The Annals of Mathematical Statistics
1971, Vol. 42, No. 3, 1020-1034

ROBUST ESTIMATES OF LOCATION: SYMMETRY
AND ASYMMETRIC CONTAMINATION!

By Louts A. JAECKEL
University of California, Berkeley®

1. Introduction and summary. The problem of finding location estimators which
are “robust” against deviations from normality has received increasing attention
in the last several years. See, for example, Tukey (1960), Huber (1968), and papers
cited therein. In the theoretical work done on the estimation of a location para-
meter, the underlying distribution is usually assumed to be symmetric, and the
estimand is taken to be the center of symmetry, a natural quantity to estimate in
this situation. Since the finite sample size properties of many proposed estimators
are difficult to study analytically, most research has focussed on their more easily
ascertainable asymptotic properties, which, it is hoped, will provide useful approxi-
mations to the finite sample size case. Most of the estimators commonly studied are,
under suitable regularity conditions, asymptotically normal about the center of
symmetry, with asymptotic variance depending on the underlying distribution. We
thus have a simple criterion, the asymptotic variance, for comparing the perfor-
mance of different estimators for a given underlying distribution, and of a given
estimator for different underlying distributions. Huber (1964) has formulated and
solved some minimax problems, in which the estimators are judged by their
asymptotic variance.

In Section 2 we define and state the asymptotic variances which have been found
for the three most commonly studied types of location estimators. In Section 3 we
demonstrate some relationships among the three types of estimators, and in
Section 4 we show that Huber’s minimax result applies to all three types. Then, in
Section 5 we consider an aspect of the more general estimation problem in which
the distributions are not assumed symmetric. A model of asymmetric contamination
of a symmetric distribution is formulated, in which the amount of asymmetry tends
to zero as the sample size increases. The estimators here are thought of as estimating
the center of the symmetric component of the distribution. The maximum likeli-
hood type estimators are shown to be asymptotically normal under this model, but
with a bias that tends to zero as the sample size increases. The estimators may be
judged by their asymptotic mean squared error, a concept which is made meaning-
ful by the model. We conclude in Section 6 with a minimax result analogous to
Huber’s, for which we allow both symmetric and asymmetric contamination of a
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given distribution and judge the estimators by their asymptotic mean squared
error.

2. Definitions. Let X, X,, :--, X, be independent identically distributed random
variables with distribution F(x — ), where F is symmetric, that is, F(x) + F(—x) = 1.
We assume F has a density f. We want to estimate the unknown parameter 6 and
judge the quality of an estimator by its asymptotic variance. Each of the three
types of estimators defined below is, under general regularity conditions,
asymptotically normal with mean 6 and asymptotic variance as given below. For
more specific statements of regularity conditions under which the variance formulas
are valid, see the works referred to below. Since we shall be dealing with translation-
invariant statistics, we shall henceforth assume that & = 0. Note that the estimators
defined here are actually sequences of estimators indexed by #n, the sample size, but
we shall simply think of them as single estimators, without an index, whenever no
confusion will arise thereby. The notation used below is essentially that of Huber
(1968).

(i) Maximum likelihood type estimators, which, following Huber, we shall call
M-estimators.

Let y(x) be such that y(—x) = —y(x). Define M as a solution of the equation

Sty WX = M) = .

If Y(x) is monotonic, M is essentially uniquely determined. The asymptotic
variance of n* M is
J () f (x) dx

= TV dr

See Huber (1964).

(ii) Linear combinations of order statistics, which we shall call L-estimators.

Let X(;y < -+ £ X, be the order statistics derived from the sample. Let A(r)
be such that h(f) = h(1—1¢) and [§h(t) dr = 1. We shall adopt the following
notational convention: Let i* = i/(n+ 1). Define L as

i=1

S 1=

The asymptotic variance of n*L is

o 2(F) = fo U(t) dt,
where

L))
u@e) = j‘*f[—FT(ujl du.

See Chernoff, Gastwirth and Johns (1967) and Huber (1968).
(iii) Estimators derived from rank tests, which we shall call R-estimators.
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Let J(¢) be such that J(1—¢) = —J(¢). For any given r, form the 2» numbers
X,—rt, o, X,—r; —X{+¥r, .-, — X, +r. Order these 2n numbers and let V; =
if the ith smallest is of the form X;—r, and V; = 0 otherwise. Form the sum

W) = ZJ(z +1>

Define R as a solution of the equation W(R) = 0. If J is monotonic, R is essentially
unlquely determined. The asymptotic variance of n*R is

[J3(2) ar
d 20
< o VIF)L} f (%) dX>
X

See Hodges and Lehmann (1963). Although the estimator here is derived from a
two-sample rank test, it is asymptotically equivalent to the estimator originally
derived by Hodges and Lehmann from a one-sample rank test.

OR (F):

3. Relationships among the estimators. For any given symmetric F satisfying
appropriate regularity conditions, there is a three-way correspondence among the
three types of estimators which preserves the asymptotic variance under F. For a
given odd ¥ defining an M-estimator, we define functions defining an L-estimator
and an R-estimator as follows.

Let t = F(x), so that x = F~'(¢). We assume for simplicity that F is strictly
increasing. Let A(t) = W'[F~'(¢)] = ¥'(x), where Y'(x) = (d/dx)(x). Let J(t) =
YIF~I(0)] = Y(x).

Since ¥ may be multiplied by a constant without affecting the estimator, we
may assume that [y’(x)f(x)dx = 1. This condition implies that [h(z)dt =
[ RIF(x)1f (x) dx = [¥'(x)f(x)dx = 1. Since Y(—x) = —y(x), the symmetry
conditions on & and J are clearly satisfied.

THEOREM 1. Assuming the asymptotic variance formulas hold, we have, for the
estimators defined above, o\ *(F) = 0 *(F) = ag*(F).

PROOF. 6, (F) = [ y*(x) f(x) dx, since the denominator in the formula is 1. For
the L-estimator we have

e B[F(x
Vo) = i g grro MEC)
SIF™ (u )] J(x)
= 5 OY(x) dx = YIF (1)),
since Y(0) = 0. Therefore,
0, 2(F) = [ U0y di = [YPIF (O] dt = [ Y3/ (x) dx = op*(F).

Since the denominator for the variance of the R-estimator is the square of

[ 52 vtreom s de = [ Tveswan =1,

—f(x) dx
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we have
o’ (F) = [J2(1) dt = [YP(x) f(x) dx = 6)*(F).

For the special case of Huber’s estimator with parameter k, Huber (1964),
Y(x) = x for |x| <k
= ksign(x) for |x| =k,

we have
h(t) = constant for F(—k) < t < F(k),

=0 otherwise.

This is the trimmed mean with trimming proportion « = F(—k). The equality of
variances in this case was recognized by Bickel (1965). The corresponding R-
estimator is defined by

Jt)=F~Yt) for F(—k)<t< Fk),
=k for t = F(k),
= —k for t < F(—k).

If Fis the contaminated normal distribution considered by Huber, this J(¢) defines
asort of truncated Van der Waerden test. See Gastwirth (1966) page 946.

It follows from the theorem that if any one of the three estimators is asymptotic-
ally optimal for F among translation-invariant estimators, then all three are.
Correspondences of this type have been given in the asymptotically optimal case
by Gastwirth (1966) and Huber (1968).

We shall show that under some more restrictive conditions the relationship
between the M-estimator and the corresponding L-estimator is even closer than
that indicated above. But first we shall define some terms and prove a lemma.

DEFINITION.
(i) The sequence of random variables {Z,} is bounded in probability if
Vo> 03B, NsuchthatVn 2 N: P{|Z,| < B} =2 1-4.

(ii) The sequence of random variables {Z,, } is bounded in probability uniformly
ink if

Vo >03B, NsuchthatVn = N: P{|Z,| < B,Vk} = 1-6.

(iii) The sequence {Z,}({Z,}) is O(n®) in probability (uniformly in k) if the
sequence {Z,/n"}({Z,,/n"}) is bounded in probability (uniformly in k).
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DEerINITION. The sample distribution function is

i
F,(x) = " for X <x< Xy, i=1,,n-1
=0 for x < X
=1 for x> X
== — for x = X, i=1,-,n

n+1

LEMMA 1. Suppose F has a density f(x), and there are numbers oq > 0, € > 0,
and fy > 0 such that f(x) Z fo for all x such that ag—gy < F(x) = 1—(0tg—80)-
Then X;,)—F~'(i*) is O(n™*) in probability uniformly in i = [ogn]+1, -+, n—[oon].
That is, for all > 0 there exist D and N such that for alln = N:

D
P{|X,—F ()| = n—%Tfori = [agn]+1, -+, n—[oton]} = 1—0.
0

ProoF. The statistic K, = n* sup |F,(x)— F(x)| has a limiting distribution which
was found by Kolmogorov. See Hajek and Sidak (1967). For a given J, we can
therefore choose a D so that for sufficiently large n, P{K, = D} = 1-06.

Suppose K, < D; that is, |F,(x)— F(x)| = n~*D for all x. Then |i* — F(X)| £
n %D for i =1, n Since ([aon]+1)* - ag and (n—[oon])* = 1—0ao, and
n*D < ig, for sufficiently large n, we have, for large n, ag—¢o < F(X3) <
1—(og—eg) for i = [aon]+1, .., n—[aon]. Since, for ag—go <t < 1—(og—¢g)
we have

zF_l(t) = —Tl——é—l :
dt SIFTIO1 ™ fo

we can apply the mean value theorem to '~ (1), obtaining

1
FI@%) —F ' [F(Xu))| £ = |[i*—F(Xe)| = =57
| Wl = 7 i) <
fori = [oon]+1, -+, n—[oon]. The lemma follows.
The effect of this lemma is to convert a uniform vertical bound into a uniform
horizontal bound. The lemma clearly applies to any unimodal density.

THEOREM 2. Suppose F has a bounded density f and satisfies the conditions of
Lemma 1 for some oy. Suppose y(x) and h(t) are related by h(t) = W'[F~'(1)] =
Y'(x), the asymptotic variance Jormulas apply, and h(t) = y'(x) = 0 for t < oo
and t > 1—oy. Finally, suppose that \ is continuous, and that, at all but a finite
number of points ' is defined and bounded and has a bounded derivative. Then

wH(M—L) - 0.
Infact, M—Lis O(n™") in probability.



ROBUST ESTIMATES OF LOCATION 1025

Proor. If we write X ;) = F~'(i*)+e;, we have, by Lemma 1, ¢; is O(n™?) in
probability uniformly in i such that ey < i* < 1 —a,. Since F~'(1 —i*) = — F~1(i*)
and A(1 —i*) = h(i*), Y h(i*)F ~'(i*) = 0. L is therefore defined by

nL = ) h(i*) Xy = D hGHIF (%) +e)]
= Y h(i¥)e; = Y Y IFTI%)e;.

M is defined by Y Y(X;,—M) = 0. We can expand each term of this sum as
follows:

(M V(X o= M) = YIF'(*) +(e;— M)]
= Y[F7 )]+ (ei= MY/ [F7 ()] +ry.

Let r = ) r;. These remainder terms will be dealt with later. Summing over i in (1)
we get

0= Zi l//(X(i)_M) = Zi l//[F—I(i*)]
+2 e [FTIE] =M 3 ' [F~ )] +r.
Since Y(—x) = —y(x), YY[F'(i*)] = 0. Since jh(t) dt =1, YY'[F(i%)] =

Y'h(i*) = n+0(1); the excess here ‘may be absorbed into the remainder term r.
Therefore,
0=0+nL—nM+r,

orM—L = r/n.

We must now examine the remainder. First suppose oy < i* < 1—0a,. If no
“bad point” of ' lies between X, —M and F~'(i*), then by (1), |r] <
1(e;— M)*-sup y", which is O(n~!) in probability uniformly in i. The contribution
of these terms to r is therefore O(1) in probability. If a “bad point™ of V' lies
between X;,—M and F~'(i*), then r; is O(n"*) in probability uniformly in i,
since ¥ is continuous and ¥’ is bounded. Since f'is bounded, the number of such i
is O(n*) in probability, so their contribution to r is O(1) in probability. Now
suppose i* < a,. Since Y(x) is constant for x < F~'(a,), (1) implies r; = 0 if
Xiy—M < F~'(ao). If X;)—M = F~'(0,), we have, letting j be the smallest i
such that i* > o, 0= X;—M—F (o) < X;)—M—F Y(ag) = F7I(j*)—
F~'0t9)+e;—M, which is O(n™*) in probability. Thus the intrusion of Xy—M
into the non-constant part of the domain of Y is O(n~ %) in probability uniformly in
i Hence, by (1), r; is O(n"?) in probability uniformly in i. Since the number of
such i is O(n?) in probability, their contribution to r is O(1) in probability. A
similar argument holds for i* > 1—a,. Therefore, r is bounded in probability,
and the theorem follows.

The theorem sheds light on a point which has caused some confusion. Huber’s
estimator, which we defined earlier, appears at first glance to resemble a Winsorized
riean rather than a trimmed mean. See Huber (1964). But we now see that Huber’s
estimator is in fact very closely related to the trimmed mean; indeed, an iterative
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procedure to compute Huber’s estimator should use the more easily computed
trimmed mean as a first approximation. Thus we can assert that symmetric trim-
ming of outliers is in no sense “throwing away’’ the information contained in
those observations. It would seem that trimming does what Winsorizing was
intended to accomplish: it takes into account the existence of the outlying observa-
tions in each tail, but not their values.

We conjecture that a result analogous to Theorem 2 holds with respect to the
R-estimators.

4. Huber’s minimax result. The asymptotic minimax problem stated below was
solved by Huber (1964) in terms of M-estimators. In view of our correspondence
among the three types of estimators, we may ask whether the corresponding L-
estimators and R-estimators are also solutions to this problem. We shall answer
this question in the affirmative. We restrict ourselves to symmetric distributions.

Let C be the set of distributions F = (1 —&)G +¢H, where ¢ is fixed, G is a fixed
symmetric, strongly unimodal distribution, and H is a variable symmetric distri-
bution. We want an estimator which minimizes the supremum over C of the
asymptotic variance. Huber solved this problem by showing the existence of a
saddle point: there is an F, in C and a y, defining an M-estimator such that the
estimator is asymptotically optimal for F, and for all F in C, 6,2(F) £ 0,/2(F,).
F, is defined by

So(x) = (1—e)g(—x,) exp (k(x+x,))  for x = —x,,
= (l—g)g(x) for —Xo < X < Xgp,
= (1-¢)g(x,) exp (—k(x—x,))  for x = x,,

for some x, and k& depending on G and &. Y o(x) = —f,'(x)/fo(x) is monotonic, and
forx < —xyand x > x,isconstant. See Huber, page 81.
The L-estimator and R-estimator corresponding to this M-estimator are defined
by
ho(t) = o' [Fo™ (1)1 = ¥o/(x)

Jo(t) = YolFo ' (1)] = ¥o(x).

It follows that ho(¢) = 0 and J,(¢) is monotonic, and for ¢ < Fo(—x,) and
t > Fy(xq), ho(t) = 0and Jy(¢) is constant.

and

THEOREM 3. Assuming the asymptotic variance formulas apply, the estimators
defined above are also solutions to Huber’s minimax problem. We assume all distri-
butions under consideration have densities.

By Theorem 1, the estimators defined by %, and J, are asymptotically optimal
for Fy. To show that these estimators have the required minimax property, we
must show that for all Fin C, 6,*(F) £ 0,%(F,) and 6g(F) £ 0x*(F,). We need
the following inequality:
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LEMMA 2. For all Fin C, and for all t such that 3 < t < Fo(x,):

FIFTH D] 2 folFo~ (D).
Proor. Choose Fin C. Then F(0) = Fy(0) = 3.
For 0 £ x < x,,
So(x) = (1-g)g(x) = f(x).
Therefore, for 0 < x £ x4, Fo(x) £ F(x). Letting ¢t = F(x), we have, for § <
1 é F(x())’
Fo[F~'(] £ FIF7'()] = t.
Therefore,
F~i(1) £ Fo (1)
Since Fy(xo) £ F(x,), this inequality holds for 1 < ¢t £ Fy(x,), and we have, for
these ¢,
0 F7l (1) £ Fo '(1) £ Xo.
Since, for 0 < x £ x,,/f(x) = fo(x) and f(x) is monotone decreasing,

FIFTIO1 2 folF7H(1)] 2 folFo ™' ()],
and the lemma is proved.
Proor oF THE THEOREM. We consider the L-estimator first. Since Ay(u) = 0,
Lemma 2 implies, for 4+ < 1 < Fy(x,),
how) o)
SIFTI @] = folFo ']’

and therefore
. ho(w) . ho(w)
U = —22 gy < = [, ———
O = b gy = VO = b pE =

for 3 £t £ Fy(xg). Since hy(u) = 0 for u > Fo(x,y), U(t) £ Uy(t) for all t = 3.
By symmetry, U(1—1) = —U(t) and Uy(1—1) = —Uy(t), so U*(t) £ Uy*(t) for
all ¢, and therefore 6, *(F) £ 7 *(F,).

We now consider the R-estimator. Since the numerator in the asymptotic
variance formula does not depend on F, we need consider only the integral in the
denominator. We write

d
Jo'(t) = = Jy(t
0() d[ 0()>
co that

d
'Z;CJO[F(X)] = Jo'[F(x)]/ ().
Substituting 7 = F(x) in the integral, we get
d
1= J—J; JolF(x)]-/(x) dx = [ Jo'[F(x)]/(x)f(x) dx
= [0 Jo' () f[F~ ()] du.
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Similarly, with 1 = Fy(x),
d
I, = fa JolFo(x)] fo(x) dx = fJOI[FO(X)]fo(X)‘fO(X) dx

= [6J0'(t) fo[Fo™ ()] .

Since the integrands are symmetric with respect to r = 4, and since for t > F(x,),
Jo(t) is constant, so that J,'(r) = 0, the domain of integration we must consider is
3 =t £ Fo(xo). Since J(t) is monotonic, J,'(1) = 0. Therefore, by Lemma 2,
0 < I, < I, so that I,*> < I?, and ax*(F) £ 0g2(F,).

5. A model for asymmetric contamination. When we restrict our attention to
symmetric distributions, we have a natural estimand, the center of symmetry, and
since the estimators we have considered are symmetrically distributed about the
center of symmetry, we have a natural criterion for judging the estimators, their
asymptotic variance. But these conditions do not exist in the case of asymmetric
distributions. In order to simplify the problem so that it can be related to the
framework to which we are already accustomed, we shall consider distributions
F = (1—¢)G+eH consisting of a symmetric part, G, with a small amount of
asymmetric contamination, H, added to it, and we shall consider the problem
of estimating the center of the symmetric component of the distribution. See
Huber (1964), page 82. Since the estimators will in general be biased now, a
natural criterion for judging them is their mean squared error, a measure which
takes into account both their inherent variability and their distance from the
estimand.

As in the symmetric case, our goal is to obtain asymptotic results which hopefully
will furnish useful approximations for finite sample sizes. Therefore, we wish to
consider estimators in terms of what we shall call their asymptotic mean squared
error. But for a fixed amount of asymmetric contamination, the estimates generally
do not converge to the center of G as n increases. See Huber (1964), page 83. Thus,
in order to give meaning to the concept of asymptotic mean squared error, both the
bias and the variability of the estimator must be made to approach zero at the
same rate. We are thus led to the following model. Let the sequence of distributions
{F,} be defined by

F,=(1-cn"*G+cn *H,

where G and H are fixed distributions, G is symmetric, 7 is the sample size, and ¢ is
a constant. So the underlying distribution is F,(x— 6) and the problem is to estimate
the parameter 0. As before, we shall assume that 6 = 0. (This F, is not to be
confused with the F, defined in Section 3.)

Let N be an estimator of 6 under the model. We shall see that under certain
conditions, n*N is asymptotically normal (b, 62) for some constants b and ¢2.
When this is the case, we shall define b to be the asymptotic bias and ¢*+5b? to
be the asymptotic mean squared error, or AMSE, of N under the model. For finite
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n, N is thus approximately normal (n~*h, n~'6?), and (¢* +b%)/n will serve as an
approximate mean squared error.

The statistical interpretation of the model is as follows. The amount of asym-
metric contamination is large enough to affect the performance of the estimator,
but is too small to be measured accurately at the given sample size. We may think
of the model as taking a given contaminated distribution and embedding it in a
sequence of distributions, each of which has an amount of contamination which will
affect the behavior of the estimator in approximately the same way.

We shall now prove the consistency and asymptotic normality of arbitrary M-
estimators under the model. The method of proof is to compare the performance
of a given estimator under {F,} with its performance under G.

For each n we simultaneously construct a random sample of size n from G and
from F,. Let X, ---, X,, be i.i.d. random variables with distribution G. Let B, be a
binomial variable corresponding to n trials with success probability n”*c. Let
Y,, -+, Y, be i.i.d. random variables with distribution H. For i = B,+1, ---,n
let Y; = X;. Then Y, ---, Y, is essentially a random sample of size n from F,.
The ordering of the Y; should be randomized, but this will not be necessary.

Let Y be an odd, monotonic, bounded function defining an M-estimator. We
define the statistics M and N as the solutions to the following equations:

QU(X;—M) =0

QY(Y;—N) = 0.
M and N are thus the location estimates defined by y under G and {F, } respectively.

and

LeEMMA 3. Suppose G has a bounded density and the asymptotic variance formula is
valid for  under G. Suppose that \ is continuous, and that ' and " are continuous
and bounded at all but a finite number of points. Suppose Egyy’ > 0 and Eg’(x —¢)
is continuous in €. Let A = [ y(x)H(dx) and let b = cA|Egy’. Then

n*(N—M) -, b.

PrOOF. We show first that N is O(n~*) in probability; that is, for all ¢ > 0, there
exists J such that P{[N| < n™%} = 1—gq for sufficiently large n. Since y is mono-
tonic, |[N| < n™#8 is equivalent to Y y(Y;—n~ %) < 0 < Yy(Y,;+n"*5). We con-
sider the first inequality.

nTHSE (Y= The) = T Yl YY)
= S WO 0) 7 T YK )

Since ¥ is bounded and B, is O(n?) in probability, the first two sums on the right
are bounded in probability for each fixed §, with bounds not depending on §. The

third sum is a sum of i.i.d. bounded random variables, and may therefore be
expressed as

nEEg(x —n~*8) + S,(9),
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where S,(0) is bounded in probability for each fixed d, with bounds not depending
on 6. This follows from the Tchebycheff inequality, since the boundedness of
imposes an upper bound on the variance of S,(d).

Because of our assumptions on ¥/, we may differentiate Egjy(x —¢):

d

- J Y(x—e)g(x) dx = —Eg¥'(x—¢).
Therefore, since Egy = 0,

Eqy(x—n~%3) = —n"3Egp’'(x—e,)

for some 0 < ¢, < n~*5. Hence, for a given ¢, there is a D such that for sufficiently
largen,

P{‘l’l_%z W(Yi_n_%5)+5EGlp’(x_3n)| < D} g l_q/za
foreach fixed 6. Nowletd = 2D/Egy’. Since Egy'(x —¢,) — Egy’, we have
Pin™t Y (Y,—n74) < 0} = 1-¢)2

for sufficiently large n. A similar result holds for } y(Y;+n~%5), so N is O(n"*) in
probability.

Since X;— M = (X;—N)+(N—M), we can write
2 Y(X;—=M) = Y(X;—N)+(N—M)'(X;—N)+R;,

where R; is O(N— M)? uniformly in i if no bad points of y’ lie between X;—M
and X;—N, and R; is O(N—M) uniformly in i otherwise. Since M and N are
O(n~?) in probability and g is bounded, the number of R; of the latter kind is

O(n?) in probability. It follows that R = )" R, is bounded in probability.
By the definition of N,

Vi WX =N) = Y2 Y(Xi=N)+ ) o, Y(Y;—N)
= Y WX —N)=Y P (Y, = N).

Now

1 B

2 L WE—N) = JU)G(E) = 0
and '

1 B

7 X U= N) = [YH@) = 4
and

n~*B, -»pec,

SO

. n - 1 n
nTt Y VKG=N) = a8y o b (K= N) oy —ed.
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Summing over i in (2), we get

0= Ztﬁ(X,.—M) = Z:ﬁ(Xi—N)+(N—M)Zzp’(Xi——N)+R.
Since
l/nzwl(Xi_N)_’PEGl//, >0,
——n"‘*”Zt//(Xi—N)——n_%R_) cA
n~ 'Y ¥'(X;—N) P EqY’

As a consequence of Lemma 3, we have

we have

n(N—M) = = b.

THEOREM 4. Under the conditions stated in Lemma 3, n*N is asymptotically normal
with mean b and variance ¢,*(G). The asymptotic bias of N is therefore b, an.. the
AMSE of N is
[ YA(x)g(x) dx+c? 4>

{J V' (x)g(x) dx}?

PROOF. Since n* M is asymptotically normal [0, 6,,2(G)] and (n*N—b)—n*M — 0
in probability, n:N—b is asymptotically normal [0, ¢,,%(G)]. The theorem follows.

We may draw some elementary conclusions from Theorem 4. Suppose g is
unimodal, and we are considering the family of estimators with parameter k
defined by

0u*(G)+b* =

Y(x) = x for |x| <k
= ksign(x)  for |x| = k.

Suppose the amount of contamination is n~*c, and H puts all of its mass to the
right of k, so that the bias is as great as possible. The limiting case of this family of
estimators as k — 0 is the sample median. Since sup g(x) = g(0),

1k [¥'(0)g(x) dx = 1/k [£, g(x) dx < 29(0),
and, assuming g(x) is continuous at x = 0,

1k [ ' (x)g(x) dx — 29(0)
ask — 0. So we have
ck ¢ c
b = = =
Egy'  kT'Egy’ = 29(0)
for all k, and b — ¢/2g(0) as k — 0. Thus the asymptotic bias for this family of
estimators is minimized by the sample median. If we consider the AMSE as a
function of k, we see that b*(k) = AMSE(k)—c?*(k) is an increasing function of k,

since

k %, g(x) dx

decreases as k increases. Therefore, if o*(k), the asymptotic variance under G, is
minimized at k = ko, AMSE (k) must attain its minimum at some k < k,. Thus,
some value of k smaller than &, will perform better when asymmetric contamination
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is present, but at the cost of some increase in variance if there is no asymmetric
contamination.

In general, when we allow some asymmetric contamination in a model containing
symmetric distributions and we judge estimators by their AMSE, we can expect
some trade-off between the variance due to the symmetric distributions and the
bias due to the contamination. The theorem in the next section illustrates this
point.

We state without proof the asymptotic bias and AMSE for the a-trimmed mean,
assuming H puts all of its mass to the right of x,_,, where x, = G~'(x) and
Xi_p = G M(1—0).

and

AMSE () = o%(a) +b*(2)

1
= Gy Usr 2700 du+Qut ).

The proof'is similar to that of Theorem 4.

6. A minimax result. We shall now obtain an asymptotic minimax result analo-
gous to that derived by Huber (1964), page 80.

For a given symmetric, strongly unimodal distribution G satisfying the con-
ditions of Huber’s theorem and a given 0 < ¢, < 1, we consider the class C’ of
sequences of distributions {F,} of the form

F,=(1—-n"*)[(1-e)G+eH,]+n *cH,

where H, is an arbitrary symmetric distribution, H, is a completely arbitrary
distribution, and ¢ and c¢ satisfy

e+c?

3) T+ go-

We may rewrite (3) as ¢* = (go—¢)/(1 —¢o), from which we see that the larger ¢
is, the smaller ¢ must be, and when ¢ = &, its maximum allowable value, ¢ must be
zero. (3) thus represents a kind of trade-off between bias due to H, and increased
variance due to the symmetric H,. We shall write AMSE (y, F) for the AMSE of
the estimator defined by ¥ under {F,}.

THEOREM 5. AMSE (Y, F) has a saddlepoint: There is a sequence {F,} in C’
and a\y , such that

supr,; AMSE (¥ o, F) = AMSE (o, Fo) = inf, AMSE (¥, Fy),

where {F,} ranges over C' and \y ranges over all functions to which the conclusion of
Theorem 4 applies. Since ¢ = 0 and ¢ = ¢, for the sequence {F,,} we may write
Fon,=Fo=(—e0)G+eoHy Fo and Y, are the same as those shown by Huber,
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page 81, to be the saddlepoint for the set of symmetric distributions defined in his
theorem by G and ¢,. See Section 4 of the present paper. We assume Theorem 4
applies to o for all {F,} in C’.

Proor. As in Huber’s theorem, F, is symmetric and is a member of C’, and
Y is odd, monotonic and bounded, and is asymptotically optimal for F,. There-
fore, AMSE (Yo, Fo) £ AMSE (Y, F,) for all y; in fact, this inequality holds for

all translation-invariant estimators.
It remains to show that AMSE (y,, F) < AMSE (Yo, F,) for all {F,} in C'.
(Compare Huber, page 81.) By Theorem 4,

[ o1 = )G + 6H, )(d) + ¢ (] o) Ha(d) )2
AMS F) =
MSE o, F) Vo =G +oH, ) )2

Since [t//o(x)I < k,where k is as defined in Huber’s theorem,

Joo* )1 =e)G +eH, J(dx) £ (1—8)Ego® + k>
and
{J Yo(x)Hy(dx)}? < k2.
Since ¥, is monotonic, " = 0, so
Joo' (Ol —e)G+eH,)(dx) Z (1-e)Egi .
Therefore

(1—8)Egyo* +(e+cHk?
(1—e)*(Eg¥ o)

Since ¢ = (e+c?)/(1+c?), 1—gq = (1—e)/(1+c?). Dividing numerator and
denominator by (1 4 ¢?)?, we obtain

AMSE (¥, F) =

1 (I=g)Ego’ +eok®
AMSE (g, F) £ ——-
Vo2 e s Bty

"The second fraction on the right is Huber’s asymptotic variance of , under Fy;
therefore,
|

5o AMSE (o, Fo) = AMSE (Yo, F),

AMSE (¥, F) =

end the proof'is complete.
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