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MATCHMAKING'

By Morris H. DEGRrRooT, PAUL I. FEDER, AND PREM K. GOEL
Carnegie—Mellon University and Yale University

1. Introduction and summary. Matching problems are discussed in many
elementary probability books, such as Feller (1968). In one version of the problem,
as described by Hodges and Lehmann (1964), the photographs of » film stars are
paired randomly with n photographs of the same stars taken when they were
babies, and the distribution of the number of correct matches is derived. In this
paper we shall study the same problem when the photographs are paired on the
basis of various measurements that are made on them, rather than randomly.

For example, suppose that r different facial measurements are made on the
photograph of each star and that s facial measurements are made on each baby
photograph. By comparing these measurements, it will typically be possible to
devise a method for pairing the photographs that will yield a larger number of
correct matches than would be obtained from random pairing. In fact, the pro-
cedures that will be developed in this paper can be regarded as formalizations of the
heuristic procedures that a person follows when he pairs the photographs on the
basis of perceived resemblances. In other versions of the same problem, dental
records of parents are to be matched with dental records of their children, or
measurements made on the chest X-rays of # individuals are to be matched with
other medical records of these same individuals.

The problems described here are related in principle to problems of document
linkage that have been treated in the statistical literature [see, e.g., DuBois (1969)
and the references given there] but the models and methods that are used here seem
to be new and unrelated to the models and methods that have previously been used
in such problems.

For any positive integer k, we shall let R* denote the space of all k-dimensional
vectors z = (zy, -*-, 2), Where —o0 < z; < 0 fori =1, -+, k.

Now let T denote an r-dimensional random vector (r = 1), let U denote an
s-dimensional random vector (s = 1), and suppose that T and U have some
specified joint distribution over the space R"**. We shall assume that a random
sample of n vectors (¢4, uy), -+, (t,, u,) has been drawn from this joint distribution.
It is assumed, however, that before the values in this sample can be observed, each
vector (¢;, u;) in the sample is broken into two separate vectors, namely the vector
t; with r components and the vector u; with § components.

The vectors ¢, -+, t, are then observed in some random order, say vy, -+, v,
and the vectors uy, -+, u, are observed in some independent random order, say
Wi, o+, W,. As a result of this randomization, it is not known how the vectors
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vy, -+, U, and the vectors w, ---, w, were paired in the original sample. It is assumed
that a priori (i.e., before the specific values of v, ---, v, and wy, ---, w, are observed)
all n! ways of pairing vy, ---, v, with w(, ---, w, are equally likely to reproduce the

original sample.

The observed vectors vy, -+, r,, and wy, ---, w, will be called the values of a
broken random sample from the specified joint distribution of 7'and U. The general
problem to be considered here is that of pairing the observed vectors vy, -, v,
with the observed vectors wy, ---, w, in order to reproduce as many of the vectors
(;, u;) from the original sample as possible.

The application of this model to the problem of matching the photographs of
n individuals with their baby photographs or matching two sets of medical records
of nindividuals should be clear. The important assumption that we have made here
is that the observations for the » given individuals can be regarded as the values in
a random sample of size n from some larger population of individuals for which the
probability distribution is known.

In this paper we shall assume that the joint distribution of 7 and U can be
represented by a joint pdf f of the following form:

(1.1) S(t, u) = o(t)B(u) e teR", ueR’,

where «, 8, 7, and 0 are arbitrary real-valued functions of the indicated vectors.
If either r = 1 or s = 1, and if the joint distribution of 7 and U is a multi-
variate normal distribution, then their joint pdf will be of the form (1.1). A multi-
variate normal distribution of this type is undoubtedly the most important special
case of (1.1). In particular, if both ¢ and u are one-dimensional, the pdf of every
bivariate normal distribution is of the form (1.1).
Another example of a bivariate pdf of the form (1.1) is

f(t,u) =te71+® t>0, u>0,
=0 otherwise.

We shall now present a summary of the specific problems that will be considered
in this paper and some of the results that will be obtained.

In Section 2, the problem of pairing the vectors ¢y, ---, v, with the vectors
wy, -, W, in order to maximize the probability of a completely correct set of »
matches is considered. It is shown that this probability is maximized if the values of
y(vy), -+, y(v,) are ordered from smallest to largest, the values of d(w,), --- 6(w,)
are similarly ordered, and corresponding terms in these two orderings are paired
with each other. This solution is also the maximum likelihood solution for the
problem of pairing vy, -+, v, With wy, -+, w,.

In Section 3 this maximum likelihood solution is applied to the multivariate
normal distribution and is shown to have a natural and intuitive interpretation in
terms of regression.

In Section 4, we consider the problem of choosing a vector w; from the set
wy, -+, w, in order to maximize the probability of correctly matching one specified
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vector v; from the set vy, ---, v,. It is shown that if y(v;) is the minimum or the
maximum of the » values y(v,), ---, y(v,), then v; should be paired with a vector
w; for which é(w;) is a minimum or a maximum, respectively. For intermediate
values of y(v;), the solution is shown to be more complicated.

In Section 5, the problem of pairing the vectors vy, ---, v, with the vectors
Wy, -+, W, In order to maximize the expected number of correct matches is con-
sidered. Although the general solution of this problem is complicated, it is shown
here again that the vector v; for which y(v;) is a minimum should always be paired
with the vector w; for which 6(w;) is a minimum and the vector »; for which
y(v;) is @ maximum should always be paired with the vector w; for which d(w;)
is a maximum. In particular, it follows that when n = 3, the solution to this problem
and the maximum likelihood solution are always identical.

In Section 6, sufficient conditions are given under which, for an arbitrary value
of n, the maximum likelihood solution will also maximize the expected number of
correct matches. The simplest and most striking sufficient condition given there,
but also the most severe condition, is that

[max, (o) — min, (oY) max, 8(w;) ~min, 6(w )] < 1.

Finally, in Section 7, some examples are given in which these sufficient con-
ditions are not satisfied and the maximum likelihood solution does not maximize
the expected number of correct matches.

2. The maximum likelihood solution. Let v, ---, v, and wy, ---, w, be the values
of a broken random sample from the distribution represented by the pdf f given
in (1.1). We shall now consider the problem of pairing the vectors v, ---, v, with the
vectors wy, -+, w, in a way that maximizes the probability or, equivalently, the
likelihood of a completely correct set of » matches. Let ¢ = [¢(1), -+, p(n)]
denote an arbitrary permutation of the integers 1, ---, n, and let ® denote the set
of all n! possible permutations.

If in the original sample, the vector v; was paired with the vector w
i =1, .-, n, then the value of the joint pdf for the entire sample would be

(2.1) H?= STos W(p(i)] = [HL 1 O((Ui)][l—[?= 1 .B(W(p(i))] exp [Z?= 1 )’(Ui)o(Ww(i))]-

Thus, for any permutation ¢ € @, the likelihood that the vectors in the original
sample were paired in accordance with the permutation ¢ is given by (2.1). There-
fore, the maximum likelihood solution is given by the permutation ¢ for which
(2.1) is maximized. ‘

Fori=1,--,n, let x; = y(v;) and let y; = é(w;). Without loss of generality,
we shall assume that the vectors vy, ---, v, and the vectors wy, ---, w, have been
indexed so that

oty for

(2'2) X1 Ex,20=x, and y; Sy, S =y,

Let x denote the column vector whose transpose is x’ = (x,, -*-, x,), let y denote
the vector whose transpose is y' = (yy, *-, y,), and for any permutation ¢ € @,
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let y(¢) denote the vector whose transpose is [Y(@)]" = [V > ***» Vo). Then,
for any given values of x, ---, x, and y;, -+, y,,, it can be seen from (2.1) that the
maximum likelihood solution is the permutation ¢ for which x'p(¢) is maximized.
It is well known [see, e.g., Hardy, Littlewood, and Polya (1967) page 261] that
since the components of x and y are ordered in accordance with (2.2), then for all
@ e ®, x'y(p) <.x'y. Thus, the maximum likelihood solution is the permutation
@* = (1,2, -+, n) under which each component of x is paired with the corre-
sponding component of y. In other words, v; is paired with w; fori =1, -+, n.
Furthermore, since all n! permutations in the set ® have the same prior prob-
ability of having specified the pairings in the original sample, it follows from the
likelihood function (2.1) that after the vectors vy, --+, v, and wy, ---, w, have been
observed, the posterior probability p(¢) of any particular permutation ¢ € ® is

eX’y(w)

(2.3) plo) =5

Because the prior probabilities are assumed to be equal, the permutation ¢ having
the highest posterior probability is again the permutation ¢* = (1,2, ---, n). In
other words the posterior probability of achieving a completely correct set of n
matches is maximized by the maximum likelihood solution.

3. The maximum likelihood solutions for a multivariate normal distribution.
Suppose now that the joint distribution of 7 and U from which the original
random sample was drawn is a multivariate normal distribution. Suppose also that
T is one-dimensional (i.e., r = 1) and that U is an s-dimensional random vector
(s=z 1.

Let my and 642 denote the mean and variance of T, let m; and ¢, denote the
sx 1 mean vector and s x s covariance matrix of U, and let o1, denote the 1 xs
vector of covariances of T with each component of U. If the joint pdf f(¢, u) of T
and U is written as the product of the conditional pdf of 7 given U = u and the
marginal pdf g(u) of U, we obtain

3.1 Sf(t, u) = (const)g(u)exp { -

[t—mp—oryogpo(u— "’U)]Z}

26%’[U

1
= «(t)p(u) exp {62 tlmr+oryogy(u— mv)]}’
TIu
where 6}y =07 —0ry05007y .

Now suppose that vy, -+, v, and wy, ---, w, are the values of a broken random
sample from this distribution. Fori = 1, ---, n, let

(3.2) X; = U

| and let
(3.3) vi =OT_[mT+UTUUJz}(‘Vi—”7U)]~
T|U
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If it is assumed that x; < --- < x, and y, £ --- £ y,, then it follows from (3.1)
and the results obtained in Section 2 that the maximum likelihood solution is to
pair v; with w; for i = 1, ---, n, and that this same solution will maximize the
probability of a completely correct set of n matches.

This solution has the following intuitive interpretation: For any permutation
9o,

(34) [x=y(@)) [x—y(0)] = x'x+y'y—2x"y(0).

Therefore, maximizing the value of x'y(¢) among all permutations ¢ is equivalent
to minimizing the value of (3.4). In other words, the values of x, ---, x, and
Y1, =+, ¥, should be paired so that the sum of the squared distances between the
two numbers in each pair is minimized.

For the multivariate normal distribution,

E(T|U) = my+0ryogy (U—my)

and it is known that among all functions of U, the function E(T| U) has the
maximum correlation with 7. Since x,, ---, x, are the observed values of T in the
sample, and y,, ---, y, are the observed values of E(T[ U) except for the constant
factor l/a%w, the maximum likelihood solution requires pairing these values so
that the sum of the squared distances between corresponding elements is mini-
mized. This procedure maximizes the correlation between x and y(¢).

In particular, suppose that both r = 1 and s = 1, so the random sample is
drawn from a bivariate normal distribution, and let p denote the correlation
coeflicient of this distribution. If p > 0, then it follows from (3.2) and (3.3) that
the maximum likelihood solution is to order the observed values in the broken
random sample so that v; < --- < v, and w; < --- < w,, and then to pair v; with
w; fori =1, ---, n. If p < 0, then the solution is to order the observed values so
thatv, < --- < v,and w; = --- = w, and then to pair v; with w; fori =1, ---, n.
Finally, if p = 0, then all permutations are equally likely.

4. Matching an individual observation. We shall suppose again that v, ---, v,
and w,, ---, w, are the values of a broken random sample from a distribution
with pdf f as given by (1.1) and that these values have been ordered so that the
relations in (2.2) are satisfied. We shall now consider the problem of pairing the

vector v, with one of the vectors wy, ---, w, in order to maximize the probability
of a correct match. '
For j =1, -+, n, let ®(j) denote the subset of ® containing all permutations

¢ = [p(1), -+, ¢(n)] such that ¢(1) = j. Thus, ®(j) contains the (n—1)! permu-
tations which specify that v, is to be paired with w;.

If p(¢) is defined as in (2.3), then the probability p,; that the pairing of v; and
w; yields a correct match is

(4'1) bPij= Z(pe(b(j) p(q’)'
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It follows from (2.3) that the probability p, ; is maximized by a value of j such that
the following value n; is maximized:

(4.2) =Y pcoe 7.
We shall show that n; is always maximized when j = 1.
For any fixed value of j(j = 2, ---, n), there is a one-to-one correspondence

between the permutations in ®(1) and the permutations in ®(j), defined as follows:
If ¢ is any permutation in ®(1), then ¢(1) = 1 and ¢(i) = j for some value of
i(i =2,--,n). To this permutation ¢, we let correspond the permutation
¥ € ®(j) such that (1) = j, Y(i) = 1, and Y(k) = @(k) for all values of k except
k = land k = i. If ¢ and ¥ correspond in this way, then

(4_3) eX'y((p) _ eX’yw/) — C(exm +xiyj exnyﬁx:yl),

where c= CXP[Zk;e 1.i xky(p(k)]'

Since x; < x; and y, £ y;, then x,y,+x;y; = x;y;+x;y,. Therefore, it follows
from (4.3) that

(4'4) eX'yW) > eX'y(\l/).

It can now be seen from (4.2) that in the computation of n; and n;, each term in the
summation over ®(1) will be at least as large as the corresponding term in the
summation over ®(j). Hence, n, = ;.

It follows from this relation that in order to maximize the probability of matching
v, correctly, it should always be paired with w,. Of course, the same argument
shows that in order to maximize the probability of matching w, correctly, it should
always be paired with v, .

A similar argument can be used to show that in order to maximize the prob-
ability of matching v, correctly, it should be paired with w,, and that in order to
maximize the probability of matching w, correctly, it should be paired with v,.

In general, the solution is more complicated if / # 1 and i # » and the vector v;
must be paired with one of the vectors w,, -+, w,. We shall not pursue the general
solution here, but shall simply illustrate this remark by the following example,
which shows that when trying to match the vector v; correctly (i = 2,3, ---, n—1),
it may be optimal to pair v; with wy.

Suppose that » = 3 and consider the problem of pairing v, with w,, w,, or w;,
when the values of x;, x,, x5 and yy, y,, y3 are x; = x, = y; = 0 and x; =
¥, = y3 = 1. The two permutations in @ such that v, is paired with w, are
¢, = (2,1,3) and ¢, = (3, 1, 2). For these two permutations,

(4'5) ex'y(¢1)+eX’y(<pz) = De.

The two permutations in @ such that v, is paired with w, are ¥, = (1,2,3) and
¥, = (3,2, 1). For these two permutations

(4.6) XYW 4 XYW | 4o
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Since y, = y; in this example, this same value 1+e will also be obtained if v,
is paired with w;. It follows that the probability of obtaining a correct match is
greatest when v, is paired with w,.

5. Maximizing the expected number of correct matches. We shall continue to
suppose that vy, ---, v, and wy, -+, w, are the values in a broken random sample
from a distribution with pdf f/ as given by (1.1), and we shall now consider the
problem of finding a permutation ¢ € ® for which the expected number of correct
matches is maximized. Since the sample is drawn from an absolutely continuous

distribution, we can assume without loss of generality that no two vectors vy, -+, v,
are equal and that no two vectors wy, ---, w, are equal. It is convenient to assume
also that no two values of x, -+, x, are equal and that no two values of y;, ---, y,

are equal. In other words, we shall assume that x; < --- < x, and that
Y < < Dn-

For any permutation ¢ € ®@, let M(¢p) denote the expected number of correct
matches when v; is paired with w,,, for i =1, ---, n. Also, for any two permu-
tations ¢ and ¢ in @, let N(¢, {) denote the number of values of i (i = 1, -+, n)
such that ¢(i) = {(i). Thus, N(¢, {) is the number of correct matches when the
observations in the broken sample are paired according to ¢ and the vectors in the
original sample were actually paired according to {. It then follows that for any
permutation ¢ € @,

(51) M((p) = ZCe(bN((p9 C)p(C),

where p({) is the posterior probability given by (2.3). It can be seen from (2.3)
that finding a permutation ¢ that maximizes M(¢@) is equivalent to finding a
permutation that maximizes the following value V' (¢):

(5.2) V(@) =Y coN(o, {)e®.
For any permutation ¢ € ®, and any subset of permutations B < @, it is
convenient to let

(5.3) S(¢, B) =Yt N(p, ).
Then, for any disjoint subsets B, and B; such that B, u B; = O,

V() = S5(p, @) = S(¢, Bo) +5(¢, By).

Let ¢ be any fixed permutation in @, and suppose that there exist integers
i and j with i < j and @(i) > @(j). Since we are still assuming that the relations
(2.2) are satisfied, this assumption about ¢ means that there are values such that
x; < x;and y,i) > Y, Let ¥ be the permutation in @ such that (i) = ¢(j),
V(i) = (i), and Y(k) = @(k) for all other values of k. We shall now derive
conditions under which V() > V().

Let @, be the subset of @ containing all permutations { such that {(i) # ¢(i),

(@) # @), L) # @(i), and {(j) # ¢(j). It follows that N(y, ) = N(e, ) for
each { € ®. Therefore, by (5.3), :
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Next, let @, be the subset of ® containing all permutations { such that {(i) =
(i) and {(j) = @(j). Similarly, let ®, be the subset of ® containing all permu-
tations 6 such that 6(i) = @(j) and 6(j) = ¢(i). There is a one-to-one corre-
spondence between the permutations in ®; and those in ®, under which { € @,
and 6 € ®@, correspond to each other if and only if {(k) = 6(k) for all values of k
except k = iand k = j. If { e @, and 6 € ®, correspond to each other, then

N(p, )—N(@, 0) =2,
N, )= N(@, 6) = 2.
Therefore,
[NG, Oexp(x'y(0)+ N, 6)exp (xy(0))]
—[N(e, Oexp (x"(0)+ N(e, 0) exp (x'y(0))]
(5.5) = 2[exp (xy(6)) —exp (x'y(0))]
= 2CLexp (xiYoiy + X ;Yo ) = €XP (Xigiy + X ¥e)]
= 2Cexp (XY o) + X Vo)~ XP (XiV oty + X Vi) 1>
where
(5.6) C =exp[Yurij XiVew] > 0.

Siqce X; < x; and y,y > Y, the expression inside the final brackets in
(5.5) is positive.

Therefore,
(5.7) N, Oexp (x'p(())+N(b, 0)exp (x'y(0))
> N(o, {)exp (x'y(0)) + N(e, 0) exp (x'y(0)).
It now follows from (5.7) that
(5.8) S(y, @, UD,) > S(p, D, UD,).

Next, let @; be the subset of ® containing all permutations ¢ such that
{(@) = @(@) and () < {(j) < @(i). Similarly, let @, be the subset of ® containing
all permutations 6 such that 0(j) = ¢(i) and ¢(j) < 6(i) < ¢(i). Both ®; and
@, will be empty if (i) = @(j)+1. If ®; and ®, are not empty then there is a
one-to-one correspondence between their members under which { € ®; and 6 e @,
correspond to each other if {(j) = 6(7) and {(k) = (k) for all values of k except
k=iand k = If {e ®; and 6 € D, correspond to each other, then

N(p, )—N(@, () =1,
N(‘l’? 0)—N((p, 0) =1
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Therefore,
[N, Oexp (x'y(0)) + N(y, 0) exp (x'y(6))]
—[N(@, Oexp(x'y(0))+ N(g, 0) exp (x'y(0))]
(5.9) = exp(x"y(6)) —exp (x'y({))
= CLexp (xiYoi) +X;¥0jy) = €XP (Xir + X Ve )]
= CLexp (X XY () —€XP (Xi iy + X ¥ y)]s

where C is again given by (5.6). Since x; < x; and Yoty < Yoiy» it again follows
that the expression in the final brackets in (5. 9) is positive. Therefore,

(5.10) Sy, @;0D,) = S(@, P;UD,).

Equality will hold in (5.10) only if ®;u®, is empty.

Next, let @5 be the subset of @ containing all permutations { such that {(j) =
@(j) and ¢(j) < {(i) < @(i). Similarly, let @4 be the subset of ® containing all
permutations 6 such that 6(i) = ¢(j) and ¢(j) < 0(j) < @(i). Again there is a
one-to-one correspondence between the permutations in ®5 and @4, and an
argument similar to the one just given for ®5 and ®, shows that

(5.11) S, DsuDg) = S(p, PsUDg).
If ®* = [ JS_, ®;, then (5.4), (5.8), (5.10), and (5.11) together imply that
(5.12) S(Y, D*)> S(p. D¥)

Therefore, in order to establish that V() > V(g), it is sufficient to establish
conditions such that S(yy, ®—®*) = S(¢, ©—D*).

The set ®—®* contains all permutations { satisfying one of the following
conditions:

C:l()) =o(), ()< o)),
Co:l(D=o(D), () < o()),
Ca:l() =0(), ()< o()),
(5.13) Carl(N=00(), i) < o(j)
Cs:l(0) =), () > (i),
Co:l() =0(i), () > o(i),
Co:l() =), + ))> o(i)
Cs:l()=0(), L) > o(i).
Suppose that {; is a permutation satisfying condition C,. For convenience of
notation, let ¢ = {;(j) and let 4 be the integer such that {,(h) = ¢(}).
Let {, be the permutation such that {,(j) = (i), {,(i) = ¢, and Cotky = (k)
for all other values of k. Then (, satisfies condition C,.
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Next, let {5 be the permutation such that {5(/) = @()), {5(J) = q, {5(h) = (i),
and {3(k) = {,(k) for all other values of k. Then {; satisfies condition Cj.
Finally, let {, be the permutation such that {,(j) = @(j), (4(i) = q, {4(h) =
(i), and {,4(k) = {,(k) for all other values of k. Then {, satisfies condition Cy.
For these permutations,

N(p, {)=NW, &) =1,
N, §5)=N(o, {5) =1,
N, {3)—N(p, {3) =1,
N(g, L) =N, Lo) = 1.

We wish to determine conditions under which the value of

(5.14) Ya=1 [NGY, L) =N, §,)] exp (x'¥(C,))
will be nonnegative. If a constant is subtracted from each of the values x,, ---, x, in
(5.14) and another constant is subtracted from each of the values y,, ---, y,, then

the value of (5.14) will simply be multiplied by a positive constant. This modified
value of (5.14) will therefore be nonnegative if and only if the original value of
(5.14) was nonnegative. For convenience, we shall replace x; by x;,—x, and y; by
Yi—=yg fori =1, n If we let

ey = exp [(xi—= X)) (Vey— Vo) + (X = %) Ve, — V)]
for n = 1, 2, 3, 4, then the value A4 of (5.14) becomes
(5.15) A =Cyle;+e3—e,—ey)
= Colexp [(x; = x)(Vpeiy = ¥o) 1+ exp [(xi = X)) (Vo) — ¥o)]
—exp [(x;— xh)(y<p(i) =yl —exp[(x;— Xn)(Vo(i) —yq)]}’

where C, is a positive constant.
For any value of #(— o0 < t < o), define

(516) A"'(t) = CXp [(y(p(i) - yq)t] —C&Xp [(ytp(j) —yq)t]'

Since y, < Y,y < Youiy» it follows that A(f) =2 0 for + = 0, that A(r) = 0 for
t < 0, and that A is strictly increasing for t = 0. The value 4 in (5.15) can now be
rewritten as A = Co[A(x;—x,) —A(x;—x,)]. Thus, 4 = 0 if and only if

(5.17) Axj—xy) Z Mx; = X).

Since x; < x;, it follows from the properties of A just mentioned that if
x, < x;, then (5.17) will be satisfied. Now let Z; be the set of all permutations
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satisfying conditions C,, C,, C;, or C, in (5.13). If the relation (5.17) is satisfied
for every permutation {, satisfying condition C,, then S({, Z,) = S(¢, Z,). Thus,
we have established the following lemma.

LEMMA 1. Let A be defined by (5.16). If A(x;—x,) = Ax;—x,) for every pair of
integers (q, h) such that 1 < g < ¢(j) and j < h £ n, then

(5.18) S, E1) 2 S(o, Ey).

It should be noted that if ¢(j) = 1 or if j = n then the conditions of Lemma 1,
and therefore the relation (5.18), will automatically be satisfied.

We shall now consider permutations satisfying condition Cs, C,, C,, or Cg in
(5.13). The development here is analogous to the development that has just been
given so most of the details will be omitted. Suppose that {5 is a permutation
satisfying conditions Cs, and let 4 be the integer such that {s(h) = @(j). Let
(¢, {4, and {4 be permutations whose components have the same relation to the
components of {5 as the components of {,, {5, and {, had to the components of
{,. Then {4, {4, and {4 will satisfy conditions C¢, C,, and Cg, respectively.

If ¢ = {s(j), then just as in (5.14), (5.15), (5.16), and (5.17), it is again true that

(5.19) Ya=s[NQW, &)= N(w, L) exp (x'y(C,) 2 0
if and only if

(5.20) l(xj_ xp) = Ax;—xy),

where 1 is defined by (5.16). However, since it is now true that ¢(j) < ¢(i) < g,
and therefore that y, ;) < y,u) < »,, the function 4 will now have the following
properties: A(t) = 0 for + = 0, A(t) £ 0 for t £ 0, and A strictly increasing for
t = 0. Hence, if x; < x,, then the relation (5.20) will be satisfied.

Now let =5 be the set of all permutations satisfying Cs, C4, C,, or Cg. The
following lemma is analogous to Lemma 1.

LEMMA 2. Let 4 be defined by (5.16). If A(x;—x,) = A(x;—x,) for every pair of
integers (q, h) such that (i) <q < nand 1 £ h < i, then

It should be noted that if ¢(i) = n or if i = 1 then the relation (5.21) will auto-
matically be satisfied.

Since Z,UE; = O—®*, it follows that if both (5.18) and (5.21) are satisfied,
then '

(5.22) S, D—0*) = S(¢p, © — D),

Together, (5.12) and (5.22) imply that Sy, ®) > S(¢p, @). In other words, if both
(5.18) and (5.21) are satisfied, then the expected number of matches M (/) from
will be greater than the expected number of matches M(¢) from ¢. This result is
summarized in the following theorem.
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THEOREM 1. Let ¢ € ® be a permutation such that ¢(i) > @(j) for some integers
iand jwith 1 £ i < j < n Let  be defined by the relations Yy(i) = @(j), Y(j) =
o(1), and Y(k) = (k) for all other values of k. Let

A* =exp{[x;—x][ypm — yal}
(5.23) +exp {[x;i =X J[Vp = val}
—exp{[xi=x][ypi — yol}
—exp {[x; = Xu] [V o — Yal}-
If A* = 0 for every pair of integers (q, ) such that either
(5.24) 1=qg<o(j) and j<hZn or
(5.25) o(iy<q<n and 1<h<i, then M(})> M(p).

We can now establish the following important property.

THEOREM 2. Let @* € ® be a permutation for which the expected number of
correct matches is maximized. Then ¢*(1) = 1 and ¢*(n) = n.

PRrOOF. Suppose that ¢ € ® is any permutation such that ¢(1) > 1 and ¢(j) =1
for some integer j > 1. If we let i = 1 and choose the permutation { as in Theorem
1, then the conditions of Theorem 1 are vacuously satisfied. Hence, M() > M(p)
and the permutation ¢ cannot maximize the expected number of matches.

Similarly, suppose that ¢ € ® is any permutation such that ¢(n) < n and
@(i) = n for some integer i < n. If we let j = n and choose  as in Theorem 1,
then again M() > M(¢). This completes the proof of the theorem.

It was shown in Section 4 that pairing v, with w, and v, with w, maximizes the
probability that any cne of these vectors will be matched correctly. It is now seen
from Theorem 2 that in order to maximize the expected number of correct matches,
it is again true that v, should be paired with w; and v, should be paired with w,.

THEOREM 3. If n = 3, then the expected number of correct matches is maximized
by pairing v; with w; for i = 1,2, 3.

PRrOOF. It is known from Theorem 2 that v; must be paired with wy and v; with
w;. Therefore, v, must be paired with w,.

6. Sufficient conditions for a simple solution. We shall now develop an
elementary condition under which, for an arbitrary value of » > 3, the expected
number of correct matches will be maximized by simply pairing v; with w; for
i=1,--, n

Consider again the expression for 4* given in (5.23), and let

6.1) a; = X;— Xy, ay = X;— Xy,

by =Yon—Ve by =Yowy= Yy
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Then A* can be rewritten in the form
(6.2) A* =exp(a,b,)—exp(a;b,)—exp(ayb,)+exp(a,by).
For every pair of integers (g, /) satisfying (5.24), we will have
(6.3) a, <a, <0, X=X, Sa;,  X;j—x,=<a,,

0< by <b,, Yoiy— V1 Z by, Yohy—V1 Z by.
Also, for every pair of integers (g, /) satisfying (5.25), we will have
(6.4)  O<a,<a,, X;j—Xy 2 a,, X;—X; = ay,

by <by <0,  yop=¥aZbis  Yeiy—VaS by
The next lemma now follows from Theorem 1.

LEMMA 3. Suppose that the permutations ¢ and Y are as specified in Theorem 1
and that A* is given by (6.2). If A* = O for all values of ay, a,, b,, and b, satisfying
either (6.3) or (6.4), then M(y) > M(p).

Next, it should be noted that 4*, as given by (6.2), can be regarded as the second
mixed difference of the function e*®. Therefore, if

62 eab
>
(6:3) 3adb = °
for all values of @ and b such that
(6.6) Xi—x,£a<0 and 0<b<=y,;—y

then it will be true that 4* = O for all values of ay, a,, b, and b, satisfying (6.3).
Similarly, if (6.5) is satisfied for all values of @ and b such that

(6.7) 0<as=x;—x; and y,;—y,<b<0,

then it will be true that 4* = 0 for all values of a,, a,, b;, and b, satisfying
(6.4).
These considerations lead to the following theorem.

THEOREM 4. Let the permutations ¢ and \ be as specified in Theorem 1. If

(6.8) J=n or ¢(j)=1 or (x,=x)lypn—y:i]=1
and if /
(6.9) i=1 or @(i)=n or (X;—=x)[Va=Veyl =1,
then M(y) > M(p).
PROOF. If j = n or ¢(j) = 1, then the relations in (5.24) are satisfied vdacuously.

Similarly, if i = 1 or (i) = n, then the relations in (5.25) are satisfied vacuously.
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Suppose next that the final inequality in (6.8) is satisfied. Then ab = — 1 for any
values of @ and b satisfying (6.6). Since

2 ab

da db

=(1+ab)e®,

it follows that (6.5) is satisfied for all values of @ and b satisfying (6.6).

Suppose next that the final inequality in (6.9) is satisfied. Then it can similarly
be shown that (6.5) is satisfied for all values of a and b satisfying (6.7). The theorem
now follows from Theorem 1, Lemma 3, and the remarks leading up to the present
theorem.

THEOREM 5. If
(6.10) (Xa=X2)(Yu-1—y) =1 and (-1 =X)(Ya—y2) £ 1,

then the expected number of correct matches is maximized by pairing v, with w, for
i=1,-- n

Proor. It follows from Theorem 2 that in order to maximize the expected
number of correct matches we need only consider permutations ¢ such that
¢(1) = 1 and ¢(n) = n.

Suppose that ¢ € @ is any such permutation and suppose that2 < ¢(j) < @(i)<
n—1for some integers i and j with2 < i < j < n—1.1f(6.10) is satisfied, then both
conditions (6.8) and (6.9) are also satisfied and it follows from Theorem 4 that ¢
cannot maximize the expected number of correct matches. Therefore, this expect-
ation will be maximized only by the permutation ¢* = (1,2, ---, n).

COROLLARY 1. If (x,—x)(¥,—y1) < 1, then the expected number of correct
matches is maximized by pairing v; with w; for i = 1, ---, n.

Proor. If (x,—x,)(y,—y;) = 1, then the relations in (6.10) will be satisfied.
The corollary now follows from Theorem 5.

Let us now consider again the important special example in which v, ---, v, and
Wy, --+, W, are the values of a broken random sample from a bivariate normal
distribution with means m; and my, variances o, and o,2, and correlation
coefficient p. It is assumed without loss of generality that 0 £ p < 1. By (3.2)
and (3.3) we then have, fori = 1, -+, n,

i = U

1 PO
Vi ~“1—pD)o, mr+ oy (wi—my) |

In accordance with the assumption that x; < -+ < x, and y, < --- < y,, it is
assumed here that v; < .- <, and w; < -+ < w,. By Corollary 1 it now
follows that if

p
(A
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then the expected number of correct matches is maximized by pairing v; with w;
fori=1, -, n

7. Concluding examples. Let us now consider again a broken random sample
from an arbitrary distribution represented by a pdf of the form (1.1). As usual, it is
assumed that x; < --- < x,and y; < --- < y,. It has been shown that in order to
maximize the expected number of correct matches, it is always optimal to use a
permutation ¢ such that ¢(1) = 1 and ¢(n) = n. Therefore, if n = 3, the optimal
permutation must be ¢* = (1, 2, 3). If » = 4, the optimal permutation must be
either ¢ = (1, 3,2,4) or ¥ = (1,2, 3, 4). A sufficient condition has been given in
Theorem 4 under which M(y/) > M(¢). We shall now present an example in which
M(¢p) > M(y). Suppose that

x; =0, x, =0.05, x;3 =0.10, x4, = B,
y1=0, y,=B-2, y3=B-¢,  y,=B,

where ¢ > 0 is small and B > 0 is large. If the function V is defined as in (5.2),
then it can be shown that for any sufficiently large value of B,

(1) E V()= V)emo > 0.

Since y, = y; when ¢ = 0, it is clear that V(¢) = V(¥) when ¢ = 0. Therefore,
it follows from (7.1) that V(p) > V(y) for sufficiently large values of B and
sufficiently small but positive values for &. Consequently, M(¢) > M(y) for such
values.

The sufficient conditions for M() = M(¢) given in Theorem 4 and Theorem 5
and in Corollary 1 are typically more restrictive than is necessary. As an illustration,
suppose that ¢ = 0.05 in the example being considered here. Then both Theorem 4
and Theorem 5 state that M(y) = M(¢p) for any value of B such that B < 1.05.
However, numerical computations show that actually M(y) = M(¢) for B < 2.7
and M(y) < M(p) for B > 2.7. Similarly, in this example, Corollary 1 states that
if B <1, then M(yy) = M(¢p) for any value of &. Numerical computations show
that if B £ 2.45, then M(y) = M(¢p) for any value of . For various larger values
of B, Table 1 shows the minimum value ¢* of ¢ such that M(y) = M(y).

TABLE 1
B &*
2.5 011
2.6 .037
2.7 .049
2.8 .065
29 .079
3.0 .092
3.5 142
4.0 172




MATCHMAKING 593

As another example along similar lines, suppose again that » = 4 and consider
the values

x, =0, X, =¢, X3 = 2e, X4 =5,
y1 =0, Y2 =5-2¢, y3 =5—¢, Ya=>5.

If @ and { are again defined as before, then a direct computation shows that

d
V@)~ V)eo =0,

2

d
V(@)= V()]e=o > 0.

Therefore, it again follows that M(¢p) > M(y) for sufficiently small but positive
values of e.

As a final example, suppose that n = 5 and consider the values
x, =0, x, =0.05, x3 =0.10, x4 =0.15, X5 =8,
y: =0, y, = 8—3¢, Y3 =8—2¢, ys =8—¢, ys =8.
If o =(1,4,3,2,5 and ¥ = (1, 2, 3, 4, 5), then it can be shown that

d
V(@)= V({¥)]=0 > 0.
Therefore, M(¢p) > M(y) for small but positive values of e.
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