A NEW FAMILY OF BIBD'S

By E. Nemeth

University of Waterloo

Block designs with parameters $(p^n, \Delta p^n, \Delta((p^{n-1})/2), (p^{n-1})/2, \Delta((p^n-3)/4))$ are shown to exist whenever p^n , a prime power, can be expressed as 2^mt+1 with m a positive integer and t an odd integer >1, that is, whenever p^n is not one greater than a power of 2; Δ is equal to 2^{m-1} .

1. Introduction. A balanced incomplete block design, BIBD, defined on a finite set of varieties V is a collection B of subsets of V, called blocks, each of cardinality k such that every pair of distinct elements of V belongs to λ subsets of B. Five parameters (v, b, r, k, λ) are associated with a BIBD:

v = number of varieties,

b = number of blocks,

r = number of replications of each variety,

k = size of the blocks,

 λ = number of replications of each pair of distinct varieties.

As discussed in Hall ([1] page 120, ff.) BIBD's may be constructed using a set of difference blocks. A set in which all possible differences comprise each nonzero element of a group G exactly λ times is called a λ -difference set for G. If, instead of a single set, a set of subsets or blocks is such that all possible differences within each subset comprise G- $\{0\}$ with multiplicity λ , then such a set is called a set of difference blocks for G.

2. The construction. We proceed to form a set of difference blocks for the group G, the Galois field $GF(p^n)$. The form of the blocks and the number of blocks depend on the quantity Δ determined by p^n .

THEOREM. Let $p^n = 2^m t + 1$ where t is an odd integer > 1, m is a positive integer, and $\Delta = 2^{m-1}$; further let x be a primitive element in $G = GF(p^n)$. Then the set

$$A = \begin{cases} x^{0}, & x^{2\Delta}, & \cdots, & x^{(2t-2)\Delta}, \\ x, & x^{2\Delta+1}, & \cdots, & x^{(2t-2)\Delta+1}, \\ \vdots & & & \vdots \\ x^{\Delta-1}, & x^{3\Delta-1}, & \cdots, & x^{(2t-1)\Delta-1} \end{cases}$$

together with the sets Ax, Ax^2 , ..., $Ax^{\Delta-1}$ form a set of $\Delta((p^n-3)/4)$ difference blocks for $GF(p^n)$ and hence generate a balanced incomplete block design with parameters

$$\left(p^n, \Delta p^n, \Delta\left(\frac{(p^n-1)}{2}\right), \frac{p^n-1}{2}, \Delta\left(\frac{p^n-3}{4}\right)\right).$$

Received January 27, 1970.

If $\Delta = 1$, then p^n has the form 2t + 1 with t odd and thus is congruent to $3 \mod 4$. The set $A = \{x^0, x^2, \dots, x^{p^n-2}\}$ is the set of quadratic residues of p^n and is known to be a $\frac{1}{4}(p^n - 3)$ – difference set for the group G (see Hall [1] page 141). This set generates the well-known Hadamard designs.

For $\Delta = 2$, that is, $p^n = 4t + 1$, the resulting design has the parameters b, r, and λ relatively prime and corresponds to the first member of a $(v, k) = (p^n, (p^n - 1)/2)$ family as described in [2].

PROOF. First we consider the following subsets of A,

$$B_{0} = \{x^{0}, x^{2\Delta}, \dots, x^{(2t-2)\Delta}\},\$$

$$B_{1} = \{x, x^{2\Delta+1}, \dots, x^{(2t-2)\Delta+1}\},\$$

$$\vdots$$

$$B_{\Delta-1} = \{x^{\Delta-1}, x^{3\Delta-1}, \dots, x^{(2t-1)\Delta-1}\},\$$

as initial blocks. Sprott has shown in series B of [3] that these blocks are a set of difference blocks corresponding to $\lambda = (t-1)/2$. Thus differences within these initial blocks in each of the sets A, Ax, Ax^2 , ..., $Ax^{\Delta-1}$ account for $\Delta \cdot (t-1)/2$ replications of the group G.

We now consider differences between two of these initial blocks, say B_i and B_j , where i > j. The differences may be resolved into classes C_d by letting d = i - j and considering

$$C_d = \{x^i - x^j, x^{2\Delta + i} - x^{2\Delta + j}, \dots, x^{(2t-2)\Delta + i} - x^{(2t-2)\Delta + j}\}.$$

Each element of C_d contains the nonzero constant factor $(1-x^d)$ which may be divided out of each term, the result still being called C_d . The other t-1 classes

$$C_{d+2\Lambda}, C_{d+4\Lambda}, \cdots, C_{d+2(t-1)\Lambda}$$

are identical to C_d except for the common factor $(1-x^{d+2l\Delta})$ where $l=1,2,\cdots$, t-1 and $d=1,2,\cdots$, $\Delta-1$. The primitive element x is of order $2t\Delta$ and thus d+2l must be equal to $2t\Delta$ for the common factor to be 0. This is impossible due to the limits of l and d. Hence, we have t-1 copies of the resolution class

$$C_d = \{x_i, x^{2\Delta+i}, x^{4\Delta+i}, \dots, x^{(2t-2)\Delta+i}\}.$$

We now consider the differences generated by the class C_d in Ax, Ax^2 , Ax^3 , ..., $Ax^{\Delta-1}$.

These are, in addition to C_d ,

$$x^{i+1},$$
 $x^{2\Delta+i+1},$ $x^{4\Delta+i+1},$..., $x^{2(t-2)\Delta+i+1},$ $x^{i+2},$ $x^{2\Delta+i+2},$ $x^{4\Delta+i+2},$..., $x^{2(t-2)\Delta+i+2},$... $x^{2(t-2)\Delta+i+2},$... $x^{2(t-1)\Delta+i-1}.$

1120 E. NEMETH

Considering the negatives of these differences, since $-1 = x^{t\Delta}$, we obtain also the group elements

$$x^{t\Delta+i},$$
 $x^{(t+2)\Delta+i},$..., $x^{(3t-4)\Delta+i},$ $x^{t\Delta+i+1},$ $x^{(t+2)\Delta+i+1},$..., $x^{(3t-4)\Delta+i+1},$ \vdots $x^{(t+1)\Delta+i-1},$ $x^{(t+3)\Delta+i-1},$..., $x^{(3t-1)\Delta+i-1},$

exponents being reduced modulo $2\Delta t$.

Since the positive differences comprise all elements of the form $x^{l\Delta+i+s}$, where l is even, $s=0,1,\cdots,\Delta-1$ and the negative differences comprise all elements of the form $x^{l'\Delta+i+s}$, where l' is odd, $s=0,1,\cdots,\Delta-1$, the entire group less the 0 element is replicated exactly once by the differences generated by the resolution class C_d .

Hence the differences between blocks B_i and B_j when considered with respect to A, Ax, Ax^2 , ..., $Ax^{\Delta-1}$ comprise all of G- $\{0\}$ with multiplicity t.

There are Δ initial blocks B_i to consider and $\binom{\triangle}{2} = \Delta(\Delta - 1)/2$ possible distinct pairs. Hence we have the set of difference blocks generating the group $GF(p^n) - \{0\}$

$$\lambda = \frac{\Delta(\Delta - 1)}{2} t + \frac{t - 1}{2}$$

times. This simplifies to

$$\lambda = \frac{\Delta(t\Delta - 1)}{2} = \frac{p^n - 3}{4}$$

as desired. The parameters of the design produced by this set of difference blocks are then determined since $|A| = \text{block length } k = (p^n - 1)/2$ and the variety set is the p^n symbols of $GF(p^n)$.

This then completes the construction.

REFERENCES

- [1] Hall, M. Jr. (1967). Combinatorial Theory. Ginn Blaisdell, New York.
- [2] MULLIN, R. C. and STANTON, R. G. (1968). Classification and embedding of BIBD's. Sankhyā Ser. A 30 91-100.
- [3] Sprott, D. A. (1954). A note on balanced incomplete block designs. Canadian J. Math. 6 341-346.