A HÁJEK-RÉNYI TYPE INEQUALITY FOR STOCHASTIC VECTORS WITH APPLICATIONS TO SIMULTANEOUS CONFIDENCE REGIONS¹

By Pranab Kumar Sen

University of North Carolina

For a sequence of stochastic vectors forming either a forward or a reverse martingale, a Hájek-Rényi type inequality is derived, and its applications in some problems of simultaneous confidence regions are stressed.

1. Statement of the result. A variety of multivariate Chebyshev inequalities is available in the literature; we refer to Karlin and Studden (1966) and to Mudholkar and Rao (1967) which include earlier references. In the present note, for stochastic vectors, a simultaneous inequality comparable to Chow's (1960) semi-martingale extension of the Hájek–Rényi (1955) inequality is considered.

Let $\{\mathbf{Z}_i, i \geq 1\}$ be a sequence of stochastic *p*-dimensional column vectors, where $p \geq 1$. Let $\mathcal{B}_i = \mathcal{B}(\mathbf{Z}_1, \cdots, \mathbf{Z}_i)$ and $\mathcal{C}_i = \mathcal{C}(\mathbf{Z}_i, \mathbf{Z}_{i+1}, \cdots)$ be the σ -fields generated by $(\mathbf{Z}_1, \cdots, \mathbf{Z}_i)$ and $(\mathbf{Z}_i, \mathbf{Z}_{i+1}, \cdots)$ respectively, $i \geq 1$; clearly, \mathcal{B}_i is \uparrow while \mathcal{C}_i is \downarrow in i. Suppose that $E\mathbf{Z}_i = \mathbf{0}$ and $E\mathbf{Z}_i\mathbf{Z}_i'$ exists for all $i \geq 1$. Also, assume that either of the following two conditions holds:

(1)
$$E(\mathbf{Z}_n \mid \mathcal{B}_k) = \mathbf{Z}_k$$
 almost surely (a.s.) for all $n \ge k \ge 1$,

(2)
$$E(\mathbf{Z}_k \mid \mathscr{C}_n) = \mathbf{Z}_n \text{ a.s.},$$
 for all $n \ge k \ge 1$.

Let A be an arbitrary $(p \times p)$ positive definite (p.d.) matrix, and let

(3)
$$\zeta_n = E(\mathbf{Z}_{n,1}^{\prime} \mathbf{A}^{-1} \mathbf{Z}_n), \quad \zeta_{n+1}^* = E[(\mathbf{Z}_{n+1} - \mathbf{Z}_n)^{\prime} \mathbf{A}^{-1} (\mathbf{Z}_{n+1} - \mathbf{Z}_n)], \quad n \ge 1$$
 where $\mathbf{A} \mathbf{A}^{-1} = \mathbf{I}_n$. Then, we have the following theorem.

THEOREM 1. For a non-increasing sequence $\{c_i\}$ of positive constants, under (1), for every $\varepsilon > 0$, $n \ge 1$, and $N \ge 1$,

(4)
$$P[\max_{n \leq k \leq n+N} c_k \{\sup_{\lambda \neq 0} (\lambda' \mathbf{A} \lambda)^{-\frac{1}{2}} | \lambda' \mathbf{Z}_k | \} > \varepsilon] \leq \varepsilon^{-2} \{c_n^2 \zeta_n + \sum_{k=n+1}^{n+N} c_k^2 \zeta_k^* \};$$
 for a non-decreasing sequence $\{c_i\}$ of positive constants, under (2),

(5)
$$P[\max_{n \leq k \leq n+N} c_k \{ \sup_{\lambda \neq 0} (\lambda' \mathbf{A} \lambda)^{-\frac{1}{2}} | \lambda' \mathbf{Z}_k | \} > \varepsilon] \leq \varepsilon^{-2} \{ c_{n+N}^2 \zeta_{n+N} + \sum_{k=n+1}^{n+N} c_k^2 \zeta_k^* \}.$$

It may be noted that in (4) or (5), when N = 0, the second term on the right-hand side should be taken as equal to zero. If we let $c_k = c_n$, $n \le k \le n + N$, we obtain the Kolmogorov-type inequality, while for N = 0, this reduces to the Chebyshev-type inequality. Some applications are considered in Section 3.

¹ Work supported by the Army Research Office, Durham, Grant DA-ARO-D-31-124-70-G6.

2. Proof of the theorem. By the Schwarz-inequality

(6)
$$\sup_{\lambda \neq 0} (\lambda' \mathbf{A} \lambda)^{-\frac{1}{2}} |\lambda' \mathbf{Z}_k| = (\mathbf{Z}_k' \mathbf{A}^{-1} \mathbf{Z}_k)^{\frac{1}{2}} (\geq 0), \quad \text{for all } k \geq 1.$$

Hence, from (6), we have

(7) $P\{\max_{n \leq k \leq n+N} c_k [\sup_{\lambda \neq 0} (\lambda' \mathbf{A} \lambda)^{-\frac{1}{2}} | \lambda' \mathbf{Z}_k |] > \varepsilon\} = P\{\max_{n \leq k \leq n+N} c_k^2 Y_k > \varepsilon^2\},$ where $Y_k = (\mathbf{Z}_k' \mathbf{A}^{-1} \mathbf{Z}_k), k \geq 1$. Now, under (1),

(8)
$$E[Y_n \mid \mathscr{B}_k] = Y_k + 2E\{(\mathbf{Z}_n - \mathbf{Z}_k)' \mid \mathscr{B}_k\} \mathbf{A}^{-1} \mathbf{Z}_k + E[(\mathbf{Z}_n - \mathbf{Z}_k)' \mathbf{A}^{-1} (\mathbf{Z}_n - \mathbf{Z}_k)] \mathscr{B}_k]$$

= $Y_k + E[(\mathbf{Z}_n - \mathbf{Z}_k)' \mathbf{A}^{-1} (\mathbf{Z}_n - \mathbf{Z}_k)' \mid \mathscr{B}_k] \ge Y_k \text{ a.s.,} \text{ for all } n \ge k \ge 1.$

Hence, $\{Y_k, \mathcal{B}_k, k \geq 1\}$ forms a nonnegative semi-martingale sequence. Consequently, on using the second inequality in Theorem 1 of Chow (1960) [which provides the semi-martingale extension of the Hájek-Rényi (1955) inequality], the right-hand side of (4) directly follows from (3) and (7).

By reversing the ordering of the index set $\{i\}$ in (2), the reverse martingale property of $\{\mathbf{Z}_i, \mathscr{C}_i, i \geq 1\}$ can be converted into forward martingale property, and hence, the same proof as in (4) applies. This completes the proof of (5). \square

- 3. Some applications to simultaneous confidence regions. We consider here the following three problems.
- (I) Let $\omega = \{\mathbf{X}_1, \mathbf{X}_2, \cdots, \text{ad inf}\}$ be a sequence of independent stochastic p dimensional column vectors, where $E\mathbf{X}_i = \boldsymbol{\mu}_i$ and $\mathbf{V}(\mathbf{X}_i) = \boldsymbol{\Sigma}_i$, $i \geq 1$. Let $\mathbf{X}_n = n^{-1} \sum_{i=1}^n \mathbf{X}_i$, $\bar{\boldsymbol{\mu}}_n = n^{-1} \sum_{i=1}^n \boldsymbol{\mu}_i$, and let

(9)
$$\mathbf{T}_n = n(\overline{\mathbf{X}}_n - \overline{\boldsymbol{\mu}}_n) = \sum_{i=1}^n (\mathbf{X}_i - \boldsymbol{\mu}_i), \qquad n \ge 1.$$

It follows that $\{\mathbf{T}_n, \mathcal{B}_n, n \geq 1\}$ forms a forward martingale sequence, i.e., (1) holds. If we let $v_i^* = \operatorname{Trace}(\Sigma_i \mathbf{A}^{-1})$, $i \geq 1$, we have from (3), $\zeta_{n+1}^* = v_{n+1}^*$ and $\zeta_n = v_n = v_1^* + \cdots + v_n^*$, $n \geq 1$. Hence, from (4), we obtain that

(10)
$$P\left[\max_{n \leq k \leq n+N} (kc_k) \left[\sup_{\lambda \neq 0} (\lambda' \mathbf{A} \lambda)^{-\frac{1}{2}} \left| \lambda' (\overline{\mathbf{X}}_k - \overline{\boldsymbol{\mu}}_k) \right| \right] > t \right] \leq t^{-2} \cdot \left[c_n^2 v_n + \sum_{k=n+1}^{n+N} c_k^2 v_k \right].$$

In particular, if $\Sigma_i = \Sigma$, $\forall i \ge 1$, and we let $c_k = k^{-1}$, $\mathbf{A} = \Sigma$, we obtain from (10) that

(11)
$$P[|\lambda'(\bar{\mathbf{X}}_k - \bar{\mu}_k)| \le t(\lambda' \Sigma \lambda)^{\frac{1}{2}}, \forall \lambda \ne 0, n < k < n + N]$$

$$\ge 1 - pt^{-2} [n^{-1} + \sum_{k=n+1}^{n+N} k^{-2}] \ge 1 - p(2N+n)/[n(n+N)t^2].$$

For N=0, (11) is analogous to the Scheffé-type (cf. [7] page 68) simultaneous confidence region for $\lambda'\bar{\mu}_n$ (or $\lambda'\mu$ when all the μ_i are equal) under the Chebyshev set up (i.e., under no assumption of normality, inherent in [7]). For $N \ge 1$, it is an extension along the lines of the Kolmogorov inequality.

(II) If the X_i are identically distributed with mean μ and dispersion matrix Σ , $\{(\overline{X}_k - \overline{X}_{n+N}), \mathcal{C}_k, n < k < n+N\}$ has the reverse martingale property, for all $n \ge 1$; that is, (2) holds for $Z_k = \overline{X}_k - \overline{X}_{n+N}, n \le k \le n+N$. Hence, by (5),

(12)
$$P[\max_{n \leq k \leq n+N} n^{\frac{1}{2}} | \lambda'(\overline{\mathbf{X}}_k - \overline{\mathbf{X}}_{n+N}) | < \varepsilon(\lambda' \Sigma \lambda)^{\frac{1}{2}}, \forall \lambda \neq \mathbf{0}]$$

 $\geq 1 - p\varepsilon^{-2} N/(n+N) \geq 1 - \eta,$

whenever $N \leq \delta n$ and $\delta/\epsilon^2 \leq \eta(>0)$. (12) establishes the 'uniform continuity in probability' with respect to $n^{-\frac{1}{2}}$ [in the sense of Anscombe (1952)] for all possible linear compounds $\{\lambda' \mathbf{X}_k, \lambda \neq \mathbf{0}\}$. This result is useful for the study of sequential (simultaneous) confidence regions for all possible linear compounds of μ .

(III) Consider now a *p*-variate separable semi-martingale $\{\mathbf{Z}_t, t \geq 0\}$, such that (i) $E\|\mathbf{Z}_t\| < \infty$, $\forall t > 0$, where $\|\mathbf{x}\|$ stands for the Euclidean norm of a vector \mathbf{x} . Let f(t) be a non-decreasing positive function on $[0, \tau]$ where $\tau > 0$, and let $E\mathbf{Z}_t = 0$, $\forall t \geq 0$,

(13)
$$\zeta(t) = E[\mathbf{Z}_t' A^{-1} \mathbf{Z}_t], \qquad t \ge 0,$$

where **A** is p.d., and assume that (i) $\zeta(t)/f^2(t) \to a_0(<\infty)$ as $t \to 0$, and (ii) $\int_0^t [f(t)]^{-2} d\zeta(t)$ exists. Then, by virtue of (6), we obtain on proceeding as in Theorem 5.1 of Birnbaum and Marshall (1961) that

(14)
$$P\{\sup_{t \in [0,\tau]} \left[\sup_{\lambda \neq 0} (\lambda' \mathbf{A} \lambda)^{-\frac{1}{2}} | \lambda' \mathbf{Z}_t | / f(t) \right] \ge 1\} \le a_0 + \int_0^{\tau} \left[f(t) \right]^{-2} d\zeta(t).$$

The last inequality provides a multivariate extension of Theorem 5.1 of Birnbaum and Marshall and also an extension of [4] to separable semi-martingale processes.

Acknowledgment. Thanks are due to the referee and the editor for their useful comments on the manuscript.

REFERENCES

- [1] Anscombe, F. J. (1952). Large sample theory of sequential estimation. *Proc. Cambridge Philos. Soc.* **48** 600–607.
- [2] BIRNBAUM, Z. W. and MARSHALL, A. W. (1961). Some multivariate Chebyshev inequalities with extensions to continuous parameter processes. Ann. Math. Statist. 32 687-703.
- [3] CHOW, Y. S. (1960). A martingale inequality and the law of large numbers. *Proc. Amer. Math. Soc.* 11 107–111.
- [4] HÁJEK, J. and RÉNYI, A. (1955). Generalization of an inequality of Kolmogorov. *Acta Math. Acad. Sci. Hungar.* 6 281–283.
- [5] KARLIN, S. and STUDDEN, W. J. (1966). Tchebycheff Systems With Applications in Analysis and Statistics. Interscience, New York.
- [6] MUDHOLKAR, G. and RAO, P. S. R. S. (1967). Some sharp multivariate Tchebycheff inequalities. Ann. Math. Statist. 38 393-400.
- [7] SCHEFFÉ, H. (1959). The Analysis of Variance. Wiley, New York.