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CONFIDENCE INTERVALS FOR LINEAR FUNCTIONS OF THE NORMAL
MEAN AND VARIANCE!

By CHARLES E. LAND
Oregon State University

1. Introduction and summary. If ¥ = g(X) is normal (i, 6%), where g is a one-to-
one real function and X is a random variable whose expectation exists, we may
write EX = f(u, 62). The practical importance of this observation is that we often
are concerned with testing hypotheses about, and constructing confidence intervals
for, known functions of both the mean and variance of a normal distribution. This
may happen when we use a statistical model, such as the lognormal distribution,
that is related to the normal distribution by a transformation of variables. A
slightly different case occurs when a transformation of data is made before applying
a statistical method, such as analysis of variance or regression analysis, that
involves the assumption of normality for the transformed data. Some familiar
examples in this context are

() Y = X% EX = 2 +02;

(i) ¥ = X% EX = pu*+3uc?;
(iii) Y = arcsin (X*), EX = (1 —cos(2u) exp (—20?));
(iv) Y = arcsinh (X?), EX = 4(cosh (2u) exp (20%)—1);
(v) Y = log(X), EX = exp (u+310?).

The theory of statistical inference in terms of u = EY alone or ¢? = Var ¥
alone is not easily extended to problems of inference in terms of EX or Var X,
parametric functions of both u and ¢?. Minimum variance unbiased estimators
(MVUE’s) for EX and Var X were obtained by Finney (1941) for the case
Y = log X. Solutions for a much wider class of transformations were obtained by
Neyman and Scott (1960) and Hoyle (1968). However there have been no analogous
achievements with respect to hypothesis tests and confidence interval estimates for
EX and Var X. The present paper, in which uniformly most accurate unbiased
confidence interval procedures of level 1—a« are derived for linear functions of
u and o2, is an approach to these problems. The results of this paper define an
optimal solution for EX when Y = log X, since in this case the parametric function
of interest is a monotone function of u+%0?. The results also provide a basis for
approximate confidence interval solutions for other parametric functions of
wand o2,
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It is helpful to consider the problem in terms of confidence regions in the half-
plane of points (i, 62). For any transformation ¥ = g(X) likely to be of practical
significance, a confidence interval for f(u, 6?) = EX or Var X is a region in this
half-plane, bounded by one or two contours of the form f(u, 6%) = m.

Kanofsky (1969) has proposed a method of simultaneous confidence estimation
for all functions of u and ¢2. He constructs a trapezoidal-shaped confidence region
of level 1 —« for p and 62, and for an arbitrary function A(u, o), defines a con-
fidence set for this function as the set of values m such that the curve h(u, 6%) = m
intersects this confidence region. If one is only interested in a single function, the
procedure is conservative. However, for most such functions this is the only method
based on exact distribution theory, to my knowledge, that has been proposed.

The usual approach to confidence interval estimation for EX or Var X has been
to rely on approximate methods. For example, a common method of confidence
interval estimation for EX is to transform a level 1—a confidence interval for
EY = E(g(X)), say (uy, u,), by the inverse transform. Then (97" (uy), 9~ (12))
would be an approximate level 1 —a confidence interval for EX if g is monotone
increasing. More sophisticated versions of this method have been proposed by
Patterson (1966) and Hoyle (1968).

A more direct approach is to use an estimator 7 of f(u, %) and an estimator V'
of the variance of 7. T is then assumed to be approximately normally distributed
with mean (f(y, %) and variance equal to the observed value of V. For example,
the sample mean X is an estimate of EX, and Sy2/(n(n—1)) = ¥ (X;—X)*/(n(n—1))
is an estimate of the variance of X (e.g., see Aitchison and Brown (1957) Section
5.62). Hoyle (1968) has suggested letting 7 be the MVUE of EX, and V' the MVUE
of Var T, which he has given for a number of transformations.

In this paper an optimal exact confidence interval procedure is presented for
linear functions of u and 2. That is, the procedure gives uniformly most accurate
unbiased joint confidence regions of level 1 —a for u and ¢°, bounded by one or
two contours of form u+Aie¢? = m, for arbitrary A. This provides an optimal
confidence interval procedure for EX when Y = log (X) is normal. Also it provides
the basis for a new approximate confidence interval method for EX in the general
case Y = g(X). That is, by a proper choice of the linear coefficient 1, it seems
reasonable that a confidence region bounded by one or two contours of form
f(u, ¢®) = m might be approximated with some success by a confidence region
bounded by contours of the form u+ As? = m. Certainly the degree of approxima-
tion possible should be better than that obtainable using only vertical bounding
contours, as when a confidence interval for u is transformed to give an approxi-
mate confidence interval for EX. Also if the contours f(u, 6%) = m are falrly
straight within a convex joint confidence region of level 1 —a for u and 62, it is
not unreasonable to hope that an approximate confidence region should be possible
that would have a true level near 1 —a, and that would be less conservative than a
level 1 —o region for f(u, o*) determined by Kanofsky’s method.

The main result of the paper is the derivation in Section 2 of uniformly most
powerful unbiased level « hypothesis tests for linear functions of u and 0. The
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theoretical interest of this section is mainly in the analytic detail of how a well-
known theorem applies to this somewhat unusual case. A numerical example
follows, illustrating the use of the tables of critical values given in the Appendix.
It is not obvious that the confidence procedures defined by these tests in Section 4
define confidence sets that are intervals, an extremely desirable property both for
ease of calculation and for practical usefulness of the confidence sets. The proof
in Section 5 that the one-sided tests define one-sided confidence intervals provided
that v, the number of degrees of freedom available for the estimate of a2, is at least
two, is the second major result of the paper. In Section 6 it is shown that this
property does not obtain when v = 1. The analogous result in the two-sided case
is proved only for v = 2 in Section 7. However it is conjectured that, as in the one-
sided case, the desired property also holds for all larger values of v.

The final section contains a brief discussion of applications of the method to
confidence interval estimation for EX when Y = g(X) is normal. It is shown that
essentially the only direct application is to the case where Y = log(X), and that
there are no nontrivial direct applications where EX is a function of u or ¢* alone.
The construction of normal tolerance limits involves confidence interval estimation
of functions of the form pu+ do (Owen (1958)). However it is shown here that there
are essentially no transformations to normality such that EX is a function of
u+ oo for some 6. A more complete discussion of approximate applications of the
method is left for a subsequent paper.

2. Hypothesis tests involving u+Ac>. Let W be a spherical normal random
vector of dimension n, with covariance matrix g%1. Let EW be restricted to a sub-
space with orthonormal basis {&, ---, &}, which we extend to an orthonormal
basis {a,, -+, &,} for the vector space of W. Let U = (U,, -+, U,)" be the canonical
form of W with respect to this basis (Scheffé (1959) Section 1.6). The probability-
density function of U is

f(u; B, 0%) = 2na®)™ " exp { —L(u'u—2u'g+p'B)/o*},
where g = EU = (B, -+, Bi, 0, ---, 0)'. This density can also be written in its

exponential form, with parameters { = —1/(20%) and n; = B,/o*, i=1,---, k. In
this form, the density function is
2.1) fHs 0,0 = c(n, O exp {ol+ Y5y umnil,

where v = u'u, for a suitable function ¢(y, {).

Let u = a’EW, where a is an arbitrary n-vector. Without loss of generality, we
can assume that o, = r*a, for some positive number r. Then u = r~*f,, and
Y = r U, is the Gauss-Markov estimator of u. Setting 0 = u/o?, we can re-
write (2.1) as

f*; 0, 1,0) = c(n, O) exp {ry0+ul+ Y i, um}.

Let A be an arbitrary number, and consider the problem of testing
H(m): pu+7Ac* = m against any one of the alternatives A,(m):u+Ac? < m,
Ay(m):u+Aie* > m, and A5(m):u+Ac? # m. By a translation of W the problem
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reduces to the case m = 0. For this case, we may rewrite these hypotheses in terms
of 0 = pjo*,asH:0 = —A, A,:0 < —1,A4,:0 > —J,and A5:0 # — /.

A theorem that applies to this problem, concerning the existence of uniformly
most powerful unbiased (UMPU) tests, is to be found in Lehmann ((1959) Section
4.4). The tests are defined in terms of the conditional distribution of Y given
U,, -, U,and V = U’'U. The transformation

2.2) T =r? Y/(Sz/v)%,
where
S§?=V- ?:1 Ui2 = Z?:kn Ui2 s

and v = n—k, is monotone in Y for fixed U,, ---, U, and V. Also, unlike Y, which
is bounded by the inequality r Y2 < ¥, T has an unbounded conditional distribu-
tion. S%/v, of course, is the usual estimator of o2, and Y has variance o?/r.
According to the theorem, the UMP unbiased level « tests of H against 4, 4,, and
A5 respectively are given by the rules R,:“Reject H in favor of 4, if T < t(«),”
R,:“Reject H in favor of 4, if T > t(1 —a),” and R;:“Reject H in favor of 45 if
T < t(o) or T > t,(x),”” where the functions ¢, ¢, and ¢, depend on U,, ---, U,,

and V. If f(tr; —A) denotes the conditional density, under H, of T given U,, ---, U,
and V, t() is defined by

(2.3) ") f(r; =) dt = a,
and ¢,(x) and ¢,() are defined by the pair of equations
(2.9 j';jf(‘c; —dt =1-—aqa,

(2.5) frtv+2) (e =N dr = (1-a) [Pw t(v+1%) " Hf(z; =) dt.

The joint density of Y, U,, ---, U, and ¥ may be obtained from the joint dis-
tribution of S* and Uy, -+, U,. Since these statistics are mutually independent,

with S?/a? a chi-square variate with v degrees of freedom and U, normal (8;, 62),
i=1,--k, wehave

(2.6) S5tz -, uy, 0) o (1P exp {0l +ry0+ Z{'(:z uin:}

where s? = v—ry*— Y%, u?, for v > 0 and ry*+ Y, u? < v. This gives the
conditional density for Y,

(2.7) SO | ug, oy s 0) o (0¥ —ry?)** " exp {rOy}

where ry* £ v* = v— Y, ;2 This conditional density depends only on r, 0, v,
and v*. The conditional density for the transformed statistic T, accordingly, is
(from (2.2) and (2.7))

(2.8 S| v*;0,v) oc (v+12) " D exp {0(ro¥)t/(v+ 1)1},

for —o0 < 7 < o0.

Since V* = S%+rY? is a random variable whose mean, for small g, is roughly

proportional to v+ 1, and since r = ¢?/Var (Y) can be expected to be roughly
proportional to v+ 1, it is convenient to define
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(2.9) Z = (V¥ (v+1) = riS*+rY?)¥(v+ 1)

as a variate whose magnitude should not depend much on the sample size. In what
follows, we shall speak of “the conditional distribution of T given Z = z.”” Assum-
ing H:0 = —4, and defining a “noncentrality parameter” ¢ = — Az, this condi-
tional distribution may be referred to as “the conditional ¢ distribution with v
degrees of freedom and noncentrality &, with density

(2.10) St | &) oc (v+12) " D exp {(v+ DET/(v+ 12)),

for —o0o <t <0, -0 <é<ow,andv=1,2, .

Substituting the density (2.10) into the integral equations (2.3) to (2.5), the critical
values may be determined. The critical value obtained from (2.3) is denoted by
1(v, &, o), and the critical values obtained from (2.4) and (2.5) are denoted by
1;(v, &, o) and 7,(v, &, «). It is apparent from (2.10) that f(t | &) = f(—1| =),
giving the symmetry relations for the critical values,

2.11) t(v, & a) = —t(v, =&, 1—a),
(2.12) t(v, & a) = —1,(v, =&, ).

Tables of critical values for one and two-sided tests have been computed for
selected values of v, ¢, and «. The complete tables and the method of their con-
struction are given elsewhere (Land (1969)). A brief subcollection of the one and
two-sided tables is given in Tables 1 and 2. Briefly, the one-sided tables were com-
puted by the step-by-step Runge-Kutta-Gill numerical integration of a system of
differential equations based on the conditional density (2.10), closely following the
method used by Johnson et a/ ((1963) Section 4.1) to compute quantiles for certain
Pearson distributions. The two-sided tables were computed only for even values
of v, by a cruder method in which the integrals in equations (2.4) and (2.5) were
computed directly. The integration limits were adjusted until the ratios of left-hand
to right-hand sides in both equations were arbitrarily close to one. Numerical
problems prevented the calculation of critical values for some combinations of
large v and small &.

An examination of (2.10) shows that the conditional # distribution with v degrees
of freedom and noncentrality ¢ is asymptotically normal as v — co. More specifically
T—(v+1)&v™* is asymptotically normal with zero mean and unit variance. The
critical value tables, however, indicate that this convergence is slow for large &.
Nevertheless, the Cornish-Fisher approximations of order 1/v and 1/v? for the
quantiles #(v, &, «) have been found to wark reasonably well for v above 25 and ¢
less than 100 (Land (1968)).

3. A numerical example. Let y = 3.7 and s?/10 = 10.0 be the sample mean and
variance of a random sample of size 11 from a normal (y, ¢) distribution. In order
to test the null hypothesis that u+¢?/2 is equal to 6.0 against the alternative that it
is larger, we first compute ¢ o = (3.7—6.0)/(10.0/11)* = —2.412, and Zg o =
((10/11)(10.0)+ (3.7—6.0)*)* = 3.728. Since &g o = (—1/2)z4, = —1.864, we
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TABLE 1

Critical values t(v, &, a) for one-sided tests, for selected values of v, &, and a

& .01 .05 .10 .90 95 .99
v=2
0 —6.965 —2.920 —1.886 1.886 2.920 6.965
1 —5.929 —2.446  —1.540 2.245 3416 8.053
2 —4.967 —2.004 —1.217 2.610 3.922 9.169
.5 —2.668 —0.939 —0.426 3.680 5.415 12.474
1. —0.737 .024 .349 5.202 7.559 17.255
2. 338 .818 1.107 7.447 10.746 24.403
5. 1.359 1.887 2.249 11.869 17.057 38.613
10. 2.249 2.922 3.398 16.830 24.153 54.621
20. 3.398 4.306 4.957 23.832 34.180 77.256
50. 5.575 6.970 7.978 37.712 54.063  122.161
100. 7.978 9.932 11.349 53.347 76.467  172.766
v=1>5
0 —3.365 —2.015 —1.476 1.476 2.015 3.365
1 —2.886 —1.658 —1.158 1.798 2.377 3.852
2 —2.427 —1.314 —0.851 2.116 2.736 4.337
5 —1.258 —0.434  —0.059 3.003 3.745 5.711
1. —0.079 515 .830 4.214 5.138 7.639
2. 1.029 1.557 1.872 6.008 7.227 10.575
S. 2.577 3.208 3.609 9.583 11.428 16.548
10. 4.059 4.874 5.404 13.599 16.170 23.331
20. 6.026 7.129 7.852 19.267 22.877 32.946
50. 9.795 11.493 12.612 30.497 36.180 52.048
100. 13.977 16.358 17.929 43.146 51.171 73.587
v =10
0 —2.764 —1812 —1.372 1.372 1.812 2.764
1 —2.305 —1414  —0.995 1.750 2.213 3.225
2 —1.862 —1.029 —0.631 2.121 2.606 3.680
.5 —0.715 —0.025 325 3.138 3.689 4.945
1. .546 1.130 1.451 4.502 5.159 6.689
2. 1.953 2.528 2.867 6.509 7.347 9.329
S. 4.173 4.892 5.331 10.482 11.721 14.683
10. 6.397 7.336 7.917 14.927 16.639 20.747
20. 9.393 10.669 11.464 21.186 23.579 29.332
50. 15.178 17.148 18.379 33.573 37.329 46.371
100. 21.618 24,382 26.112 47.514 52.813 65.576



TABLE 1—continued
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4 .01 .05 .10 .90 95 .99
v =20
—2.528 —1.725 —1.325 1.325 1.725 2.528
—1.992 —1.224 —0.838 1.813 2.226 3.066
—1.472 —-0.739 —0.366 2.290 2.716 3.592
—0.113 537 .881 3.584 4.054 5.039
1. 1.462 2.062 2.394 5.300 5.843 7.003
2. 3.383 4.010 4.372 7.800 8.475 9.939
S. 6.629 7.436 7.913 12.706 13.685 15.831
10. 9.976 11.039 11.673 18.166 19.509 22.463
20. 14.531 15.982 16.851 25.835 27.705 31.826
50. 23.377 25.622 26.969 40.988 43917 50.380
100. 33.248 36.401 38.294 58.032 62.161 71.277
V =
—2.403 —1.676 —1.299 1.299 1.676 2.403
—1.645 —0.938 —0.569 2.029 2.414 3.162
—0.910 —0.222 140 2.740 3.133 3.902
. 1.029 1.672 2.019 4.660 5.080 5915
1. 3.371 4.002 4.351 7.175 7.647 8.598
2. 6.409 7.099 7.488 10.797 11.370 12.538
S. 11.801 12.713 13.235 17.829 18.646 20.324
10. 17.491 18.703 19.400 25.605 26.718 29.012
20. 25.307 26.967 27.923 36.495 38.040 41.228
50. 40.556 43.131 44.616 57.979 60.394 65.382
100. 57.610 61.229 63.316 82.125 85.527 92.556
v = 100
0 —2.364 —1.660 —1.290 1.290 1.660 2.364
1 —1.332 —=0.642 —0.277 2.304 2.679 3.397
2 —-0.329 .348 .708 3.290 3.671 4.404
.5 2.325 2.975 3.326 5.947 6.348 7.128
1. 5.592 6.246 6.605 9.404 9.848 10.720
2. 9.939 10.669 11.075 14.346 14.879 15.937
S. 17.823 18.802 19.351 23.881 24.633 26.135
10. 26.232 27.537 28.272 34.384 35.407 37.452
20. 37.830 39.622 40.632 49.072 50.489 53.325
50. 69.513 63.296 64.866 78.018 80.230 84.663
100. 85.908 89.820 92.028 110.537  113.653 119.897
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TABLE 1—continued

& .01 .05 .10 90 95 99
v = 200
0 —2.345 —1.653 —1.286 1.286 1.653 2.345
.1 —0.912 —-0.229 134 2.706 3.077 3.779
2 481 1.155 1.514 4.088 4.462 5.175
5 4.178 4.836 5.190 " 7.802 8.192 8.940
1. 8.783 9.458 9.826 12.612 13.039 13.865
2. 15.015 15.778 16.197 19.449 19.958 20.948
5. 26.474 27.505 28.076 32.574 33.287 34.683
10. 38.781 40.161 40.926 46.993 47.960 49.854
20. 55.805 57.703 58.756 67.130 68.468 71.092
50. 89.152 92.102 93.741 106.788 108.875 112.973
100. 126.514 130.662 132.966 151.327 154.266 160.036
v = 500
0 —2.334 —1.648 —1.283 1.283 1.648 2.334
.1 —0.092 .588 950 3.517 3.884 4,576
2 2.086 2.760 3.120 5.689 6.058 6.757
5 7.884 8.552 8.911 11.517 11.898 12.623
1. 15.182 15.877 16.253 19.032 19.445 20.235
2. 25.189 25.985 26.417 29.658 30.147 31.084
5. 43.802 44.886 45.478 49.958 50.639 51.951
10. 63.912 65.366 66.162 72.201 73.123 74.899
20. 91.797 93.800 94.895 103.230 104.504 106.962
50. 146.494 149.609 151.314 164.299 166.286 170.119
100. 207.813 212.194  214.592  232.865 235.662  241.059
v = 1000
0 —2.330 —1.646 —1.282 1.282 1.646 2.330
.1 .828 1.508 1.870 4.435 4.801 5.489
2 3.898 4.573 4934 7.501 7.868 8.561
.5 12.080 12.754 13.116 15.720 16.097 16.811
1. 22.430 23.136 23.517 26.293 26.700 27.474
2. 36.713 37.526 37.965 41.202 41.681 42.595
5. 63.423 64.536 65.139 69.612 70.279 71.552
10. 92.363 93.858 94.669 100.700 101.600 103.322
20. 132.541 134.601 135.719 144.041 145.285 147.665
50. 211.404  214.608 216.349 229.314  231.254  234.965
100. 299.840 304.348 306.797 325.041 327.771 332.995
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TABLE 2
Critical values t,(v, &, &) and t;(v, &, &) for two-sided tests, for selected values of
v, & and o
o
¢ .010 .050 .100
V=
—9.925 9.925 —4.303 4.303 —2.920 2.920
—8.924 10.925 —3.851 4.755 —2.596 3.244
—7.937 11916 —3.404 5.202 —2.276 3.565
. —5.202 14.758 —2.168 6.493 —1.389 4.495
1. —2.063 18.977 —0.754 8.461 —0.361 5.933
2. —0.150 26.189 298  11.839 519 8.373
5. 949  41.422 1.320 18.777 1.546  13.322
10. 1.755 58.593 2.200 26.583 2.483 18.879
20. 2.750 82.872 3333 37.614 3712 26.728
50. 4.593 131.041 5476  59.492 6.054  42.287
100. 6.608 185.324 7.840 84.143 8.649  59.815
y =
—4.604 4.604 —2.776 2.776 —2.132 2.132
—4.103 5.105 —2.435 3.118 —1.840 2.424
—3.611 5.600 —2.099 3.455 —1.553 2.712
. —2.267 7.015 —1.184 4.424 —0.770 3.540
1. —0.782 9.118 —0.143 5.865 144 4.768
2. 434 12534 .873 8.163 1.111 6.701
S. 1.803  19.590 2.265 12.853 2.539 10.615
10. 3.008 27.612 3.585 18.162 3.937 15.030
20. 4,564 38.987 5.333  25.677 5.807 21.271
50. 7.504 61.588 8.676  40.593 9.405 33.649
100. 10.745  87.071 12.385  57.404 13.405  47.594
V=
—3.169 3.169 —2.228 2.228 —1.812 1.812
. —1.121 5.293 —0.456 4.058 —0.140 3.533
1. 197 7.057 726 5.556 .998 4.929
2. 1.624 9.786 2.114 7.839 2.383 7.035
S. 3.780 15.362 4367 12.445 4704 11.252
10. 5.892 21.689 6.649  17.640 7.089 15.989
20. 8.711  30.652 9.734 24979 10.331  22.669
50. 14.129  48.447 15703  39.527 16.625  35.900
100. 20.149  68.506 22.353 55916 23.648  50.798
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TABLE 2—continued

& .010 .050 .100
v=20
—2.845 2.845 —2.086 2.086 —1.725 1.725
1. 1.156 7.318 1.689 6.208 1.968 5.705
2. 3.069 10.327 3.609 8.921 3.903 8.293
S. 6.233  16.398 6913 14.332 7.293 13416
10. 9.459  23.245 10.348  20.397 10.849  19.138
20. 13.829 32918 15.039 28.943 15.723  27.188
50. 22.294  52.094 24.161  45.858 25.220 43.108
100. 31.729 73.694 34.349  64.899 35.836 61.021
y =
—2.678 2.678 —2.009 2.009 —1.676 1.676
2. 6.101  12.888 6.704 11.791 7.027 11.271
S. 11.398  20.825 12.187  19.245 12.616 18.501
10. 16.958  29.698 18.002 27.536 18.573  26.520
20. 24.578 42.184 26.006 39.177 26.788  37.765
50. 39.426 66.878 41.640 62.171 42.853  59.963
100. 56.024  94.665 59.133  88.031 60.838  84.921
v = 100
—2.626 2.626 —1.984 1.984 —1.660 1.660
2. 9.637 16.278 10.277  15.293 10.618 14.814
5. 17.413  26.613 18.271  25.215 18.730  24.538
10. 25.687 38.103 26.828  36.197 27.441  35.277
20. 37.083  54.228 38.648 51.584 39.489  50.309
50. 59.353  86.075 61.782  81.942 63.089  79.949
100. 84.278 121.886 87.692 116.064 89.529 113.256

reject the null hypothesis at level « if ¢, is greater than #(10, —1.864, 1 —«). Using
the symmetry relation (2.11) we obtain from Table 1 the critical values
t(10, —0.5,.95) = 0.025, (10, —1.0,.95) = —1.130, #(10, —2.0,.95) = —2.528,
and #(10, —5.0,.95) = —4.982. Four-point Lagrangian interpolation on these
numbers with respect to log ¢ gives the approximate value #(10, —1.864, .95) =
—2.372. (This interpolation method, applied to Table 1, gives interpolated values
accurate to within three¢ significant digits, according to comparisons using more
detailed tables. For v = 10 and ¢ around +1.75, the accuracy is within .003.)
Similarly, we have ¢(10, —0.5, 90) = —0.325, (10, —1.0, .90) = 1.451,
t(10, —2.0, .90) = —2.867, and #(10, —5.0, .90) = —5.331, from which we obtain
the interpolated value #(10, —1.864, .90) = —2.707. Thus we have #(10, —1.864,
90) < g0 < t(10, —1.864, .95), so that the null hypothesis is rejected at level
.10, but not at level .05.

If we vary the above procedure, computing f, = (3.7—m)/(10.0/11)* and
z,, = [(10/11)(10.0) 4 (3.7 —m)*]* for different values of m, we find that the hypo-
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thesis that u+02/2 = m is rejected at level .05 in favor of the alternative that
u+0?/2 > mform < 5.62, and accepted for m > 5.62.

4. Confidence intervals for 1+ Ag?. The interval [5.62, c0) obtained in the above
example as the set of values m for which ¢, < ¢t(14, —1z,,.95) is a level .95
confidence interval for u+10?, corresponding to the given sample mean and
variance. More generally, if we define

4.1) T, = (N*(Y—m)/(S*/v)*
and
4.2) Z, = (S +r3(Y—-mH¥(v+1),

and define P,(Y, S?) as the set of values m such that the rule R,(i = 1, 2, 3) applied
to T, and Z,, at level « does not reject the null hypothesis that u+ig* = m, then
P(Y,S? is a level 1 —a confidence procedure for u+ As?. Because the rules R;
define UMPU level « tests, the confidence procedures P,( Y, S?) are uniformly most
accurate unbiased level 1 —a, in the sense used by Lehmann (1959).

It remains to show that the confidence sets P,(y, s?) are intervals. Although these
confidence sets are defined in terms of UMPU tests of hypotheses of form
H(—12):0 = —1 against one and two-sided alternatives, where 0 is one of the
parameters of a multiparameter exponential family, the result does not follow
from this fact. In particular, the argument in Lehmann ((1959) pages 179-80),
showing that in such cases the UMPU tests, do define confidence intervals for 0,
does not apply in the present case since 0 is not the parameter of interest.

Given two functions g(m) and h(m), the sets {m:g(m) < h(m)}, {m:g(m) =
h(m)}, and {m:g(m) > h(m)} are, respectively, a right-infinite interval, a point,
and a left-infinite interval if and only if

4.3) gm’) £ h(m') = g(m") < h(im") form’ < m".

Setting g(m) = t,, the confidence sets Py, s*)(i = 1,2) are intervals if and only
if (4.3) holds for hA(m) = t(v, — Az, o), and the sets P5(y, s?) are intervals if and
only if (4.3) holds for h(m) = t(v, —Az,, o) forbothi = landi = 2.

Introducing the monotone transformation, given z,

(4.4) w(t;2) = ((v+ Dzt (v+12)%,

we have, by (4.1), w(t,; z,,) = y—m, so that it is necessary to show that the deriva-
tives with respect to m of the transformed critical values, considered as functions
of m, are greater than — 1. Since, by (4.2),

L = o D= )5+ P (= m)D),
om

which has absolute value less than r/(v+ 1), it is enough to show that the derivatives
with respect to z of
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4.5) p(z) = w(t(v, — Az, a); 2)r/(v+1)
and
(4.6) pi2) = wt,(v, — Az, 0); 2)r/(v+ 1), i=12,

are between —1and +1.

Section 5 contains a proof that |p(z)| < 1 forv X 2, and in Section 6 it is shown
that this is not true in general for v = 1. The two-sided case is discussed in Section 7.

5. The one-sided case, v = 2. Let p = p(2), f = —(v+1)4, and k = (v/2)—1.
From (4.4) and (4.5) we have

(5.1) p = zt(v, — Az, 0)/(v+t3(v, — Az, ®))*.

Note that while —oo < #(v, —Az, ) < 00, we have —z < p <z, and that
t(v, — Az, a) = vip/(z* —p*)?*. It follows, therefore, from (2.3) that

(5.2) P9 du = a,

where g(u) is an appropriate probability density function obtained by a change of
variable formula from the conditional density of 7 given Z = z. From (5.1) and
(2.10) we obtain this density as g(u) = g,(u)/G,(z), where

(5.3) gw) = (2% —u?)* exp {Bu}
and
(5.4) Gi(u) = *, gi(v) db,

for —z < u < z. Therefore we can write (5.2) in the form
(5.5) G(p) = aG(2).

Forv = 2,(5.5) reduces to

p = log @R+ (1—)R™1)/B
where R = exp [Bz]. Therefore
p = @R—(1—-)R™Y)/(aR+(1—)R™Y),

which has absolute value not greater than one, for0 < o < 1.

For v > 2, we can differentiate both éides of (5.5) with respect to z to obtain

P'9(p)+2kzG,_ ((p) = 2kzG, _ ((2)a.

By (5.5) this reduces to

(5.6) P'o9(p) = —2kz(G,_ ((p)— G (p)M),
where M = G,_ ,(2)/G.(2).
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For 0 = b6 < 2z, let C(b) be the partial derivative with respect to z of
G,(b—2z)/G,(z). Then we have

5.7 Cb)G(z) = —g(b—2)+2kz(G,_ ((b—2)— MG (b—2)).
For any fixed value of z, if b is chosen so that b—z = p, (5.6) and (5.7) imply that
C(b)G(z) = —(1+p g(b—2).

Since g,(u) is positive for —z < u < z, it follows that for any fixed z, p’ = —1 if
and only if C(b) £ 0 for b = z+p. Remembering that (5.1) defines p as a function
of « and A as well as z, it follows from the symmetry relation (2.11) that if
p@=p =z —-1for0<a<l1,z>0,and — 0 < A < o0, then p'(z) £ 1 for
the same range of «, z, and A. Therefore it is enough to show that C(b) < 0 for
0<b<2z,z>0,and — 0 < f§ < .

From (5.7), C(b) is a differentiable function of b, and C(0) = C(2z) = 0. Thus
there must exist a zero of C'(b) in the interval 0 < b < 2z. Differentiating (5.7)
and simplifying, we get

(5.8) C'(B)G(2) = gy 1(b—2)b(2k — 2z —b)(B + 2kzM)).

Thus the only possible zero of C'(b) is at b* = 2(z—k/(f+ 2kzM)). Since b* > 0,
it follows that k—z(f+2kzM) < 0. But by (5.8), C'(b*/2)G\(z) = g(b*/2—2)
b*[2)(k—z(B+2kzM)), and thus C'(b*/2) < 0, which implies that C(b*) < 0.
Therefore C(b) < Ofor 0 < b < 2z.

6. The one-sided case, v = 1. Forv = 1, equation (5.5) may be rewritten as

©.1) H(p|2) = aH(1)
where H(u) = [“ | h(v) dv and h(u) = (1—u®)"* exp (Bzu) for —1 < u < 1, where
p = —2A. Differentiating (6.1) with respect to z gives

(p'—p|2D)h(p|2)[z+BH*(p/z) = afH*(1),
where H*(u) = [“ | vh(v) dv.
By (6.1) this reduces to

(6.2) p'h(p/z) = (p/2)h(p/z)+Bz(H(p/2)A — H*(p|2)),
where 4 = H*(1)/H(1).

As in Section 5, |p'| < 1for0 <a < 1,0 <z and —o0 < f < o0 if and only
if p = —1 for the same values of «, z, and . Again as in Section 5, let b be any

fixed number between zero and 2z. Defining D(b) as the derivative with respect to z
of H(b/z—1)/(H(1), we have

(6.3) DB)H(1) = —(b/z)h(bjz— 1)+ [57 (u— A)h(u) du.
For fixed z, if b is chosen so that p(z) = b—z, we have, by (6.2) and (6.3)
Db)H(1) = —(14+p")h(p/z)/z. Since h(u) is positive for —1 < u < 1, it follows

that p’ 2 =1 for0<a<1,z>0,and — o0 < f < oo if and only if D(b) is
negative for0 < b < 2z.
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By (6.3) it is easy to show that D(b) — 0 as b — 0, and that D(b) > — o0 as
b — 2z. By differentiating (6.3) with respect to b and simplifying we obtain

(6.4) D'(b)H(1) = h(b/z—1)[—1—=pQRz—b)(1+ A))/(2z*> — bz).

The only possible zero of D'() is at b* = 2z+1/(B(1+ A)), assuming f # 0
(if B=0,D'(b) <0 for 0 < b < 2z). If b* > 2z, or b* < 0, then D(b) < 0
for 0 < b < 2z. However, if 0 < b* < 2z then either b* represents an inflexion
point of D(b), which is negative for 0 < b < 2z, or D(b) > 0 at least for
0<b<b*

In order that 0 < b* < 2z, it is necessary and sufficient that —2z <
B(1+A4))™" < 0. 4 = A(Bz) can be expressed as the ratio of two Bessel functions,
A(Bz) = I,(B2)/Io(Bz) (since I,'(v) = I,(v)), where, for m > —1% and real v,

(6.5 L(v) = (/2 "n"*(1/T(m+3) (L, (1 —u?)""* exp (vu) du.

Since z is always positive, it is clear that 4(Bz) has the same sign as f. Therefore
(B(1+A))~" is positive for positive 8, which means that 5* > 2z. Ifg <0, A(Pz) is
negative, and f(1+A4(fz)) <O if and only if A(fz) > —1. Also, —2z <
(B(1+A(Bz)))~" if and only if A(fz) > —1—(2z)"! or A(fz) < —1. Therefore
0 < b* < 2z if and only if A(Bz) > —1—(2z)"*. From (6.5) and the preceding
discussion we obtain the relation A(—v) = —A(v), from which it follows that
0 < b* < 2z for some negative B if there exists a positive number v such that
A(v) = I;(v)/[Io(v) < 1—(20)"'. An examination of tables of I,(v) and I,(v)
(Abramovitz and Stegun (1964) Table 9.8) shows that this inequality obtains for
many values of v. For example, 1,(1)/I,(1) = .4464, which is less than 1—1. Thus
for ¢ = —1, wemust have 0 < b* < 2z.

An examination of (6.4) readily shows that D'(b* +9) is positive for 6 < 0 and
negative for > 0, which implies that D(b) has a maximum, which must be positive,
at b = b*. Thus there exist combinations of a, 4, y, s? such that the confidence sets
P,(y, s*) and P,(y, s?) for u+ Aa? are not intervals.

7. The two-sided case. Let g,(«) and G,(u) be defined as in Section 5 for
—z <u < zandlet H(u) = [*, vg,(v) dv. Let p, and p, be defined in terms of the
critical values #,(v, &, o) and #,(v, &, ), respectively, according to (5.1). Under this
transformation of variables, equations (2.4) and (2.5) may be rewritten as

(7.1) G(P2)—Gi(py) = (1 —a)Gy(2),
(7.2) Hk(pz)_Hk(I?l) = (1-a)H,(2).

Forv = 2(k = 0), equations (7.1) and (7.2) may be evaluated by direct integra-
tion to give, after simplification,

(7.3 PP —efr = (1 —a)(ef*—e )

and e’*2(Bp,—1)—eP?1(Bp, —1) = (1 —a)(eP*(Bz— 1)+ e P*(Bz+1)), which reduces
by (7.3), to

(7.4) P2 efPr—p, PP = z(1 —-a)(ef* +e 7).



CONFIDENCE INTERVALS FOR LINEAR FUNCTIONS 1201

If we differentiate both sides of (7.3) with respect to z we obtain

(7.5) Py e —p et = (1—a)(ef*+e™F?).
By (7.4) this reduces to
(7.6) (P2 —p2l2) €7 = (p,'—p,/2) 7.

Similarly, differentiation of (7.4) gives

P2/ (1+Pps) P2 —p /(14 fp,) &7 = (1—a)(1 +p2) e+ (1= pz) e,
which reduces, by (7.3) and (7.5), to
1.7 (p2'P2—2) " = (p,'py—2) .

Equations (7.6) and (7.7) may be used to solve for p," and p,’ in terms of p, p,,
and z. If we multiply both sides of (7.6) by p, and subtract from (7.7), we obtain,
after simplification,

(7.8) pi = (pipr—2+ (22 —p,?) P (2(py—py)).
If (7.6) is multiplied by p,; and subtracted from (7.7), we get
(7.9) P2 = (pp2a—22+ (2 —p,®) PP (z(py—py))-

In particular, it follows from (7.8) and (7.9) that [p,/| <1l,i=12forv=2if
and only if

(1.10) ZHPy e < ZTP1
z+p, T z—p,

If both sides of (7.3) are multiplied by z and added to the corresponding sides of
(7.4), we obtain
(p2+2) &7 —(p;+2) 7' = 22(1— ) &,

while subtraction gives
(p2—2) e —(p,—2) &P = 2z(1—0) 7P~

These two equations can be restated, by dividing through by exp (fp,) and
(p,+2z)or(p,—2z),in the forms

Sra-py _P1tZ 2z(1-w) E=pD)

(7.11)
Ptz prtz

and ‘

(7.12) o P12 22079 ey

DPr—z Pr—z

Since z is positive and p, is less than z, the right-hand side of (7.11) is positive,
while that of (7.12) is negative. Thus for v = 2, (7.10) holds for any o and any f,
which means that the two-sided tests define confidence intervals for u+As?, for
any A.
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For v > 2, a development analogous to that of equations (7.3) through (7.10)
may be obtained, using integration by parts to express H,(u) in terms of g,(u),
G (u), and G,_ (1) (a device not possible in the case v = 2 since G_ () is not
defined). As in the case v = 2, it is possible to solve for p,” and p,’ in terms of p,
P2, and z. From this we obtain the result that |p,~' < 1,fori = 1, 2, ifand only if

z+py _ gdpa) _z2-py
z+p2 = gdp) T z—p,’

obviously the general form of (7.10). However, at this writing no proof of (7.13)
has been obtained for k > 0. It should be noted that if the conditional density of
£t ] &) were symmetric about its mean, we would have ¢,(v, &, o) = (v, &, @/2)
and 1,(v, &, o) = t(v, &, 1 —a/2), and by the results of Section 5, the two-sided tests
would define confidence intervals. As v increases, f,(¢ [ &) becomes more nearly
symmetric, in fact f(¢ | &) approaches a normal density as v — oco. It has been
shown above that confidence intervals are defined by the two-sided tests when
v = 2, for all « and all £. A plausible conjecture is that the same is true for v > 2,
when f,(¢ | &) is more nearly symmetric than in the case v = 2. This conjecture is
supported by the observation that in all cases where two-sided critical values have
been calculated for v > 2, no example has been found where the inequalities (7.13)
do not hold.

(7.13)

8. Applications. Exact applications of the method developed in this paper to
problems involving transformations to normality are essentially limited to trans-
formations of the form Y = log (X). To see this, suppose that X = A(Y), where Y
is normal (u, o). Suppose also that 4 is twice-differentiable, and that E(4(Y)) and
E(h'(Y)) both exist. The method can be applied to confidence interval estimation
of EX only if EX depends on u and ¢ as a function of au+ ba? for some a and b,
that is, only if
8.1) Sflap+bo®) = 2m)™* [2o h(u+ow) exp (—iw?) dw.

By letting o approach zero it is clear that we must have f(au) = h(u), and that a
cannot be zero. Therefore there is no loss of generality in writing f(au+bo?) =
h(u+0?), where A = bja. With this substitution, differentiation of (8.1) with
respect to ¢ yields

8.2 200h'(u+A6%) = 2n)™* (2o wh'(u+ow) exp (—2w?) dw.
Differentiation of (8.1) with respect to u gives
K(u+Ac?) = 2m)~* [ H(u+ow) exp (—sw?) dw,
which may be rewritten as
(8.3) W (u+o?) = 2no?)™* (2o h'(y) exp [—3(y—w)?/o’] dy.
By differentiating (8.3) with respect to u we obtain
W' (u+20?) = @no?)™* [2o (p— o 2h'(y) exp [ - 3(v—w)?/o®] dy,
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which may be rewritten as
(8.9 oh"(u+4g?) = (2n) " [ wh'(u+ow) exp (—4w?) dw.

Together, (8.2) and (8.4) imply that #"(u+ Aa®) = 2Ak’(u+ A0?) for all u and o2,
which implies that #’(y) = 2A4’(y) for all y. If A = 0, this means that A(y) is linear,
in other words a transformation of a normal variate to another normal variate.
If A # 0, it means that A(y) = «+p exp (24y) for some numbers o and f, so that
the normalizing transform is of the form Y = (24)~! log ((X —a)/p).

The results may be summarized as the following theorem.

THEOREM. If Y is a normal (u, %) random variable, and h a twice-differentiable
real function such that the expected values of h(Y) and h'(Y) exist for —0 < p < ®©
anda? 2 0, then

(i) E(h(Y)) depends nontrivially on both p and a* unless h is a constant or a linear
Jfunction of y, and

(ii) E(h(Y)) depends on p and a* as a function of u+ Aa?, for some A # 0, if and
only if h(y) = a+f exp (2Ay) for some « and P.

COROLLARY. E(h(Y)) cannot be a function of p+ déa.
(Take A = 8/a. The function A cannot depend on ¢2.)

For non-logarithmic transformations to normality the countours EX =
f(u, @*) = 0 are not parallel lines, to which the method of this paper may be
directly applied. However, it is easy to imagine ways in which an approximate
confidence interval for EX could be obtained from a confidence interval for
u+ Ag?, for some A. We are familiar with the idea of using a confidence region for a
vector-valued parameter to define approximate confidence intervals for real
functions of the parameter (e.g., Scheffé (1961), Halperin and Mantel (1963),
Halperin (1964 and 1965), and Kanofsky (1969)). The kind of confidence region
for the vector-valued parameter (u, o2) that is discussed in this paper is one that
defines exactly a confidence interval for u+ 4g2.

The details of a method for using the confidence regions defined in this paper to
obtain an approximate confidence interval for EX are the choice of the value of 4
in the function u+ Ag?, and the rule by which values of EX are associated with the
confidence region defined by a confidence interval for u+ Ag*. For a particular
transformation, and thus a particular function EX = f{u, 0%), these questions
might be decided by examining a plot of the contours f(u, %) = p in a neighbor-
hood of the point at which u and a2 are equal to their estimated values 2 and &2,
respectively. For example, 4 might be chosen as the value characterizing the line
tangent to the contour f(u, %) = f(f, 8%) at the point u = f, 0> = 8. That is,
we would have A = f,/f,., where f, and f,. represent the partial derivatives of
f(u, %) with respect to pu and a2, respectively, evaluated at u = f, * = 82,
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The rule for defining an approximate confidence interval for f(u, ¢%) in terms of
an exact one for u+Ac® might be expressed as a rule associating a line
i+ Ao* = m(p) with each contour f(u, ) = p. The set of values p for which
m(p) is contained in the confidence interval for -+ As* would be an approximate
confidence interval for f(u, o?), provided that the function m(p) is monotone. A
possible rule would be to choose m(p) so that the line u+ As? = m(p) simultaneously
intersects the curve f(i, 0*) = p and the perpendicular line u—o?/A = f1—6&%/A.

If Tog (X) is normal, approximate confidence interval methods for EX can be
evaluated by comparing approximate confidence limits with the corresponding
optimal exact limits, computed {rom the same data. This is not possible for other
normalizing transformations, for which no optimal exact methods are available.
However, comparisons can be made with conservative exact confidence limits
computed according to Kanofsky’s method, and estimates of the coverage proba-
bilities for given values of i and ¢? can be obtained by Monte Carlo simulation.
A subsequent paper is planned in which approximate methods of the kind discussed
in this section are compared with other approximate confidence interval estimation
procedures.
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