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ON THE EXISTENCE OF ABSOLUTE MOMENTS FOR THE
EXTINCTION TIME OF A GALTON-WATSON PROCESS

By R. V. ERICKSON
Michigan State University

If {Z,} is a Galton-Watson process with mean one, and 7 is the
extinction time, it is shown that EZ!'** < oo implies E7® = oo for
B > 1/a, 0 < o < 1. Conditions which imply EZ'*% = o0 and E7¥ < o
for f < 1/a, 0 < o < 1 are given. Necessary and sufficient conditions for
EX™** < 00 or EX™log X < o0 are given in terms of the Laplace trans-
form of a general nonnegative random variable X,0 < « < 1,m = 0, 1, -+,

1. Introduction. Let Z, be the number of individuals in the nth generation of a
reproducing system so that {Z,} is a Galton-Watson process, and let 7 =
inf {n ]Z,, = 0} be the extinction time for the process. It is well known that
uy = EZ; > 1iff P(t < 00) < 1,and that if p; < I then P(z > n) £ pu,". Thus,
in the non-critical case, u; # 1, either Et* < oo forno « > 0 or all « > 0. There
is a drastic difference in the critical case.

If uy =1 (see Kesten, Ney, Spitzet [4]) then P(t > n) ~ ¢2/2n, when o2 =
VarZ, < o, andin this case E7* < o0 iff 0 < o < 1.1t is pointed out in the above
reference that nP(t > n) — 0 if 6? = co. This fact is what led us to ask about
higher moments of t when Z, has worse behavior, and we have the following
negative answer.

THEOREM 1. Let py = 1.IfEZ ' ** < o0 then Et* = oo forall p > 1), 0 < o < 1.
We have been unable to determine the validity of the next

ASSERTION. Let py = 1. If EZ'** = o0 then Et* < oo for all f < 1/a, 0 <
a < 1.

However, if stronger restrictions than EZ, = oo are placed on the distribution
of Z, results of the above type do hold. To make these precise we need additional
notation.

Let f(s) = ).§ s"P(Z, = n) be the probability generating function (pgf) of
Z,, so that the pgf of Z, is f,, the nth functional iterate of f; i.e. f, = fof,_,,
fo = identity. Then P(t > n) = 1—£,(0) and u, = f'(1-).

From now on assume p; = 1.

We introduce the following conditions on f, where K is some finite positive
constant. /

1+a

Apf(s)—s S K(1—s)'** for so<s=<1, some s,<1.

Bg:f(s)—s 2 K(1—=s)'"" or s,

lIA

s<1, some s,<1.

It is easy to show that EZ,'*# < oo implies 4, (see e.g. Loéve [5] page 199).
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Further, 4, implies EZ,'"* < oo for each o < f8, 0 < f# < 1, while B, implies
EZ'"*F = o0, 0 < B < 1 (see Remark 2 following Theorem 5 below). We know
of no moment condition which implies B;, but we do have the following sufficient
condition (Theorem 7): If P(Z,; > x) is asymptotic to x ™! ~*L(x), where L is slowly
varying, then B holds for each f > «.

THEOREM 2. Let 0 < f§ < 1. Condition By implies EZ,'** = o and Et’ < o
Sforally < 1/B.

Since E17 < o0 iff Zn”~(1 —7,(0)) < 00,7y > 0, Theorems 1 and 2 are corollaries
of

THEOREM 3. Let 8 > 0 and fix vy in [0, 1). Then Ay implies n'(1—f,(vy)) = o
Sor all y > 1/B, and By implies n*(1—f,(vo)) — 0 for all y < 1/p.

PrOOF. Define A(u) = 1—f(1—u); then h,w) = 1—f,(1—u) (h, = h,_,°h),
and A is continuous, strictly increasing, concave downward and 0 < h(u) <
u=1 Let uy=1-v, and define u,,, = h(u,) = 1—f,(vy). Further, define
a, = (Uy—thy Dty "0 1y =, Ju, £ land u,™” = p,+ -+ +p,. Then

Pn+1 = an(rn)_ﬁ(1 - rnﬂ)/(l - rn)‘

Since 0 < a = (1-x")/(1—x) £ b < 0 for 0 < x <1, B, implies p,,, = K,
for some K; > 0 and all n. Under hypothesis 45, 1 2 r,=1—au’ = 1-
Ku,” 4 1 so that p,,, £ K, for some K, < oo and all .

The pattern for the above proof is found in the paper by Szekeres ([7] see
Theorem lc) which contains further information on the behavior of the iterates
h'l

Another interesting proof of at least part of Theorem 3 can be given by applying
the A, and B, conditions to

1 1
1—/(s0) 1—sg

1 I f(9)—s 1-s
A =17 T ~ =9 176

Assume that 0 < f < 1. If P(Q,) is the proposition “n’(1—f,(se)) = oo (0),”
then under hypothesis A, P, implies Ba for all o > 14(1—pf)y, while under
hypothesis By, Q, implies Q, for all « < 14(1—f)y. Iteration produces: 4, and
P, imply P, for all « > 1/8; By and Q, imply Q, for all « < 1/f. Now Q, is well
known, but we know of no way to get a P, except by using the arguments of the
given proof.

While trying to get an insight into condition B, and to prove the ‘“‘assertion”
above, we found necessary and sufficient conditions, in terms of Laplace transforms,
for finiteness of non-integral absolute moments of general random variables
(Theorem 5).

=%, AGeo)

where
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2. Moments and Laplace transforms. Let X be a nonnegative rv with df F and
Laplace transform ¢(4) = [§- e~ **F(dx). Set p, = EX*and introduce inductively
the notation

Fyi = Fyesi = [ | B |ay

for each n such that u, < oo.
The following theorem (perhaps well known) gives a representation for y, and
¢ in terms of F,.

THEOREM 4. Assume p,, < o0, m a nonnegative integer. Then forn = 0, 1, -, m
(a) Fu(x) T p,/n! as x T oo;

F(n+oc+1) " nta—k—1 Hx
(b) oyt :m . X E"—Fk(x) a’x,

k=0,1,---,n 020 n+a—k > 0, in the sense that if one side is finite so is the
other;

© 1y oS = e B pio o

The proof uses induction and integration by parts and is omitted. See Feller
[2] for the first step.

For some reason Harkness and Shantaram [3] have been led to study the df’s
n!F,/u, = G, and they give a version of (¢) for characteristic functions. Professor
James Hannan has pointed out (oral communication) that an induction shows that

1-Gy(x) = r [(l—§>+]an(dy), x20

where H,(y) = [} u"F(du)/p,, so that G, is the mixture of the minimums of n
independent rv’s with uniform distribution on (0, y), where H, is the mixing
distribution.

In what follows we assume ,, < oo and define

M a(A) = 27777 p(A) = 25 (= ATk |-

THEOREM 5. (a) For 0 < a < 1, U4, < oo iff for some (and thus all) ¢ > 0
[§ Mo < 00, and then (whether finite or not)

I(m+a+1) ([
.um+oz—r(1__cx)l—(a) o nm,a*

() v,;: = EX"log X < oo iff for some (and all) ¢ > 0 [§ 1,0 < o0 and then
(whether finite or not)

— ol
vm - m!_[O nm,O'
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PROOF. Since 17, (4) ~ A7' "% as 1 — o0, « > — 1, part (a) is a simple con-
sequence of Theorem 4 and Fubini’s theorem. To prove part (b) note that

c 0| _gTxe 'um
0’7m,0: o x m' ,,,(x) dx

so if it is finite for some c it is finite for ¢ = oo. To complete the proof, use the
following formula which follows by induction and integration by parts:

Yt = Lw x"log xF(dx) = f L4 (x )[ —Fk(x):ldx,

where L(x) = x"logx, so that L®(x) = (m!/(m—k)!) x" *(log x+a,) k =
0, -+, m, and L™ D(x) = m!/x.

REMARKS. (1) The above extends the results of Athreya [I] who shows that
EXlog X < o0 iff [§ 1, 0 < o0 some ¢ > 0.

(2) When X is integer valued (identify X and Z, and all corresponding notation)
f(e™*) = @(4) and the change of variable s = e~* shows that

A—(1—4 s)—s
’71,a—1(/1):(p( )/113 A)N(lfgz)lm as

A=0,s > 1.

Hence the B, condition is equivalent to #; ,_;(A) 2 K > 0,0 = 1 < A,. It is now
clear that A, implies EZ,'** < o0, 0 e < pf <1 and that By implies
EZ 1P = 0.

We now state the Abelian—Tauberian theorems of Laplace transforms in the
form we need. Recall that a function L: (0, co) — (0, o0) is slowly varying iff
lim,, . L(xt)/L(t) = 1 for all x > 0.

THEOREM 6. Let X be a nonnegative v with df F and Laplace transformation ¢.
Assume that 0 < o < 1 and that m is the nonnegative integer such that u, < oo =
U+ 1- The following are equivalent (where k = 0, 1, ---, m, and x = 1/A - ©0):

U, I'(m+a—k) _
(@) R ~ = et

I'(x)
(@ ) i) ~ T30 4 )

(B 1(2) ~ 1"(Tl(n/z—l)—oc()) AmEL(1)2).

ProoF. The equivalence of the (a;)’s is given in Feller [2], Theorem VIII.9.1
and the lemma to Theorem XIII.5.4 (which holds for 0 < ]p] < o). The equival-
ence of (a,) and (b,) is the familiar Abelian-Tauberian theorem, see Feller [2],
Theorem XIII.5.4. The equivalence of the (b,)’s is trivial.

This gives our final

x'7*L(x)
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THEOREM 7. If P(Z; > Xx) ~ x~17°L(x), where L is slowly varying, then f satisfies
condition By for all f > o, whence Et’ < oo for all y < /o and EZ,? = o for all
B> a.

PROOF. Fors = e % as 1 —» 0
f(s)—s 1
=g~ Ma-1(A) ~ L 7 |
By the representation of L(x) = a(x) exp [ &(»)/y dy where a(x) — c € (0, o) and

&(y) — 0 (see Feller [2], corollary to Theorem VIII.9.1) we see that x°L(x) — oo
if ¢ > 0, whence B, , holds.

REMARKS. It was hoped that [§ 1, ,—; = co(iff EZ,'** = c0) would shed light on
the “assertion’ at the beginning of this note, but it has failed to do so as yet.
Seneta [6] did show that

E iff jl L
T< oo i ————du < oo,
of”)_“

but his approach does not seem to work for non-integral moments.
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