
to be sets of the form F= (]2§ {:1;/2" <f_{(w) £ (I;+1)/2"} where I, is any
integer. Then E(g,|#,) approximates E(g,|/—n+1, ", /o). Suppose [;/2" <
fol@) £(;+1)/2", i=0,---,n—1. Then there will exist infinitely many k;
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v=k; <k, <--- such that [,2" <f_, _(w)=(;+1)2", i=0,---,n—1. The
average of the g(- -+, f_y,+, (@), ie. limy ok~ Y% g(- -, fs,+ (@), will then
approximate E(g, ] & ,) and hence §,.

3. The algorithm. Let {f,, —o0 <n < o} be a stationary stochastic process on
a probability space (Q, #, P). Let R denote the real line with the usual topology
and Borel field. Let R® = --- x R x R denote the countable product of R indexed
by the non-positive integers. The Borel field, 4, (topology) on R® is the smallest
o-field (topology) such that the coordinate functions, X,((x;)%.)=x, are
measurable (continuous) for £ £ 0. Let g be a real-valued measurable function on
R® such that the random variables g,=g( ", f,_1,f,) are integrable, i.e.
gn€L,(Q, #, P). Let v be a positive integer. The problem of non-linear prediction
theory is to calculate g, = E(g,|* ", f-1, /o).

Now let X =":-+ x R x R x --- denote the countable product of R indexed by
the integers. The Borel field, %, (topology) on X is the smallest o-field (topology)
such that the coordinate functions, X,((x;)®.) = x;, are measurable (continuous)
for all k. Let ¢: Q — X be defined by ¢(w) = (f(w))®,. Then ¢ is measurable, and
we shall denote by P the probability induced on # by ¢, i.e. for all A4,
P(A) = P(p~'(A)). Let g, denote the random variable g(---, X,_,, X,) on
(X, B, P). Then g,’ o = g,, andE(gnI e fonfo) = E(gnll ++, X_1, Xo)o¢. Thus
it is sufficient to consider the stationary process {X,, —c0 <n < o} on (X, &, P).
On (X, 4, P) the shift transformation, defined by (T((x)®.))k = Xx+1, 1S an
invertible measure preserving transformation such that X, o7 = X, for all k. In
this section we suppose that T is ergodic.

Now for each positive integer m let «,, be a countable measurable partition of R
such that

3.1 ®%,+1 1sarefinement of o, i.e.every setin the partition
®,+1 1S a subset of some set in «,, and
3.2) V=10, =%, ie. the smallest o-field containing all the

sets in «, for all m is the Borel field of R. For
each positive integer n let &,, be the countable,
measurable partition of (X, 4, P) consisting of all sets

F of the form
(3.3) F=NIZ5 X_(4) where A4;€a,,

Denote the o-field generated by &, , by &, ..

The recurrence theorem (cf. e.g. Halmos [5] page 10) states that for almost every
point @ in a measurable set F, we T*(F) for infinitely many k. Thus for almost all
we F, where Fis as in (3.3), we may define inductively

(3.4a) ny(w)=min{k:k=v and weFnT‘F}
and

(3.4b) n{w)=min{k:k > n;_(w) and weFNnT'F}, i=23,-""
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Finally for almost all @ we may define
(35) hi,m,n(w) = g—m(w)+v(a’) = g( T X—n.<(a;)+v— 1(w), X—n,(o))+v(w))'

THEOREM 3.6. lim,, , (lim,, , o, (lim_, o, (1/k)Y 5=, h; ,p (@))) = G (@) for almost all
w.

Proor. First fix m and »n and consider a set F of the form (3.3). Let
G.7 G, =Ny T'F'nT'F for k =v,v+1, - and
Dy =N{Z{ T'F'nT'F fork=1,2,"".

Since G,, G, y, -+ are disjoint measurable subsets of F and since almost all we F
are in Ug-, G, we may define for almost all we F

(3.8) (w) = T Xw) for weGk=v,v+1,--.

Clearly Q is defined for almost all we F and the range of Q is contained in F, We
shall now show that Q is nonsingular. Let 4 be a subset of F. Then Q(4) 2
O(Ui=,(4nGy) = Ui, 0(4nGy) = Ui, T~%(ANG,). Hence if Q(4)is contained
in a set of probability zero, then P *(4NG,) = P*(T "(ANG,)) = 0 forall k(P *(A)
is the outer measure of the set 4). Thus P*(4) < Y2, P*(AnG,) = 0.

Next for almost all we F we define

3.9) S(w) = T X w) for weD,k=1,2,---.

Moy (cf. [6] Lemma 1 and Corollary 1 applied to 7~ ! instead of 7') has shown that
S is an ergodic, invertible measure preserving transformation on the probability
space (F, FN %, P(-| F)). Next we shall show that

(3.10) T "X @) = §'~ 1o Q(w) for almost all weF.

From (3.42) and (3.7) we see that n,(w) = k if and only if w € G,. Thus using (3.8)

we obtain for weGy, T "“(w) =T *w)= Q(w). Proceeding by induction,

consider w such that n;_;(w) = k—1 and n(w) = L. By induction T ~"-1®)(¢) =

S'20Q(w) a.e. Using (3.4b) we see that T~ "-1()(g)e T~ k+1 N, TVF AT'F) =

NS AT """ 'F=D,_,,,. Thus using (3.9), we obtain S'~! oQ(w) =

S(S'" 20 Q(w)) = T~ YT ¥ Yw)) = T~Yw) = T~")(w) which proves (3.10).
Therefore we obtain

(U/R) Xiw 1 Himn@) = (1/K) Th= 1 gyo T™™Y)
= (1/k) Xi= 19,25~ H(Q(w)).

Applying the ergodic theorem (cf. e.g. Halmos [5] page 18) to S on (F, Fn 4,
P(-|F)) we see that limy_, ,(1/k)Y%_ 1 g,0 8" (") = E(g, | F) for almost all »’eF.
Since Q is nonsingular, limy_, ,(1/k)Y ¥~ 4; ,, () = E(g, | F) for almost all weF.
Hence, since F was an arbitrary atom of £, ,, limy_, , (1/K)Y ¥y By (@) =
E(g,|# na)@)ae. Using (3.1) and (3.2) and a martingale convergence theorem
(cf. Doob [3] page 331) we see that lim,,_,, E(g, | # ) = E(g, |X-,,+1, -, Xo)a.e.
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and lim,, , E(g, | X_p+1, "+, Xo) = E(g,|"**, X_4, X,) = §,a.e. This completes the
proof of the theorem.

4. Ergodicity. In this section we shall relax the assumption of Section 3 that T
be ergodic. The function 4; , ,, cf. (3.5), is defined on a certain measurable set and
is measurable. Thus

(4.1) hy(@) = 1im, ., o, (1limy, - o, (lim; -, o, (1/6) 3i= 1 By mn(0)))

is defined on some measurable set and is measurable with respect to -+, X_;, Xo.
We may suppose that 4, is a measurable function on (X, %) by extending it to be
zero wherever (4.1) is not defined. If P is a probability measure on (X, %), we shall
denote expectations and conditional expectations with respect to P by Ep. Then
Theorem 3.6 states that if P is ergodic, then h, = Ep(g, | ", X_;, Xo) a.e.

Now let P be an invariant probability measure on (X, %). Let & be the class of
all ergodic, invariant probability measures on (X, %). The smallest o-field on &
such that the function = — n(A4) is measurable for all A€ will be denoted by <.
Farrell has established (cf. [4] Theorem 5, page 461) that under our condition, i.e.
{T,, —00 <n< o0} is a countable group of measure preserving transformations
and X is a complete separable metric space, there exists a probability measure, Ap,
on (&, &) such that for all 4e B, P(A) = [,n(A)dA,(r). It is then easy to establish,
using linearity and the monotone convergence theorem, that if fis a nonnegative
measurable function on (X, %), then [, f(x)dn(x) is a nonnegative measurable
function of 7 on (&, &/) and that

4.2) Jxf(x)dP(x) = [& {[xf(x) dn(x)} dAp(m).

Now if fe L;(X, 8, P), it can be seen by standard arguments that [ f(x)dn(x) is
defined for almost all = with respect to Ap, that as a function of = it is in
L,(&, o, Ap), and that (4.2) holds. Thus if g,€ L,(X, %, P) and if 4 is measurable
with respect to -+, X_, Xj, then

J490(x)dP(x) = [¢ ([ 4 9/(x) dn(x)) dAp(m)
= [ ([ hy(x) dn(x)) dAp(n)
= IA hy(x) dP(x).

This together with the fact that 4, is measurable with respect to - -, X_;, X, implies
that h, = Ex(g, | <o+, X_4, Xp)a.e. Thus thealgorithmis valid for arbitrary stationary
stochastic processes and integrable g,.

5. Extension to L,(1 < p < ). If g, L,(Q, #, P), then the non-linear predictor
g, given in Section 3 is that function 4 which minimizes ||g,—A||, among all
functions which are measurable with respect to - -, f_, fo. In this section we shall
show that our method can be extended so as to minimize the L,(1 < p < oo) error.
We first prove an ergodic theorem (Lemma 5.4) for certain generalized means
studied by Brens, Brunk, Franck, and Hanson [2].
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Let ¢ be a real-valued function on R x R such that:
(CR)) ¢(x, 0) isstrictly increasingin 6 foreach xeR,
(5.2) o(x,0) =20 for 8>x and @x,0)£0 for O<ux,
(5.3) ¢(x,0) isa Borel measurable function of x for each fixed 6 in R.

Notice that (5.1) is stronger than [2,(2.1)]. For a random variable X on
(Q, &, P) let A(6) = E(¢p(X, 0)) (assuming that ¢(X, 6) is integrable for all 8). It
follows (use [2,(2.8) and (2.11)] and the monotone convergence theorem) that
there exists exactly one real number p such that for 8 > p, A() > 0 and for 6 < g,
A(6) < 0. This p is called the p-mean of X.

If {x,, -, x,} are real numbers, their sample p-mean is that p such that A(6) < 0
for <y and A(6) = 0 for @ > pu where A(6) =) 7_; ¢(x;, 0).

LEMMA 5.4. Let T be an ergodic measure preserving transformation on (Q, &, P).
Let X be a random variable such that o(X, 0) is integrable for all 0. Finally let M ()
be the sample @p-mean of {Xo T (w), i =0, -+, n—1} and let M be the p-mean of X.
Then lim,_, , M, = M a.e.

Proor. Let X,=XoT" n=0,1,---. Then by the ergodic theorem
(1/n) Y 22§ o(X,, ) converges to E(p(X, 6)) almost everywhere. If 4 is such that
E(p(X, 0)) > 0, then for almost allw, Y ;- o p(X(w), 8) > Ofor all but finitely many ».
Hence M,(w) < 6for all but finitely many » which implies that lim sup,., ,, M,(w) < 6.
Thus limsup,_, , M,(w) £ M. In the same way by considering those 6 for which
E(p(X, 0)) <0 one finds that liminf,, , M,(w) = M for almost all w. Hence
lim,,, M, =M ae.

Now fix p such that I < p < co. When ¢(x, 0) = |0 —x|?~*sgn(§—x) and X is in
L,, the conditions of Lemma 5.4 are satisfied and the ¢p-mean is the best approxi-
mation in L, to X by a constant (cf. [2] Theorem 2.2).

Recalling the notation of Section 3, let M, ,, be the sample ¢-mean of
hl ,m,n(a))9 ) hk,m,n(w)9 ie. of gv(Q(w))’ s gve Sk— 1(Q(Cl))) (Cf (35)) By Lemma
5.4 and the nonsingularity of Q we find that for almost all w in F, M, ()
converges to the ¢g-mean of g, with respect to the conditional probability given F
as k— oo. Now it is easy to show that the &, , measurable function 4 which
minimizes ||g,—h||, takes the value of the @-mean of g, on the set F. Thus
lim_,,, My ,, , exists almost everywhere and is the best L, approximation to g,
which is &, , measurable. The analogue of the martingale convergence theorem
used in Theorem 3.6 is the martingale type theorem of Ando and Amemiya (cf.
[1] Theorem 3). Hence

THEOREM 5.5. Let g, be in L,(Q, #, P), (1 <p < ). Then

limn—*w(limm—v oo(limk—’oo Mk,m,n(w))) = év

almost everywhere where §, is the best L, approximation to g, by a function
measurable with respect to -+, f_1, fo.
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REMARK 5.6. The sample means M, , ,(w) do not seem to lend themselves to
direct calculation except in the case p = 2.

6. Remarks.

REMARK 6.1. There are a number of advantages which our method seems to
have over the method of Masani and Wiener.

(A) They assume their process to be nondeterministic whereas our procedure
applies also to deterministic processes.

(B) They assume that their process is bounded and they use the multivariate
moments to calculate the predictor. We do not assume the existence of any
moments other than the first. In particular, our algorithm does not use multipli-
cation which means the random variable may be of a more general nature (cf.
Section 5 and (6.3)).

(C) They obtain the predictor as an L, limit whereas our limit is almost every-
where. At least for bounded stochastic processes our conclusion is therefore
stronger.

REMARK 6.2. In the case of ergodic stochastic processes the error {E(|g,—4,/")}'/?
can be calculated by {lim,_ , (1/n)Ys-1|go—gvo T ~"|?o T *w)}"*. For a more
general stochastic process it does not seem possible to calculate the error, although
the above limit can be used as an estimate.

REMARK 6.3. We have not made use of the multiplicative properties of the reals.
In particular it is clear that our procedure and proof are valid for n-dimensional
real or complex space. Thus our theory is actually concerned with multivariate
non-linear prediction theory.

REMARK 6.4. Of course, g, can be interpreted as a least squares predictor only
when g, is in L,. However §, as a conditional expectation can be calculated when
g, is only integrable. Indeed using the positivity of the conditional expectation
operator and truncation methods our results will extend to the case when E(g,) =
+ o0 or E(g,) = — 0.
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