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REJECTING OUTLIERS BY MAXIMUM NORMED RESIDUAL'

By WILHELMINE STEFANSKY

University of California, Berkeley

1. Introduction. The maximum normed residual (MNR) has been proposed as a
test statistic in connection with the problem of rejecting outliers. An outlying
observation is one that does not fit in with the pattern of the remaining observa-
tions. Outliers may be mistakes, or else accurate but unexpected observations
which could shed new light on the phenomenon under study. On the other hand, it
is possible that an outlier is simply a manifestation of the inherent variability of the
data. It is of interest, therefore, to test whether or not a given outlier comes from a
population different from the one hypothesized.

A thorough discussion of the special case of detecting outhers in a single sample
from a normal population is given by F. E. Grubbs in [5]. Several tests are
discussed, among them tests based on the MNR, and tables of critical values are
included. For unreplicated factorial designs C. Daniel [3] proposed a statistic
equivalent to the MNR. T. S. Ferguson [4] has proved that the maximum
Studentized residual possesses the optimum property of being admissible within
all invariant procedures. For designs with residuals having a common variance, the
MNR is equivalent to the maximum Studentized residual, hence also has this
optimum property. Nevertheless, except for the case of a single sample from a
normal population, critical values of the MNR are not available.

In 1936 E. S. Pearson and C. Chandra Sekar [7] noticed that for the case of a
single sample from a normal distribution, critical values for statistics equivalent to
the MNR can be calculated quite easily from tables of the z-distribution, provided
the level « is not too large. In order to determine if « is not too large, it is necessary
to know M,, the largest value which the second largest among the absolute values
of the normed residuals can take on.

In Section 4 the results of E. S. Pearson and C. Chandra Sekar [7] are extended
to designs with the property that the residuals have a common variance.
Applications are given in Section 5.

The main problem in extending the results of [7] is the calculation of M,. In
Section 3 a more general problem is dealt with, namely the calculation of M, for
arbitrary designs, where M, denotes the largest value which the kth largest among
the absolute values of the residuals can have. A method for calculating M, is
developed and this method yields an explicit expression for M, for designs having
residuals with a common variance.

Designs with the property that the residuals have a common variance include all
ordinary factorial designs, where the different levels of each factor are replicated
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equally often, Latin squares and balanced incomplete blocks. An example of a
design which does not have this property is a two-way layout with an unequal
number of observations per cell.

2. Definition of the MNR and equivalent statistics. Lety = (y,---y,) beann x 1
random vector with expected value Ey = (Ey, - - Ey,)’ and covariance matrix o1,
where I is the n x n identity matrix and o is a scalar, usually unknown. An
observed value of y will also be denoted by y. It will be assumed that Ey is of the
form X'p where X' is an n x g matrix of rank p < g and where gisa g x 1 column
vector: The vector § = X'f is the vector of fitted values, where B is a least squares
estimate (LSE) of B. Since ¥ is the projection of y onto the space spanned by the
columns of X’, § is unique, even though B is unique if and only if X" is of full
rank. The difference between the observed and fitted values of the ith coordinate
of y is called the ith residual. The n x 1 vector of residuals is denoted by e, so that

e=(e - e) =y-7.

The quantity z; = ¢;/||e|| is the ith normed residual, where |le||> = Y7_,e? as
usual, and the MNR |z|" is defined to be the largest among the absolute values of
the normed residuals.

For detecting outliers in factorial designs C. Daniel [3] proposed the statistic

__ |Pm=p=pt
b [=n(z D (- p)TE
which is a strictly increasing function of |z|¥), hence a statistic equivalent to |z|*.
A statistic closely related to d, is FV, defined as follows. Let
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where p;; = (1/0%) Var(e;). Then F") = max(F,, F,, -*-, F,). If the residuals all
have the same variance, p;; = (n—p)/n, because E[) -, e;*] = (n—p)a?, as is well
known. In this case, F; = n(n—p—1)z;*/(n—p—nz;?) so that F") = nd,?/(n—p).

T. S. Ferguson [4] considers the random variable (rv) max {(n—p)* |z,|/p} (i =
1, ---, n)} and refers to it as the maximum Studentized residual. If the residuals
all have the same variance, then the maximum Studentized residual is equal
to n |z|™),

Lieblein [6] discusses the statistic L defined as follows. Let y = (y, y,y3)’ be a
sample of size three from a distribution with mean y and variance ¢2. Denote the
rth largest among y,, ,, y3 by y(r = 1, 2, 3), so that y® < @ < 1), Let y’ and
"' be the closest two observations, with y’ = y”’, and let y'"’ be the remaining
observation. Then L = (3’ —y"")/(y*) — y®)). The statistics L and F!’ are equivalent,
because they are related by the identities
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Samples of size three are of interest, because in chemical laboratories determina-
tions are often made in triplicate. In [6] Lieblein investigates the effects of the
practice of keeping only the two closest observations " and y'’ and discarding the
remaining observation '’ as less accurate. Rejecting the outlier y’’* when L is too
small is equivalent to rejecting y'’* when the MNR is too large.

3. Calculation of M. In this section a general method is given for computing
M,, the largest value which the kth largest among lzll, RN ]z,,] can take on.
First some well-known results will be reviewed which are needed in the proof of
Theorem-3.1. Let ¥ denote the space spanned by the columns of X’ and denote
by V* the orthocomplement of ¥ in R", where R" is the space of n x 1 column
vectors with inner product (v,w) = v'w= Y, v;w; and norm ||v|| = (v, v). The
dimension of V* is n—p, because the rank of X" is p. Since § is the projection of
y onto V, the vector e of residuals is the projection of y onto V%, ie., e = Py,
where P denotes the linear operator which projects onto ¥, Since P is a projection
operator

(i) PP = P, i.e., P is idempotent.
(ii) (v, Pw) = (Pv, w) for all v, we R", i.e., P is symmetric.

For veR" let [v|* denote the kth largest among |v |, -, |v,| (kK =1,""+, n).
Since the vector z = (e,/||e|| - - e,/|le||)’ has norm one and belongs to V*, the
problem of calculating M, has the following formulation. Subject to the conditions
(i) ve¥* and (ii) ||v|| =1, calculate the maximum value which [o|*’ can have
(k=1,---,n).

Several definitions are needed. A sign matrix is a matrix whose off diagonal
elements are all equal to zero and whose diagonal elements are all equal to plus or
minus one. Sign matrices are of interest for this problem, because the vector of
absolute values of the normed residuals (|z,| -+ |z,|) is equal to Sz for some sign
matrix S. For a given sign matrix S, denote SPS by Q. Denote the jth column of
Q by Q;. If u; is the n x 1 column vector with a one in the jth position and zeros
elsewhere, then Q; = Qu;. Observe that (i) QQ = Q and (ii) (v, Ow) = (Qv, w) for
all v, we R".

Let J = {j,,"*-,ji} be a subset of {1,---,n} and let E(J) = {€eR": ;20 (i =
Leeeyn); &=0 (i¢J); Yio & =1} Let H(J,S)={Q¢: EeE())}, ie., let
H(J, S) be the convex hull of Q(jeJ).

The set H(J, S) is easy to visualize when J contains two elements, say i and j.
If Q; and Q; are linearly dependent, H(J, S) is the line segment which joins them
and is part of a line through the origin. H(J, S) may or may not contain the origin.
If Q; and Q; are linearly independent, H(J, S) is again the line segment which joins
them, but neither contains the origin nor is part of a line through the origin as
shown in Figure 3.1.

If J contains three elements, say i, j and /, and exactly two of Q;, Q; and Q, are
linearly independent, then H(J, S) is a triangle which is part of a plane through the
origin and which may or may not contain the origin. The second case is shown in
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Figure 3.2. If all three of Q;, Q; and Q, are linearly independent, H(/J, S) is a triangle
which neither contains the origin nor is part of a plane through the origin.

The set Z(J) is a closed, bounded convex set and consequently H(J, S) is closed,
bounded and convex also. Let N(J, S) = inf||h||, where the infimum is taken over
allhe H(J, S). Since H(J, S) is closed and bounded, there exists an h* e H(J, S) such
that ||h*|| = N(J, S). If H(J, S) contains the origin, N(J, S) = 0 and h* is the origin.
In Figures 3.1 and 3.2, h* is the point in the intersection of L and the line which
passes through the origin and is perpendicular to L, where L denotes the line
segment joining Q; and Q.

Observe that in Figures 3.1 and 3.2 the algebraic length of the projection of Q;
on h*/||h*|| is equal to the length of h*, ie., (Q, h*/||h*||) = |[h*||, so that
h;* = (u;, h*) = (u;, Oh*) = (Qu;, h*) =(Q,;, h*) = ||h"‘||2 Similarly #;* = ||h*||2.
Since the algebraic length of the projection of Q, on h*/||h*|| is larger than |[h*||,
e >

LemMa 3.1. For h*e H(J, S), ||h*|| = N(J, S) if and only if h;* Z ||0*||* for all
jeJ.

PROOF. Suppose that 4;* 2 |[h*||? for all jeJ. If ||h*|| =0, then ||h*|| =0 < ||h|
for all he H(J, S), so that ||h*|| = N(J, S). Therefore, suppose that ||h*|| > 0. Let
h be an arbitrary element of H(J, S) and let yeZ(J) be such that h = Qn. Let

£eZ(J) be such that h* = Q¢ By the Cauchy-Schwarz inequality, (h,h*) <
(b, h*)| < [|h||||h*||. If ||h*||* < A;* for all jeJ, then

[I0¥||* < Yi- i h*n = (n,h*) = (y, Qh*) = (Qn, h*) = (b, h*).
Hence ||h*||*> < ||h|| ||h*|| for all he H(J, S). Since by assumption ||h*|| > 0, it
follows that ||h*|| < ||h|| for all he H(J, S), so that ||h*|| = N(J, S).

Next the converse is proved. Suppose that h*e H(J, S) is such that ||h*|| < ||h||
for all he H(J, S). If there is a j,eJ such that A} < ||h*||2, choose 0 <e <
min {1, (||h*||*—=h})/||h* - Q,,||*}. Then g = (1 —e)h* +Q;, belongs to H(J, S) and

lloll = [[h¥[|2(1 —2)” + &% || Qo] |+ 26(1 — &),
= [|b¥||+ &% [0* — Q| -+ 2e(h, — |[b*|*)

< [Ib¥[[*+eCh, = [ib*][*) < [[b*]]?,

which contradicts the assumption that ||h*|| < ||h|| for all he H(J, S). Therefore
h* 2 ||h*||? for all jeJ.

If S is a sign matrix whose diagonal elements s; for i¢J are equal to one and
whose diagonal elements s; for jeJ are equal to plus or minus one, denote by —.S
the sign matrix obtained from .S by changing the sign of the diagonal elements s;
of S for all je J. Then obviously N(J, S) = N(J, —S). Let N(J) = max N(J, S), where
the maximum is taken over all sign matrices whose diagonal elements s; are equal
to plus or minus one for jeJ. If J has k elements, there are 2* such matrices. How-
ever, since N(J, S) = N(J, —S), at most 2*~! of the numbers N(J, S) need to be
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calculated in order to compute N(J). Let N, = max N(J), where the maximum is
taken over all (§) possible subsets J of {1,*--, n} which have k elements.

THEOREM 3.1. Subject to the conditions that
i vert
@ M=t
the maximum value which |v|*) can have is equal to Ny, (k =1+, n).

PROOF. Suppose that |v;,|, -+, |v;,| are the k largest among vy, -, |v,| and denote
the set {j;,"**,ji} by J. Let S be the sign matrix whose diagonal elements s; are
equal to one for i ¢ J and whose diagonal elements s; for je J are such that s;v; = |v
Obviously [v|® is equal to or less than any welghted average of the |v; |, "+, |v;,]-
Formally, for any £eE(J), |v|® = (& Sv) = (& SPv) = (SPSE, Sv) = (Q¢, Sv) < <
Ll = 981 ] =l iece o)<t 08] =ty 4]~

S) < N,. Since v was arbitrary, it follows that the maximum value which
| |"‘) can have subject to conditions (i) and (ii) is equal to or less than N,.

Next, let J, and S, be such that N, = N(J,, S,). Denote S, PS, by Q. There is
an element h* of H(J,, S,) for which ||h*|| = N(J,, S;) = N,, and there is a ¢ in
E(J,) such that h* = Q&. The vector v* = Soh*/||h*|| = PS, &/||Q¢]| belongs to V*
and has norm one. By Lemma 3.1, ||h*|| = N(Jo, So) if and only if 4;* > ||h*||* for
all je J,. Denote the jth diagonal element of the sign matrix S, by s;. It follows that
5;0;% = h;* 2 ||h*||* for all je J,. Since N Z 0, it must be the case that s;0;% = |v;¥|
for all ]eJ Since at least k of |v,*|,* -, |v,*| are equal to or larger than N,,
[p*|®) = N,. Hence the maximum value which [s|*) can have subject to conditions
(i) and (ii) is equal to or larger than N,. (]

If a method is found for calculating each value N(J, S), the problem of calculating
M(k = 1,---,n) is completely solved in view of Theorem 3.1 and the second para-
graph of this section. The next theorem provides a method for calculating N(J, S).

For a given subset K of {1,---,n}, the matrix Q*(K) is the matrix obtained from
O by deleting the ith row and ith column from Q for all i¢ K.

THEOREM 3.2. Let h*e H(J, S) be such that ||h*|| = N(J, S). If N(J, S) > 0, then
there is a subset K of J such that

(i) h* = Q&* for some £* e E(K) with &* > 0 for all ie K.
(i) A* = ||h*||2for alliek.
(iii) Q*(K) is nonsingular.

PROOF. Let E* = {&: éeE(J); h* = Q¢}. Then Z* is a closed and bounded
convex set. Let £* be an extreme point of Z* and let K be the subset of J such that
&*>0 if and only if ieK. In view of Lemma 3.1, it must be the case that
h;* = ||h*||? for all i K, so that (i) and (ii) hold for this set K. In order to show
that in addition (iii) holds, it is of course sufficient to show that the columns of
Q*(K) are linearly. independent. Suppose the columns of Q*(K) are linearly
dependent. Then there is a te R” with ¢, = 0 for i¢ K, with ¢; # O for at least one
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ie K and such that the ith coordinate of Qt is zero for all ie K. Then 0 = t'Q'é* =
t'Q&* = th* = ||h*||*Y, .k, Since ||h*||>>0 by assumption, Y, #;=0. It
follows easily that & = &*+¢t belongs to Z* for |e| sufficiently small. But then

* = 1(&,4+€_,), contradicting the fact that €* is an extreme point of E*. []

Suppose K = {iy,"*",i,} with i; < -+ <i,. For the matrix Q*(K) in part (iii)
of Theorem 3.2, denote the sum of the elements in the ith row of [Q*(K)]™! by
T;and let T =), T;. Since P is a positive semidefinite matrix, so are Q and
Q*(K). Since Q*(K) is nonsingular, Q*(K) is in fact positive definite, and hence its
inverse is positive definite also. It follows that 7> 0.

COROLLARY 3.1. The vector &* in part (i) of Theorem 3.2 is unique and is given by

r = r/T (r=1"”’m)

5;'* =0 (i¢K).

PrOOF. Let 8 be the m x 1 column vector consisting entirely of ones. Denote
Q*(K) simply by Q*. Let & be the m x 1 vector obtained from £* by deleting all
the zero coordinates of &*. Then condition (ii) of Theorem 3.2 can be written as
O*¢ = ||h*||?5. Since Q* is nonsingular, & = ||h*||?[Q*]7'4. Since 1 =8¢ =
|[h*||?6'[Q*]~ " 6 = ||h*||* T, ||h*||*> = 1T, so that &, = T,/T (r=1,"--,m). []

Theorem 3.2 provides a method for calculating N(J, S). For all subsets K of J
examine Q*(K). If Q*(K) is nonsingular, calculate é* according to Corollary 3.1.
If &¥>0(r=1,---,m), calculate h* = Q&*. If h;* > ||h*||> for all jeJ, then
N(J, S) = ||h*|| by Lemma 3.1 and from the proof of Corollary 3.1 it follows easily
that ||h*|| = (1/T)3, i.e., that N(J, S) is equal to the square root of the reciprocal of
the sum of the entries of [Q*(K)]™!. If it is not possible to find a subset K of J such
that (a) Q*(K) is nonsingular, (b) the vector £* calculated from Q*(K) according
to Corollary 3.1 belongs to E(K) with £;* > 0 for all ie K and (c) h;* = ||h*||* for
all jeJ, where h* = Q&*, then N(J, S) = 0 in view of Theorem 3.2, Lemma 3.1 and
the fact that N(J, S) = 0.

Let us illustrate the method for calculating M, = N, by calculating M, for a
design with the property that the residuals have a common variance. In this case the
diagonal elements of P are all equal to (n—p)/n. Recall that p;; denotes the correla-
tion coefficient between the residuals e; and e; and that R = max |p;;|, where the
maximum is taken over all pairs (7, j) with i £ j (i, j = 1, - - -, n). We shall show that
M, = N, = [(n—p)(1+R)/2n]*,

First let us find an explicit expression for N(J, S), where S is an arbitrary sign
matrix, and where J is an arbitrary subset of {1,---,n} of size 2. Let s, denote the
rth diagonal element of S as usual. Suppose J = {i, j} and denote s;s; by s. Then
Q*(J) is equal to

( (n—=p)/n spi(n—p)n )
spi(n—p)/n (n=p)n )

Two cases can arise.
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Case (i). |p,-j| < 1. In this case Q*(J) is nonsingular and

S . Y A T

For the subset K = {i, j} = J, the vector ¢* calculated according to Corollary 3.1
is given by &*=4=¢,*% * =0 for k#i,j. Further, for h* = Q&*, h* =
(n—p)(1+5p;j)[2n = h;*. Since h* = h;* = ||h*||*, N(J, S) = ||h*|| by Lemma 3.1
and consequently N(J, S) = [(n—p)(1+sp;;)/2n]*.

Case (ii). |py| =1. In this case Q*(J) is singular. Let K= {i}<J. Then
[0*(K)]™! = n/(n—p) and the vector &* calculated according to Corollary 3.1 is
given by &* =1, §* =0 for k #i. For h* = Q&*, h;* = (n—p)/n = ||h*||* and
hi* = sp;(n—p)n. If sp;; = 1, h* = h;* = ||h*||* and N(J, S) = ||h*|| = [(n—p)/n]*.
However, if sp;; = —1, h;* < ||h*||>. There is one other subset K of J for which
Q*(K) is nonsingular, namely K = {j}. For this subset, the vector é* is given by
&* =1, &* =0 for r # j. For h* = Q&*, h* = (n—p)/n = ||h*|]* but h* < ||h]|>.
Since it is not possible to find a subset K of J for which (a) Q*(K) is nonsingular,
(b) E* e E(K) with &* > 0 for ke Kand (c) h;* 2 ||h*||* for all je J, where h* = Q¢&*,
it must be the case that N(J, S) =0 if sp;; = —1. Note that whether sp;; =1 or
spij = —1, N(J,S)=[(n—p)(1+sp;;)/2n]}, which is the same expression for
N(J, S) as the one found in Case (i).

The next step is to calculate N(J) = max N(J, S), where the maximum is taken
over all possible sign matrices S for which the diagonal elements s, are equal to
one for all r¢J. There are four such sign matrices S, but they give rise to only
two different values N(J, S). Either s=s;5;=1 or s= —1, so that N(J)=
[(n—p)(1+ Ipijl)/2n]%'

Finally, N, = max N(J), where the maximum is taken over all possible subsets
J of size 2. It is easily seen that M, = N, = [(n—p)(1 + R)/2n]*.

4. A method for calculating critical values of the MNR in linear models with
residuals having equal variances, provided « is sufficiently small. The main result of
this section is Theorem 4.1 in which the conditions are given under which the
critical value of the MNR can be calculated from tables of the ¢-distribution. The
(1—0) 100th percentiles of the distributions needed in this section will be denoted
as follows.

F,—F-distribution with 1 and n—p—1 df.
t,—t-distribution with n—p—1 df.
F,M_distribution of F1,
D,—distribution of the MNR.

Lemma 4.1. Let x = (x," " 'x,) be a random vector whose coordinates have a
common marginal distribution G. Let x) denote the rth largest coordinate (r = 1, 2).
Then provided k > ess sup x?), P[x'") > k] = nP[X > k], where X is a rv which has
distribution G.
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where X has distribution G. If k > ess sup x'?, then the events 4; are mutually
exclusive, so that P[x") > k] = P[U}-; 4] =Y 1= P(4) =nP[X > k]. []

COROLLARY 4.1. Let X' be an n x q matrix of rank p < q. If y has the normal
distribution with mean X'B and covariance matrix o*I, then F,\V = t,,,, provided
125, > ess sup F®), where F® is the second largest among Fy,-* ", F,.

Proor. If y has the normal distribution with mean X’$ and covariance matrix
o?I, then the F(i=1,---,n) have the F-distribution with 1 and n—p—1 df as
common marginal distribution. The corollary now follows easily from Lemma 4.1
and the fact that nP[F> k] =2nP[t> k*], where F (¢) is a rv having the
F-distribution (z-distribution) with 1 and n—p—1 (n—p—1)df. ]

If the residuals have a common variance, the rv’s |z,| and F; are related by the
equation |z)| = {(n—p)F/[n(n—p—1+F)]}* = g(F,). Recall that p;; denotes the
correlation coefficient between the residuals ¢; and e; and that R = max |p;|, where
the maximum is taken over all pairs (i, j) with i # j (i, j = 1, - -, n). In Section 3 it is
shown that if the residuals have a common variance, M, = [(n—p)(1+ R)/2n]*.
Since g is a strictly increasing function, Theorem 4.1 follows easily.

THEOREM 4.1. Let X' be an n x q matrix of rank p < q and suppose that 'y has the
normal distribution with mean X'B and covariance matrix 1. If the residuals have a
common variance, D, = g(12,,,) provided g(tZ,,,) > [(n— p)(1+R)/2n]*.

5. Applications. The simplest example of a design with the property that all
residuals have the same variance is a sample of size three. Borenius [2] noticed that
in this case |z|V is always = M,. Therefore, if the sample is from a normal
distribution, critical values of statistics equivalent to the MNR can be calculated
from tables of the z-distribution for all levels «. This applies in particular to the
statistic L defined in Section 2.

In [1] F. J. Anscombe provides a list of designs with residuals having a common
variance. Where possible, the method of the previous section was used to calculate
critical values of the MNR for these designs. It was assumed of course that the
vector of observations y has a normal distribution. The results are summarized in
Table 5.1.

The Plackett-Burman fraction is given in [8]. In the balanced incomplete blocks
designs v is the number of varieties or treatment levels and k is the number of units
in each block. It is supposed that interblock information is not recovered. Most of
the other designs are factorial designs. Thus (6) is half of a factorial design with five
factors each at two levels and ABCDE is the generator of the alias subgroup. No
interactions are estimated.
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Lehmann for his guidance and advice throughout the course of this research.
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