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ON THE REGESSION DESIGN PROBLEM OF SACKS
AND YLVISAKER'

By GRACE WAHBA

University of Wisconsin

0. Summary. We consider the experimental design problem of Sacks and
Ylvisaker. We consider only the case of the (noise) stochastic process X satisfying
a stochastic differential equation of the form

©.1) L,X(t) = dW(t)/dt 0<sts1

where L, is an mth order differential operator whose null space is spanned by an
ECT system and W(t) is a Wiener process. We show that the non-degeneracy of the
covariance matrix of {XW(¢),v=0,1,2,---,m—1,1,€[0,1], i =1,2,---,n}
is equivalent to the total positivity properties of the Green’s function for L,,* L,,
with appropriate boundary conditions. An asymptotically optimal sequence of
designs is found for this case and its dependence on the characteristic discontinuity
of the above mentioned Green’s function is exhibited. Finally we show that a
special case of the problem is equivalent to the problem of the optimal approxi-
mation of a monomial by a Spline function in the L, norm. Some recent results are
available on this latter problem which provide some information concerning
existence and uniqueness of optimal designs with distinct points.

1. Imtroduction. Consider the linear regression model in which one may observe a
stochastic process Y having the form

(1.1) Y(1) = 0f(1)+ X(1) 0

0 is an unknown constant, f(¢) is a known function and X is assumed to have mean
value function zero and known continuous covariance kernel Q(z, t') = EX(¢t)X(t).
Let T be a subset of [0, 1] and let O, be the best linear estimate (if it exists) of 0
based on observing {Y(¢),teT}. Let o;> be E@—07)>. Let 9, = {T,|T, =
to, L1y sty 0 Sty < -+ < t, < 1}. Sacks and Ylvisaker, in a series of papers
[81, [9], [10], consider the problem of finding a member T,* of 2, for which

IIA

t =1

2 2
(1.2) ot =infy .4 07 .

In [8], [9] they consider processes X(¢) which are assumed to have no quadratic
mean derivatives and satisfy a number of other conditions. [10] considered situ-
ations where X(¢) has exactly m— 1 quadratic mean derivatives. It is assumed there
that X(¢) has a representation

(1.3) X(t) = fodty—y J§rdt,_y - G Xo(t1)dty
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1036 GRACE WAHBA

where
(1.4) EXyt) =0
EXo()Xo(2) = K(s, 1)
with
) 9
(1.5) lim, = K(s, f)—hmwgs K(s, t) = o(t) = const > 0

and K(s, t) satisfies some other conditions.
Throughout [8], [9], [10] it is assumed that f(¢) is of the form

(1.6) f(0) =[5 0@, t)p(t') dt’, p continuous

where Q(t, ') = EX(t)X (), and f satisfies some other conditions.

A sequence T,*,n = 1,2, --- of designs T,* € 9,, is said by Sacks and Ylvisaker
to be asymptotically optimum if

2 2
. GT"*_G .
(1.7) lim,_, ., R ——" 1
where o2 = 0,2 with T = [0, 1]. It is well known that ¢* > 0 if fe #,, where
H , is the reproducing kernel Hilbert space associated with the kernel Q, and that
(1.6) insures that f€ # . (See [7] for details).

H o, for any Q positive definite on [0, 1]x [0, 1], has the following properties

(see [1]):
(i) Q) e #y, Vte [0, 1] where Q) = O(1, )
(il) <Qp hdg = (1), YVhe # o, t€ [0, 1).
We are using the symbol <-,- >, for the inner product in #.
Let oy be the Hilbert space spanned by the random variables {X(?), 7 € [0, 11},

with inner product
(Z,Z,) =EZ\Z, Z,Z,eHx.

There is an isometric isomorphism between #, and J# x generated by the corre-
spondence X(1) ~ Q(+). V¢ € [0, 1] which follows from the fact that

EX()X(t) = 0t 1) = {Qu Qi 00> 1,1 €[0, 1].
It is well known that if Z € # 4 and f(-) € # o, then
Z ~ f< EZX(t) = f(1)

and it is easy to check that f of (1.6) satisfies [§ X(¢")p(t') dt’ ~ f(-).

IfZ e #,and Z ~ f, it will be convenient to use the symbol {f, X> . torepresent
the random variable Z, which corresponds to the element f of #, under this
congruence. It is well known that if 0 is a best linear estimate for 6 given { Y(2),
t e T} it satisfies

(1.8) GT_(): Prf, X)L [<{Prfy Prfq
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where Py is the projection operator on the subspace of #, spanned by {Q,(-),
1 € T}. Hence, using the fact that E<p;, X)>.<{p,, XD~ = {p1, p2)o We have

(1.9) Var 07 = [|Prf]*17"
where ||- ||, denotes the norm in # . Thus (1.7) is equivalent to

|£1le* = [1Pr.efle”
e ”f”g2 —SUpr,ea, Py f

Suppose that X(¢) has m— 1 quadratic mean derivatives (which entails that f of the
form (1.6) has 2m continuous derivatives). Let 9,,,,“ be the best linear estimate, if it
exists, of 0, based on observing {Y®(¢),v =0,1,2, - m—1, teT,}. Allowing
m—1 (quadratic mean) derivatives to be observable at the design points 7, the
definition of asymptotically optimal may be revised to read: T,,* € 2, is asymptotic-
ally optimal if

(1.10) lim 5 =1.

lo

. 62 1+—0°
(1.11) lim,, , it . ’@n"U'Zn’Tn_az =1
where
(1.12) 02,1, = E(Op.1,~0)".
In this case we have
(1.13) On1,=0 = <Pu1,fs XD~ [{Pmr1.fs Pur,f)0
where P, 1, is the projection operator in #, onto the subspace of #, spanned by
(1.14) {0(+),teT,,v=0,1,2,--+, m—1}
where Q,)(+) = (0"/0s")Q(s, *)|s=, since Q,(+) ~ X(1).
Hence,

Var ém,T,, = [”Pm,T,.lez]_ 1'
If X(¢) and its first m—1 derivatives are continuous in quadratic mean, then
X)), v < m—1 may be approximated arbitrarily closely by {X(t+9,(¢))}%Z] if
we are allowed to choose {d,(1)}Z1 arbitrarily close to , and

(['15) inanmegnm ||f_ PTnmf”Q g inanegn f_ Pm,Tn”Q é inanE@n f—PTnf”Q'

Suppose that the mn elements in brackets in (1.14) are linearly independent for
every T, in @, and every finite n. Then it is easy to see that if f'has a representation
of the form (1.6) then f cannot be in the range of P, 1, for any T, € 9,,n < oo,
that is f cannot have a representation of the form

f(')=2:'"=_01 0,000, teT,,

and conversely. Thus it becomes apparent that different analyses are required
according as some condition like (1.6) holds or not.
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In this note we consider only f of the form (1.6) and primarily the situation
where derivatives are allowed. Sacks and Ylvisaker prove the following

THEOREM (Sacks and Ylvisaker). Under some assumptions on Q and f stated in
[10] and including (1.3), (1.5) and (1.6), T,* = {t;i}1-, given by

t*in i 1
(1.16) J pHCmE () dy = ;J P2+ 0y dy, i=1,2,,n
0 0

is an asymptoticall 'y optimal sequence, and

m!?
(1.17)  n*"|f=P,rafllo’ = WT)TU‘I) pHCm D) du]**  +o(1).

In this note we consider a special class of stochastic processes. X(¢) is assumed to
(formally) satisfy the stochastic differential equation

(1.18) L,X(t) = ‘%@

with random (left) boundary conditions where W(¢) is the Wiener process and
L, is an mth order linear differential operator whose null space is spanned by an

extended complete Tchebychev (ECT) system, of continuity class C?™. For these
processes we will have

A2m—1 2m—1

(1L19) iy ey 05, ) =i,y =y OG5, 1) = (— 1))

where «(f) > 0 but may not be a constant. Thus this class is not covered by [10].

Processes of the form of (1.18) have a number of interesting properties. Q is a
Green’s function for L,* L,,, with appropriate self adjoint boundary conditions,
where L, * is the adjoint operator to L,, and (—1)"«(¢) is the characteristic dis-
continuity of the Green’s function. These processes are m-ple Markov processes
in the sense of Hida [3]. In Section 2, we define the class of processes under con-
sideration and point out that it is an immediate consequence of the total positivity
properties of Green’s functions for certain self-adjoint differential operators that
the dimension of the subspace spanned by the set (1.14) is nm. In Section 3, by

writing down an appropriate representation of the Green’s function for L, we
obtain

THEOREM 2, Let EX(s)X(t) = Q(s, 1), 5, t € [0, 1], where X(¢) satisfies
L,X(t) = dw(t)/dt

X(V)(O)=§v+1’ V=0,1,2,"‘,m—1
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where W(t) is a Wiener process, {&,}r-, are m linearly independent normal, zero
mean random variables independent of W(t), and L,, is an mth order differential
operator with null space spanned by an ECT system of continuity class C*™.

Let

(1.20) £(5) = [4.0(s, 1)p(e) d

and
2m—1 2m—1

lim, =51 Q(s, 1) —limy 5777 (s, 1) = (= 1)"a(0).

Suppose p is strictly positive and has a bounded first derivative on [0, 1].
Then T,* = {t;,}7- with ¢ given by

t*in i (1
(1.21) J [pz(u)oz(u)](z'"ﬂ)—ldu =71-J |:pz(u)oc(u)](2'”+1)_1 du, i=1,2,"",n
0

0
15, =0
is an asymptotically optimal sequence, and

1 m!)? 1 2m+1
02 =are =i J, e

1
+0;2—m.

2. Extended complete Tchebychev systems and associated stochastic processes. In
this section we quote some basic definitions and Theorems which will be used in
the sequel. They may be found in [4].

Let {®,(1)}-, be a set of m functions. The set is said to be a Tchebychev system
if the determinant

‘1)1@1) q)zgtm)

q)m.(tl) (Dm.(tm)

is strictly positive whenever 0 < #, < f, < --- < ¢, < 1, and a complete Tche-
bychev system if {®;}!-, is a Tchebychev system for each v = 1, 2, --- m. Suppose
® (1) has m—1 continuous derivatives on (0, 1). The domain of definition of the
determinant may be extended to O < ¢, =t, £ -+ 1,-; £t, <1, where,
whenever we have an r tuple coincidence ¢, = t,,, = --- = t,,,_, the v+jth
column of the determinant is replaced by

2,9 (1)
(cbm“‘) : (m)

ferj=1,2,,r—L
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(See [4] page 48 for details). If the determinant is always strictly positive, with this
interpretation then {®,}7_ is called an extended Tchebychev (ET) system, and if
{®,}7_, is an ET system for each v = 1,2, ---, m then it is called an extended
complete Tchebychev (ECT) system. The following theorem will be useful to
motivate our requirement that L, have a null space spanned by an ECT system.

Theorem ([4] page 276). Let {®,}/-; be of class C"~! on [0, 1] obeying the
initial conditions

2.1 ®,P(0)=0 p=0, ,2,--, k=2, k=2,3,--+, m.
Then the fbllowing three assertions are equivalent:
(a) {®;}7_, has a representation of the form
D, (1) = w,(1)
2.2) (Dg(t) = (1) Jo 0,(¢,) ¢,

(I)r;l(t) = wl(t)ff) wZ(él)dil j(é)' w3(§2) g, ‘fg'"_zwm(fm— 1)d§m—1

where {w;}/L, are m strictly positive functions with w, of continuity class
cm" 4o, 1];

(b) {®;}/L is an ECT system;

(c) The Wronskian of {®;}}-, is strictly positive on [0, 1], for v = 1, 2, ---, m.
Now let the first order differential operator D; be defined by
2.3 D,® d 1 () i=1,2
(') ( i )(t)—dt(l)l(t) (t) 1=1, 2 s, m

and the mth order differential operator L,, be defined by
(2.4) L,®=D,D,_, - D.

It may be verified that {®,}7_; given by (2.2) are the solutions of L,® = 0
satisfying the initial conditions M ®,(0) = J, ,+; @ (0), v=10,1,2, -, m—1,
where

(2.5) M,=D,D,_, Dy, v=1,2,--,m—1
My =1.
Let .
(2.6) G,(t,s) = oy(1) [Lay (&) dE, [ y(E)dEy - (i wu(Epoy) Ay T2 s
=0 t < s.

G,(t, s) is well known to be the Green’s function for the differential operator L,
with boundary conditions %:

(2.7) A {(M,f)(0) =0, v=0,1,2,++, m—1}.
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That is, the solution to the equation

(2.8) L./=g, fes
is given by

(2.9) J(@) = Jo Gu(t, u)g(u) du.

Let now

(2.10) X(1) = Y0 E @)+ [5Gt u) dW(u)

where W(t) is a Wiener process and {&;}/~; are m zero mean normal random
variables with non-degenerate covariance matrix S = {s;;}, independent of W(r).
We say that a stochastic process X () constructed as in (2.10) formally satisfies the
stochastic differential equation L, X = dW/dt with (random) boundary conditions
MX0)=¢,,,v=0,1,2,---, m—1.

We have
(2.11) EX(5)X(t) = Qofs. 1)+0(s, 1) = (s, 1)
where
(2.12) Qul5, 1) = Yoty T 1 5@, (5)0,(1)
and
(2.13) Q(s, t) = [5G, (s, u)G,(t, u) du.

To insure that Q(s, r) has the usual continuity properties for Green’s functions
(see e.g. [6] page 29) we now further assume that @, is of continuity class C2",
v=12 -, m.
It can be shown that Q(s, 1) is the Green’s function for the differential operator
L,* L, with boundary conditions Zn%*, where
B*:L,0(1)=0

(2.14) D, *L,®(1) = 0

D,*: D, *L,®(1) =0
where

2.15 D;*® L do()

(2.15) O0) = o

We will later on use the properties of the characteristic discontinuity of Green’s
functions for differential equations, (see [6]) namely

2m—1 2m-1

(2-16) limslzasTm—TQ(s, t)_limsﬂas_zmQ(s’ t) = (_1)ma(t)
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where [(—1)"a(t)]"! is the coefficient of 8*"/d¢*" in the expansion of L,*L,.
Here we have

(2.17) o(t) = [Tie 1 0 (1)

Let
(2.18) X(t) = {6 Gu(t, u)dW(u).
We have
wtv
(219) - EXW()X(t)) = 557500 9)

r=ty, 5=t

Let $ be the mn X mn covariance matrix of the mn random variables {X%(t,), u =
0,1,2,---,m—1,i = 1,2, ---, n} withentries given by (2.19). We have the following

THEOREM 1. det & > 0.

ProoF. The remarkable fact that £ > 0 is a direct consequence of Theorem
(8.1) page 547, [4] concerning the strict total positivity of Green’s functions for
differential operators of the form L,,* L,, with (self-adjoint) boundary conditions
BNB*.

COROLLARY. Let T be the (n+ )m x(n+ 1)m covariance matrix of the (n+1)m

random variables
u=0,1,2,---,m—1
(1)
X (t")’{i=0,1,2,'-',n,t0=0
then det X > 0.

The reproducing kernel Hilbert space # ;5 with 0 given by (2.11), corresponding
to the stochastic process X, consists of all functions f for which M,,_ f'is absolutely
continuous and L, f € L,[0, 1], with inner product

(2‘20) S f) = ZZ': 1 231: 1 Sﬂv(Mu— 1f1)(0)(Mv— 1f2)(0)
+ [o (LS D)(u)(Lnf2)(u) du

where S™! = {s*"}.

If X(¢),0 < ¢t < 1is a segment of a stationary stochastic process with spectral

density
) = [Xv oo (i) ~2
where the polynomial Z;":O o,z" has nq real zeroes, then X(¢), 0 < ¢ <1 is an
example of (2.10) with L,® =Y"_,a,®" (compare (2.20) and equation (5.17)
of [7]). The simplest example is the unpinned, integrated Wiener process (see
[12)), L, ® = (d™/dt™)®,
(t—u),"!
(2.21) G,,,(t, u) = _W:l—)!-’ (x)+ =x,x>0
=0 otherwise

and ®,(t) = t71/(i—1)!. (In both these examples, «(?) is a constant).



ON THE REGRESSION DESIGN PROBLEM OF SACKS AND YLVISAKER 1043

We may always add a fixed finite number of points to each member of an
asymptotically optimum sequence of designs without modifying the asymptotic
optimality. Thus we may without loss of generality restrict ourselves to processes
of the form

(2.22) X(1) =[5 G,(t, u)d W (u),

m

since the random variables {&;}/~, are known arbitrarily accurately if we may
observe X(s;), i = 1,2, ---, m for s; arbitrarily near zero, or exactly if we observe
XM0),v=0,1,2, -, m—1.

3. An asymptotically optimal sequence of designs. The goal of this section is to
prove Theorem 2. This is done via several lemmas which study the behavior of

1f =P,z llo*
LemmMmA 1. Let X(¢) by given by (2.10) and let

(3.1) f() =[50t u)p(u)du, where pelL,[0,1].
andletty, = 0,1, = 1.

Then

(3.22) = Pos g = S128 o Fo(s)B(s, Dp(e) ds

where

B(s, t) = [M"D G, (s, u)G,(t, u)du

(3.2b) =y Lo 5 Guls, 0)Gyy (14 1, u) dus
: j:. G,(t, U)Gm,v(ti+ 15 U) dv, s, te[t, tis1]
=0 otherwise,
with
(3.2¢) G (s, ) = M (G (s, u), u=1,2+ m—1

Gools, u) = G, (s, u),
-1

M, is the operator M, defined by (2.5), applied to the variable s, and {s}"}; Z,
are defined by

(3.2d) S7!'= {s L",_vl=0, S;= {Si,uv ,'f,_vl=o
with
(3.2¢) Sy = 17 G u(tig 15 0)Goy (i, 1) dul,
PRrROOF. Let
(3.3) P, X(u)=E{X(u)| X(t;),v=0,1,2,---,m—1, ;e T,}.

Then, since

(3.42) (1) = EX(t) fo X (u)p(u) du
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and

(3.4b) P, f(t) =EX(1) j}, P, X(u)du
we have

(3.4¢) SC) ~ 5 X(w)p(u) du
(3.4d) Pur, f() ~ fo Py, X(u)p(u) du
and

(35)  f=Purflo® = foJo p()p(EX(s)— Po 1, X ()X ()= P, 7, X (1)) ds 1.

We will evaluate the right-hand side of (3.5).

Since ¢, = 0 e T,, it is only necessary to carry out the proof for X(¢) of the form
(2.21), that is, X € 4. This follows, since, in calculating X(¢)—P,, r, X(f), it makes
no difference whether X®(0), v = 0, 1, 2, ---, m—1 are observed, or known to be
zero. Now, for

(3.6) L, X(t) =dw(t)/dt,
X®0)=0,v=0,1,2,---,m—1

X(¢) has the representation.

(3.7 X(1) = oy() fo wa(ty) dty [§ 03(t2) "+ [672 0ty )W (- 1) dty— .

It will be convenient to work with so-called generalized derivatives, M, X(¢),
v=20,1,2, -, m—1. We have the representations

(38) MvX(t) = wv+ l(t)j.::) wv+2(tv+1)dtv+l a 'St(')"izwm(tm— I)W(tm— l)dtm—l
v=0,1,2,---,m—2
M, - X(1) = o, ()W (1),

and

(3.9a) M, X(1) =M, [6G,(t,s)dW(s) v=0,1,2,-+,m—1
(3.9p) = [0 G,\(1, s)dW(s).

G, (1, 5) is the Green’s function for the operator L,, , given by

(3.10) L,®=D,D,. D, 0, v=1,2,---,m—-1

with boundary conditions 4, ,: {®™(0) =0, u =0, 1,2, -, m—v}.
We will use another representation for G, (t,s),v = 1,2, ---, m—1.
Let

(I)l,v(s) = Op—v+ I(S)
(3.11) (I?z,v(s) :wm—v+1(s)ji)wm—v+2(€l)dél

(I)v,v(s) = wm—v+ I(S)J.f) wm—v+2(€1)d€ j(é)l wm—v+3(€2)d52 e
1§ 2wu(éy-1)dé,—y, yv=1,2,,m.
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and let
Dy(s) = Dy.(s) = 0y(s)
D,(8) = Dy u(s) = w4(s) .ﬁ)wz(fl) dé,
(3.12) :
D,(s) = @, (s) = wl(s)ﬁ, w,(&1) ¢y jgl w3(&,)dé, -
_"(é)m_zwm(ém—l)dém—l
as before.
Also let

D, *%(s) =(—1)?
(3.13) q?z*(s) :(—1)3jgwm(ém_1)d§m_1

(I)‘m*(s) = (_1)m+1 I%wm(ém—l)dém—l jgm_l wm—l(ém—z)dém—-z'“
jgzwz(fl)dél-

Algebraic manipulations on the representation of the Green’s function in the
form of (2.6) give the Green’s function, in another, familiar form:

(3.14) G, (t,5) = ZZ’;lv(Dm_v_Ml,m_v(t)(bﬂ*(s) tzs,v=0,1,2,--, m—1
=0 t<s.

Substituting (3.14) into (3.9b), we have that the random variables M, X(t,), have the
representation

(B15) M X(t) =D 0 Py, mm (1) J@, ¥ (W) dW (1), v =0,1,2, -+, m—1
and that the m-dimensional space #,, spanned by {M,X(1,)} 7=, is also spanned by

{J6D,*(u)dW(u)}y-,. (We are using the fact that the three systems of 3.11),
(3.12), and (3.13) are each ECT).
Now we have, for ¢t = ¢,

(3.16) X(O)—E{X(1)| M, X(t;),v=0,1,2, -+, m—1} = [}, G,.(t, u) dW(u).
This (well-known) result follows by writing
(3.17)  X(1) = [§ G, (t, u)dW(u)+['. G, (t, u) dW(u)

= {201 P s (D) J3 @, () dW ()} + { [}, G, ) dW ()}

and the first term in brackets is in #,, while the second term is perpendicular to it.
Using (3.15) and the remarks following, it follows that H( VA, is also spanned by
(M X(t), i G (tig 1, w)dW(u), v =0,1,2, -+, m—1}.

It may then be calculated, for ¢; < ¢ < ¢,,,, that
(3.18a) X(t)—E{X(t)| M, X(t), M;X(t;11),v=0,1,2,--+, m—1}
= [l Hy(t, u) dW(u),
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where
(3.18b) Hi(t,u) = G, (t, u)=Ym .20 Gy u(tis 1, u)s”
Ji G, )G (ti41, v) do,
where S;7! = {s#"} is given by
(3.19)  Si={simh Sty =1+ G u(tis 1, )G (ti4 1, u)du

7 wv=0,1,2,--- m—1
Finally, we have that, for ¢, £ 1 < ¢,
(3.20) X(1)— P, 1, X(1) = X(1)— E{X(t) | M, X(t;),v=0,1,2,---,m—1,t;€T,}
= X(O)— E{X(1) | M, X (1)), M, X(t;11),
v=0,1,2,---,m—1}

since a direct check shows that this last random variable, as given by (3.18) is
already orthogonal to each random variable of the form

_ftt;+le,u(lj+1’ u)dW(u), n= O, 1, 2> ) m_laj = Oa 1, 2, T, n_l'
Finally, it also follows that
(3:21)  E(X(5)= P2, X($))(X () = Po7, X (1)) = O,

selty tjer], telty tivy], i # ).
A quick calculation from (3.18) shows

(322)  E(X(5)=Py,r, X())X ()= Pr, X (1) = Jii** Hi(s, w)H(t, u) du

= Bi(s’ t), S, te[ti’ ti+1]’
and the lemma is proved.
LEMMA 2. Let
1 (S—Ll) +m—1 (t_u)+m—1
(3-29 01 = _[o m—11  (m-D1 9%
Then

it 1‘ "HB d (’”!)2 2m+1
(3.24) r as t i(s, t) t_‘mm(t”l—ti) .

t i

PrOOF. A proof of this lemma appears in [10]. An alternative proof using the
classical Hermite remainder formula appears in [13].
The next step is to evaluate

(3.25)  [ter [tet p(s)By(s, D)p(t)dsdt = [i+ du[ fiirt H(t, u)p(r) de]?

for the general case.
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We remark that B(s, 1), s, t € [¢;, t;+{] is the Green’s function for the operator
L, * L, with boundary conditions #,n%,, ;, where
(3.26) Z;: {(M,f)(t;)=0,v=0,1,2,-+-,m—1}, j=0,1,2,---,n.

LemMA 3. Suppose p(t) has a bounded derivative on [0,1],%> and t, = 0, t, = 1.

Then

14 | 2 (rn!)z "t 2 2m+1

B320) = Purflo’ = Gy &, P OO =1 (1+0(4))]
where

(3.28) A =t =ty

PRrROOF. By the assumptions on p, the mean value theorem, and (3.25)
329)  Jurrdul Jie Hit, wp(t)de)? = p(0) fit o Bi(s, 1)ds di
where 0; is some number in [f;, #;, ], and so, by Lemma 1,

3.30)  |f=Pur Sl =Ti=s pP()(1+0(A)) i+ fitt B(s, t)dsdu.

Hence it remains to show that

(m})

a3 [ s | s 0 = a0~ (4O

m+1)!a

For the case of Lemma 2, we have

(t_S)+m—v—1
(3.32) Gm’v(l, S) =—(m, yv=0,1,2,---, m—1.

In general, we have, by analogy with (2.6), and the mean value theorem

Gm,v(t’ S) = C’)v+ 1(t)jrs wv+2(§v+ 1)d€v+1 e jsgm—zwm(ém—l)dém—la t>s

(3.33) =0 t<s
m (t_s)+m—-v—1
=i=l:1i-lwi(0i")—(;1—_—v___i)—!’ V=0, 132"“;”1“1

where 0, € [s, 1].

Thus, for s, t € [1;, t;,,] we may write

min(s,1) -1 s '
J G,(s, u)G,(t, u)— ZOZ G,(s, )G, (ti 1> u)du s
nv= t

i

t
X J Gm(t3 v)Gm,v(ti+ 1s U) dU
t

2 Recall that since @, € C2™, m, € C*"~ ¢~ and hence «(¢) has at least a bounded first derivative,
mz1.
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m om min(s.0) (g _yp) M= 1(g—yy) M1
(3.34) =j1;[1k[=11 ,(O,I)wk(okz)f ( (m 1)!8”_3)! du
L ﬁ ﬁ 0;(0;3)01(0xa) “(s?:,): 0! (tH(lm__ult_l)! du

0j=1k=pt1
i “(t=0) "t —0) "

s x T ﬁ @;(0;5)0x(0xs) W (m=D! (m—v—1)! va

Jj=1lk=v+1

ﬁMI

where 'Si_l = {Siuv}a Sl = { lllV} and
m R ) P
(3.35)  siuw =, Hlk ]v—[ ,(0,7)wk(0k8)ﬁ (m—p—1)! (m—v—l)‘
and where {0;,0,,/,k =1,2,---,m, [ =1,2,---,8} are all in the interval
[t s 1]
Then, by the continuity and strict positivity properties of the {w;}/-,

(3.36) n; V41 CU,(OJ,) 1—[} v+1w(ti)(1+0(Ai))
v=0,1,2,-,m—1, 1=1,2,--,8.

In particular
(3.37) Sipy = ].—[;'"=u+ I+ o(t)a(t)(A+0(A))5:

where
N tit1 (t+1—ll)+2m p—v—=2

(338) Siuy = J‘n (m—y 1) (I‘i’l —y— 1)'

The matrix S;, S; = {3, uv)» 18 strictly positive definite. We have by (3.35) and the
continuity properties of the matrix inverse transformation

(3.39) st = [T T7eus 1 [T v 1 0;(t)n(1)] 1571+ 0(A))
where 5" is defined by S;' = {§#'}. We therefore have the right-hand side of
(3.34) is given by

(r.h.s)) (3.34) =

mm(st)(s__u) m— l(t—u) m—1

,f[ (1)1 +0(A, ))f m—Dim_nr "

(3.40) —kf:[l 02()1+0A) xS (S"zz}il)fz; ‘_‘ﬂ‘f*l';!_”_ du

w,v=0 Jt;

~MJV(t—'l7)+m_1(ti+1“U)+m_v_1

dv.

(m—1) (m—v-—1)!
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From (3.32), (3.40) and Lemma 2, we obtain

e ti+lB d d (m|)2 2m+1
. (s, 1)ds t—(zm)!(zm_l_l)!“(fi)(tiﬂ—’i)

tiv1 [Cligi min(s,t)(s_ll)+;n—l(t_u)+m—1
(3.41) +0(A,~){J J: dsdt|:t =11 (m—1)! du}

ti i i

B mot Ss—u) "ty —u) !
. "1,[“’
+0(A,){J J dsdt ) I:J;‘ Gn—1)! (n—p=1)! du;

i ti u,v=0

ti

[l

Since the first term in curly brackets in (3.41) is greater than the second term in
curly brackets (which is nonnegative), we have, upon evaluating the first term in
curly brackets

tiv1 (Pligt
J J By(s, t)dsdt
ti ti

__m)
T (2m)!I(2m+1)!

m!)?
= (m)(Tn),tII-)ia(ti)(ti+l
and the Lemma is proved.
THEOREM 2. Let EX(s)X(1) = Q(s, 1), s, t € [0, 1], where X(t) satisfies
LX) = dW(1)/dt
XV0) = &,44, v=20,1,2,-,m—1

(3.42) (1) (tia 1 — 12" T O(A)(trg g — 1)

— )" (14 0(4)

where W(t) is a Wiener process, {&,}o— | are m linearly independent, normal, zero
inean random variables independent of W(t), and L,, is an mth order differential
operator with null space spanned by an ECT system of continuity class C*".

Let f(s) = [ Q(s, )p(t)dt and

62;71— 1 2m—1

limy == Q(s, ) = limy 553 Q(s, 1) = (= 1)"(1).

Suppose p is strictly positive and has a bounded first derivative on [0, 1]. Let

1

o ;
m l
(3.43) J‘ [o?(u)o(u)] ™+ D" du = ~ [P2()o(u)]®™* D du i=1,2,--+,n
0

0
*
to, =0.
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Then T,* is an asymptotically optimal sequence, and

(a4) = Puritle? = ooy v a0 |
2 T arm2m)!2m+1)!|

0
1
+OF"'

PROOF. Let A = max; |t;4, —1;]. We know that for any asymptotically optimal
sequence, with p > 0, lim,_,A = 0, since otherwise | /=P, f]o> Will not tend
to zero. The following argument is similar to that in [8].

Using a Holder inequality on (3.27), gives, for any T, that includes ¢, = 0,
th=1,

= Prr S g 2 w5 pams(gpizny
m, T,/ ||Q =n2m(2m)!(2m+1)! i=0 ' '

(3.45) (L O0(A) i1 — ti):|2m+ 1

e [ RCRC G R IS

n?" (2m)!2m+1)!] |,
Now, using (3.43) and the mean value theorem,

Ii*+ln|
2m+1)-2 *) . (2m+ 1)1 K\ (4% L 2 (2m+1)-1
. i i i+1,n in
(3.46) p (0:%) (07) (% =17 —j* Lo*(u)o(u)] du

tin

=_’17f01 [p2(u)a(u)]2m* D7 du
where 60,;* is some number in [, t ]
If, in Lemma 3 we use that
(3.47) p*(t)ot:)(1+0(4)) = p*(0:*)a(0,*)(1 +0(A))

we have

- 1 ! 2 1 s ot 1) 2m+1
“f— Poreflle” = p2mti (2m)("z;rzl +1)! [Jo [o?(u)o(u)] 2™ D ‘l“]
(3.48) : :lg (14+0(A))

Since Hf— P,,,)T",,f|Q2 achieves the lower bound (3.45) up to a vanishingly small
term, 7,* is an asymptotically optimal sequence. This completes the proof of

Theorem 2.
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It appears that the theorem can be proved under weaker conditions on p, similar
to those considered in [10]. We do not carry this out.

4. Other related results. Suppose that a square root G of Q is known of the form
(4.1) o(t, t') = [§ G(1, W)G(t', u) du
where only G(t, -) € L,[0, 1], for every 7€ [0, 1]. Then X(¢) has a representation
X(1) = {4 G(t, u) dW(u) and
1) = .00t 1)p(1)dr

(4.2) 7Y ~ [ p(H)x (1) dt
= {4 Jo p(t)G(t', u)dt' dW (u)
= fo h(u) dW (u)

where

(4.3) h(u) =[5 G(t, u)p(t)dt.

If X(¢) has m— 1 quadratic mean derivatives, then for any constants {c;,},
(44)  [f=Xlo X050 @i o® = E{fo p()X (1) dt =31 050 en X V(1)
= Jo(h(u)=Y 0 Yi0'e ”)(t,-, u))2 du

v

where GYt;, G(1, u)

u) = R

ti

Hence the design problems we have considered are equivalent to the problem of
best approximation of h(u) by linear combinations of {G(t;, u)}i=, or
(GO (t;, u)}y=g "o in the L, norm.

Let ge#,, then a quadrature formula for (6 p(t)g(r)dt is given by
|& p(t)Pr,g(1) dt, since this latter expression is a linear combination of the values
of g(t)att = t;eT,.

Then
| §6 p(D)g (1) dr =5 p(t)Pr,g(1)d1|?
(4.5) = [Kfs 9= Pr,9>0|*
= [S=Pr,f. 90" = 9]0/~ Pr. /o
< glo-Ja(h(u)=Yi- ¢;G(t;, u))* du.

m-—1
(t—u)y
In the case G(t, u) :—U”"—l)'—’ o(t) =1, we have

(1— u)'”.

m!

(%.6) h(u) =
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By making the change of variable x = 1 —u in (4.5) the problem of minimizing
| /= Pr, flo® is equivalent to that of optimally approximating the monomial
x,,/m! by linear combinations of the functions

(¢; = 1—1)), in the L,[0, 1] norm. Similarly, it is clear that the problem of mini-
mizing ||f=P,.r.f|o® is equivalent to optimally approximating x™/m! by linear
combination of the functions

(x—f,-)+’”_1: m—1n
(m—=1-=v)! §,-6 =0

in the L,[0, 1] norm. Such linear combinations are known as spline functions.
(See e.g. the volume in [11]). Functions of the form

n n om—1 (x_€)+nz—1—v

(4.7) ()=t 2 LG Y m—1—v)!

m!

for some constants {c;,} are known in the approximation theory literature (see

[5] [11]) as monosplines.
Monosplines of smallest L, norm have recently attracted attention in the con-

text of establishing optimal quadrature formulae via minimizing the error bound
of (4.5). Some of the results are relevant to the experimental design problem.

These results are available when (f;—u)," ' "*/(m—1—v)! is replaced by
wa(tiu) of (2.6),v=0,1,2,...,m— 1.°> We state two relevant theorems, in our

notation.
THEOREM. (Karlin [5] following Theorem 5). Let Q be of the form (2.13), f given by
(4.2) with p(t) = 1. Then, for every T, € @, there exists a T,,, € D,,, such that
1= Pt So* = /= Pur.flo™
Professor Karlin informs us that it is sufficient for this Theorem that only
p(H)> 0.

THeoREM. (Karlin [5] Theorem 5). Let Q satisfy the hypotheses of the preceding
theorem. Then
lo

infT,,eg,. “f— PT,,f“Q2 = “f_PT,,*f

where
() T,* is unique.
(i) T,* consists of n distinct points.
(iii) (f=Pr.fs 00 =0, t;*eT*, (m>1).

3 Linear combinations of the functions {G._.(t;, #)} "Zo," -1 are so called Tchebychev
splines with respect to L*, compare [4], Chapter 10, Section 3.
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The statement (iii) is the remarkable result that, at the optimal design 7,* for
data without derivatives, the addition of first derivatives to the data set provides
no new information.

Acknowledgment. The author would like to thank Professors Parzen, Ylvisaker
and Karlin for their helpful discussions and the last two for making available un-
published manuscripts.
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