ON THE EXISTENCE OF ABSOLUTE MOMENTS FOR THE EXTINCTION TIME OF A GALTON-WATSON PROCESS

BY R. V. ERICKSON

Michigan State University

If $\{Z_n\}$ is a Galton-Watson process with mean one, and τ is the extinction time, it is shown that $EZ^{1+\alpha} < \infty$ implies $E\tau^{\beta} = \infty$ for $\beta > 1/\alpha$, $0 < \alpha < 1$. Conditions which imply $EZ^{1+\alpha} = \infty$ and $E\tau^{\beta} < \infty$ for $\beta < 1/\alpha$, $0 < \alpha < 1$ are given. Necessary and sufficient conditions for $EX^{m+\alpha} < \infty$ or $EX^m \log X < \infty$ are given in terms of the Laplace transform of a general nonnegative random variable $X, 0 < \alpha < 1, m = 0, 1, \cdots$.

1. Introduction. Let Z_n be the number of individuals in the *n*th generation of a reproducing system so that $\{Z_n\}$ is a Galton-Watson process, and let $\tau = \inf\{n \mid Z_n = 0\}$ be the extinction time for the process. It is well known that $\mu_1 = EZ_1 > 1$ iff $P(\tau < \infty) < 1$, and that if $\mu_1 < 1$ then $P(\tau > n) \le \mu_1^n$. Thus, in the non-critical case, $\mu_1 \ne 1$, either $E\tau^{\alpha} < \infty$ for no $\alpha > 0$ or all $\alpha > 0$. There is a drastic difference in the critical case.

If $\mu_1 = 1$ (see Kesten, Ney, Spitzer [4]) then $P(\tau > n) \sim \sigma^2/2n$, when $\sigma^2 = \operatorname{Var} Z_1 < \infty$, and in this case $E\tau^\alpha < \infty$ iff $0 < \alpha < 1$. It is pointed out in the above reference that $nP(\tau > n) \to 0$ if $\sigma^2 = \infty$. This fact is what led us to ask about higher moments of τ when Z_1 has worse behavior, and we have the following negative answer.

THEOREM 1. Let $\mu_1 = 1$. If $EZ_1^{1+\alpha} < \infty$ then $E\tau^{\beta} = \infty$ for all $\beta > 1/\alpha, 0 < \alpha < 1$. We have been unable to determine the validity of the next

Assertion. Let $\mu_1 = 1$. If $EZ_1^{1+\alpha} = \infty$ then $E\tau^{\beta} < \infty$ for all $\beta < 1/\alpha$, $0 < \alpha < 1$.

However, if stronger restrictions than $EZ_1^{1+\alpha} = \infty$ are placed on the distribution of Z_1 results of the above type do hold. To make these precise we need additional notation.

Let $f(s) = \sum_{0}^{\infty} s^{n} P(Z_{1} = n)$ be the probability generating function (pgf) of Z_{1} , so that the pgf of Z_{n} is f_{n} , the *n*th functional iterate of f, i.e. $f_{n} = f \circ f_{n-1}$, $f_{0} = \text{identity}$. Then $P(\tau > n) = 1 - f_{n}(0)$ and $\mu_{1} = f'(1-)$.

From now on assume $\mu_1 = 1$.

We introduce the following conditions on f, where K is some finite positive constant.

$$A_{\beta}$$
: $f(s) - s \le K(1-s)^{1+\beta}$ for $s_0 \le s \le 1$, some $s_0 < 1$.

$$B_{\beta}: f(s) - s \ge K(1 - s)^{1 + \beta}$$
 or $s_0 \le s \le 1$, some $s_0 < 1$.

It is easy to show that $EZ_1^{1+\beta} < \infty$ implies A_{β} , (see e.g. Loève [5] page 199).

Received September 1970.

Further, A_{β} implies $EZ_1^{1+\alpha} < \infty$ for each $\alpha < \beta$, $0 < \beta < 1$, while B_{β} implies $EZ_1^{1+\beta} = \infty$, $0 < \beta < 1$ (see Remark 2 following Theorem 5 below). We know of no moment condition which implies B_{β} , but we do have the following sufficient condition (Theorem 7): If $P(Z_1 > x)$ is asymptotic to $x^{-1-\alpha}L(x)$, where L is slowly varying, then B_{β} holds for each $\beta > \alpha$.

Theorem 2. Let $0 < \beta < 1$. Condition B_{β} implies $EZ_1^{1+\beta} = \infty$ and $E\tau^{\gamma} < \infty$ for all $\gamma < 1/\beta$.

Since $E\tau^{\gamma} < \infty$ iff $\Sigma n^{\gamma-1}(1-f_n(0)) < \infty$, $\gamma > 0$, Theorems 1 and 2 are corollaries of

THEOREM 3. Let $\beta > 0$ and fix v_0 in [0, 1). Then A_{β} implies $n^{\gamma}(1 - f_n(v_0)) \to \infty$ for all $\gamma > 1/\beta$, and B_{β} implies $n^{\gamma}(1 - f_n(v_0)) \to 0$ for all $\gamma < 1/\beta$.

PROOF. Define h(u) = 1 - f(1 - u); then $h_n(u) = 1 - f_n(1 - u)$ $(h_n = h_{n-1} \circ h)$, and h is continuous, strictly increasing, concave downward and $0 < h(u) < u \le 1$. Let $u_0 = 1 - v_0$ and define $u_{n+1} = h(u_n) = 1 - f_n(v_0)$. Further, define $a_n = (u_n - u_{n+1})u_n^{-1-\beta}$, $r_n = u_{n+1}/u_n \le 1$ and $u_n^{-\beta} = \rho_1 + \dots + \rho_n$. Then

$$\rho_{n+1} = a_n(r_n)^{-\beta} (1 - r_n^{\beta}) / (1 - r_n).$$

Since $0 < a \le (1-x^{\beta})/(1-x) \le b < \infty$ for $0 \le x \le 1$, B_{β} implies $\rho_{n+1} \ge K_1$ for some $K_1 > 0$ and all n. Under hypothesis A_{β} , $1 \ge r_n = 1 - a_n u_n^{\beta} \ge 1 - K u_n^{\beta} \uparrow 1$ so that $\rho_{n+1} \le K_2$ for some $K_2 < \infty$ and all n.

The pattern for the above proof is found in the paper by Szekeres ([7] see Theorem 1c) which contains further information on the behavior of the iterates h_n .

Another interesting proof of at least part of Theorem 3 can be given by applying the A_{β} and B_{β} conditions to

$$\frac{1}{1 - f_n(s_0)} - \frac{1}{1 - s_0} = \sum_{k=0}^{n-1} \Delta(f_k(s_0))$$

where

$$\Delta(s) = \frac{1}{1 - f(s)} - \frac{1}{1 - s} = \frac{f(s) - s}{(1 - s)^2} \cdot \frac{1 - s}{1 - f(s)}.$$

Assume that $0 < \beta < 1$. If $P_{\gamma}(Q_{\gamma})$ is the proposition " $n^{\gamma}(1 - f_{n}(s_{0})) \rightarrow \infty$ (0)," then under hypothesis A_{β} , P_{γ} implies P_{α} for all $\alpha > 1 + (1 - \beta)\gamma$, while under hypothesis B_{β} , Q_{γ} implies Q_{α} for all $\alpha < 1 + (1 - \beta)\gamma$. Iteration produces: A_{β} and P_{γ} imply P_{α} for all $\alpha > 1/\beta$; B_{β} and Q_{γ} imply Q_{α} for all $\alpha < 1/\beta$. Now Q_{0} is well known, but we know of no way to get a P_{γ} except by using the arguments of the given proof.

While trying to get an insight into condition B_{β} and to prove the "assertion" above, we found necessary and sufficient conditions, in terms of Laplace transforms, for finiteness of non-integral absolute moments of general random variables (Theorem 5).

2. Moments and Laplace transforms. Let X be a nonnegative rv with df F and Laplace transform $\varphi(\lambda) = \int_{0^{-}}^{\infty} e^{-\lambda x} F(dx)$. Set $\mu_{\alpha} = EX^{\alpha}$ and introduce inductively the notation

$$F_0: = F, F_{n+1}(x): = \int_0^x \left[\frac{\mu_n}{n!} - F_n(y) \right] dy$$

for each n such that $\mu_n < \infty$.

The following theorem (perhaps well known) gives a representation for μ_{α} and φ in terms of F_n .

THEOREM 4. Assume $\mu_m < \infty$, m a nonnegative integer. Then for $n = 0, 1, \dots, m$

(a) $F_n(x) \uparrow \mu_n/n!$ as $x \uparrow \infty$;

(b)
$$\mu_{n+\alpha} = \frac{\Gamma(n+\alpha+1)}{\Gamma(n+\alpha-k)} \int_0^\infty x^{n+\alpha-k-1} \left[\frac{\mu_k}{k!} - F_k(x) \right] dx$$
,

 $k = 0, 1, \dots, n, \alpha \ge 0, n + \alpha - k > 0$, in the sense that if one side is finite so is the other;

(c)
$$(-1/\lambda)^{n+1} \left[\varphi(\lambda) - \sum_{0}^{n} \mu_k (-\lambda)^k / k! \right] = \int_{0}^{\infty} e^{-\lambda x} \left[\frac{\mu_n}{n!} - F_n(x) \right] dx.$$

The proof uses induction and integration by parts and is omitted. See Feller [2] for the first step.

For some reason Harkness and Shantaram [3] have been led to study the df's $n!F_n/\mu_n = G_n$ and they give a version of (c) for characteristic functions. Professor James Hannan has pointed out (oral communication) that an induction shows that

$$1 - G_n(x) = \int_0^\infty \left[\left(1 - \frac{x}{y} \right)^+ \right]^n H_n(dy), \qquad x \ge 0$$

where $H_n(y) = \int_0^y u^n F(du)/\mu_n$, so that G_n is the mixture of the minimums of n independent rv's with uniform distribution on (0, y), where H_n is the mixing distribution.

In what follows we assume $\mu_m < \infty$ and define

$$\eta_{m,\alpha}(\lambda) = \lambda^{-m-1-\alpha} |\varphi(\lambda) - \sum_{k=0}^{m} \mu_k(-\lambda)^k / k!|.$$

THEOREM 5. (a) For $0 < \alpha < 1$, $\mu_{m+\alpha} < \infty$ iff for some (and thus all) c > 0 $\int_0^c \eta_{m,\alpha} < \infty$ and then (whether finite or not)

$$\mu_{m+\alpha} = \frac{\Gamma(m+\alpha+1)}{\Gamma(1-\alpha)\Gamma(\alpha)} \int_0^\infty \eta_{m,\alpha}.$$

(b) $v_m := EX^m \log X < \infty$ iff for some (and all) $c > 0 \int_0^c \eta_{m0} < \infty$ and then (whether finite or not)

$$v_m = m! \int_0^\infty \eta_{m,0}.$$

PROOF. Since $\eta_{m,\alpha}(\lambda) \sim \lambda^{-1-\alpha}$ as $\lambda \to \infty$, $\alpha > -1$, part (a) is a simple consequence of Theorem 4 and Fubini's theorem. To prove part (b) note that

$$\int_0^c \eta_{m,0} = \int_0^\infty \frac{1 - e^{-xc}}{x} \left[\frac{\mu_m}{m!} - F_m(x) \right] dx,$$

so if it is finite for some c it is finite for $c = \infty$. To complete the proof, use the following formula which follows by induction and integration by parts:

$$v_m := \int_0^\infty x^m \log x F(dx) = \int_0^\infty L^{(k+1)}(x) \left[\frac{\mu_k}{k!} - F_k(x) \right] dx,$$

where $L(x) = x^m \log x$, so that $L^{(k)}(x) = (m!/(m-k)!) x^{m-k} (\log x + a_k)$ $k = 0, \dots, m$, and $L^{(m+1)}(x) = m!/x$.

REMARKS. (1) The above extends the results of Athreya [1] who shows that $EX \log X < \infty$ iff $\int_0^c \eta_{1,0} < \infty$ some c > 0.

(2) When X is integer valued (identify X and Z_1 and all corresponding notation) $f(e^{-\lambda}) = \varphi(\lambda)$ and the change of variable $s = e^{-\lambda}$ shows that

$$\eta_{1,\alpha-1}(\lambda) = \frac{\varphi(\lambda) - (1-\lambda)}{\lambda^{1+\alpha}} \sim \frac{f(s) - s}{(1-s)^{1+\alpha}} \quad \text{as} \quad \lambda \to 0, s \to 1.$$

Hence the B_{α} condition is equivalent to $\eta_{1,\alpha-1}(\lambda) \geq K > 0$, $0 \leq \lambda \leq \lambda_0$. It is now clear that A_{β} implies $EZ_1^{1+\alpha} < \infty$, $0 \leq \alpha < \beta < 1$ and that B_{β} implies $EZ_1^{1+\beta} = \infty$.

We now state the Abelian-Tauberian theorems of Laplace transforms in the form we need. Recall that a function $L:(0,\infty)\to(0,\infty)$ is slowly varying iff $\lim_{t\to\infty} L(xt)/L(t)=1$ for all x>0.

THEOREM 6. Let X be a nonnegative rv with df F and Laplace transformation φ . Assume that $0 < \alpha < 1$ and that m is the nonnegative integer such that $\mu_m < \infty = \mu_{m+1}$. The following are equivalent (where $k = 0, 1, \dots, m$, and $x = 1/\lambda \to \infty$):

$$(a_k)\frac{\mu_k}{k!} - F_k(x) \sim \frac{\Gamma(m+\alpha-k)}{\Gamma(m+\alpha)} x^{-m-\alpha+k} L(x)$$

$$(a_{m+1})F_{m+1}(x) \sim \frac{\Gamma(\alpha)}{(1-\alpha)\Gamma(m+\alpha)} x^{1-\alpha} L(x)$$

$$(b_k)\eta_{k,\alpha-1}(\lambda) \sim \frac{\Gamma(1-\alpha)\Gamma(\alpha)}{\Gamma(m+\alpha)}\lambda^{m-k}L(1/\lambda).$$

PROOF. The equivalence of the (a_k) 's is given in Feller [2], Theorem VIII.9.1 and the lemma to Theorem XIII.5.4 (which holds for $0 < |\rho| < \infty$). The equivalence of (a_m) and (b_m) is the familiar Abelian–Tauberian theorem, see Feller [2], Theorem XIII.5.4. The equivalence of the (b_k) 's is trivial.

This gives our final

THEOREM 7. If $P(Z_1 > x) \sim x^{-1-\alpha}L(x)$, where L is slowly varying, then f satisfies condition B_{β} for all $\beta > \alpha$, whence $E\tau^{\gamma} < \infty$ for all $\gamma < 1/\alpha$ and $EZ_1^{\beta} = \infty$ for all $\beta > \alpha$.

PROOF. For $s = e^{-\lambda}$, as $\lambda \to 0$

$$\frac{f(s)-s}{(1-s)^{1+\alpha}} \sim \eta_{1,\alpha-1}(\lambda) \sim L\left(\frac{1}{\lambda}\right).$$

By the representation of $L(x) = a(x) \exp \int_1^x \varepsilon(y)/y \, dy$ where $a(x) \to c \in (0, \infty)$ and $\varepsilon(y) \to 0$ (see Feller [2], corollary to Theorem VIII.9.1) we see that $x^{\varepsilon}L(x) \to \infty$ if $\varepsilon > 0$, whence $B_{\alpha+\varepsilon}$ holds.

REMARKS. It was hoped that $\int_0^\infty \eta_{1,\alpha-1} = \infty(\text{iff } EZ_1^{1+\alpha} = \infty)$ would shed light on the "assertion" at the beginning of this note, but it has failed to do so as yet.

Seneta [6] did show that

$$E\tau < \infty$$
 iff $\int_0^1 \frac{1-u}{f(u)-u} du < \infty$,

but his approach does not seem to work for non-integral moments.

REFERENCES

- [1] Athreya, K. (1969). On the supercritical one dimensional age dependent branching processes. Ann. Math. Statist. 40 743-763.
- [2] Feller, W. (1966). An Introduction to Probability Theory and Its Applications 2. Wiley, New York.
- [3] HARKNESS, W. and SHANTARAM, R. (1969). Convergence of a sequence of transformations of distribution functions. *Pacific J. Math.* 31 403–415.
- [4] KESTEN, H., NEY P. and SPITZER, F. (1966). The Galton-Watson process with mean one and finite variance. *Theor. Probability Appl.* 11 513–540. (English translation.)
- [5] Loève, M. (1963). Probability Theory, 3rd ed. Van Nostrand, Princeton.
- [6] SENETA, E. (1967). The Galton-Watson process with mean one. J. Appl. Probability 4 489-495.
- [7] SZEKERES, G. (1960). Regular iteration of real and complex functions. Acta. Math. 100 203-258.