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A NOTE ON THE EXISTENCE OF QUANTITATIVE PROBABILITY

By TERRENCE FINE
Cornell University

0. Introduction. A comparative probability relation = is an ordering of elements
A, B, ---, of afield of events # ; “4 = B’ isread “‘event A is as least as probable as
event B.” A function P: # — R' (strictly) agrees with = if (VA, B)(4 > B<>
P(A4) = P(B)); such functions will be called quantitative probabilities. After
imposing some relatively uncontroversial restrictions on = we introduce an axiom
that, as shown by Theorem 1, is a necessary and sufficient condition for the exist-
ence of a quantitative probability. We then consider the problem of the existence
of an additive quantitative probability P (i.e., An B = ¢ = P(A v B) = P(4)+
P(B)). In Theorem 2 we explicate the relation between additive quantitative prob-
ability and the assumption, entertained by Savage and others, that for all n there
exist n-fold almost uniform partitions. We then observe that the hypothesis of
almost uniform partitions leads to theories of additive quantitative probability
that are uniformly weaker than that proposed by Luce. Finally, an axiom is
introduced that is a necessary condition if there is to exist a countably additive
quantitative probability. This leads to the observation that the axioms proposed by
Villegas for the countably additive case yield a theory that is a special case of
Luce’s theory when we adjoin to Luce’s axioms the axiom we have proposed.

1. A necessary and sufficient condition for the existence of quantitative probability.
Following Savage and others we assume that a comparative probability relation
7 satisfies the following three axioms:

Cl. J= is a total order of the elements of &.
C2. (VAe F)A = &), where & denotes the null set.
C3. A=B,Cn(AuB=g<=AuvCx=BuC,Cn(AuB)=(.

The order topology (¥, 7) induced by > (4 > B if A = B and false B = A4)
is the collection 4~ of open subsets of the space & having as a base all sets of the
forms: {F:F < A}, {F:A < F}, {F:A < F < B}. We postulate

C4. (&,7) hasa countable base.

The justification for C4 is contained in ,

THEOREM 1. If = satisfies C1, C2, C3, then it admits of a (not necessarily additive)
quantitative probability P if and only if = also satisfies C4.

Proor. First assume that 3P agreeing with >=. Let P(&) be that subset of the reals
that is the image of & under P. Choose a countable set {d;} that is a subset of

Received February 16, 1970.
1182

(] ft’;
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éf( )2
The Annals of Mathematical Statistics. IIKORS ®

WWw.jstor.org



EXISTENCE OF QUANTITATIVE PROBABILITY 1183

P(#) and is dense in P(&). Corresponding to each d; select an element
D;e P~'(d;) to form a collection & = {D;}. We assert that Z = {{F:F < D},
{F:F> D;},{F:D; < F< D;}; D;, Dj € 2} forms a countable base for the order
topology (£, 7). Since 4 is a subset of the usual base for (#,.7) we need only
verify that any set in the usual base can be written as a union of sets in 4. Take, for
example, the set {F:G < F < H}. Since {d,} is dense in P(¥) we can choose
sequences {d; }, {d,,}, such thatd;, | P(G), 4, T P(H), d;, = P(H), d;, 2 P(G).
We assert that {F:G < F < H} = (Ji2; {F:D;, < F < D, }. Clearly the left-
hand side includes the right-hand side. Hence, assume F'e {F:G < F < H}.

Note that P(G) < P(F’) < P(H).

Therefore (3)(Vn > J)d;,, < P(F') < d,). Thus F'e{F:D;, < F< D }<
Ur, {F: D;, < F < Dy,}. The assertion is proven. The remaining cases of
{F:F < A}, {F:4 < F}, can be dealt with in a parallel manner. Thus, we have
confirmed that if 3P agreeing with >= then (¥, .7) has a countable base.

Now assume that (&, 7)) has a countable base

We first define P on 2 and then extend it to &#. Without loss of generality, assume
that D, = ¥, D, = Q = (JpesF, and D; = D; = i = j. Define P(D,) = 0,
P(D,) = 1. Define {/,}, {u,}, forn>2,by 1 =1, u, =<n D, <D,y <D,
and (A1 £ k £ n)D, < D, < D4y, D,+y < D, < D, . That this definition is
possible follows from CI1, C2, and the easy consequence of C3 that (VF)(F <X Q).
Inductively define P on & through P(D, ) = 3(P(D,)+P(D,)). It is immediate
that P agrees with = on 2. Extend the definition of P to & as follows:

If (3n)(F ~ D,) = P(F) = P(D,). Otherwise,
P(F)=sup {x:D, < F, x = P(D,)}.

We must now verify that P, as defined above, agrees with > on % . Assume that
P(H) > P(G). From the definition of P

P(H) =sup {x:D; < H, x = P(D))} > P(G) =sup {x:D; < G, x = P(Dy}.
Hence,
ddie{x:D;< H,x = P(D))}~{x:D; < G, x = P(D)},

and 3D; € P~ '(d;). However, H > D; and D; > G, from which it is immediate
that H > G. Thus, we have established that G = H = P(G) = P(H).

To prove the converse implication, assume that G > H. If both G, H are equi-
valent to elements of &2 then from the definition of P it follows that P(G) > P(H).
Otherwise, at least one of G, H, say G, is not equivalent to any element of 2.
Note that {F:F < G} strictly contains {F:F < H} and (i}, k;)

[F:F< Gy =, {F:F< D}
{F:F< H} = g {F:F < Dy }.
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Hence, (3D;)(H < D;, < G). Note that {F:F < G} strictly contains {F:F < D},
and repeat the above to conclude that (3D; )(D;, < D;, < G). Thus, H <X D;, <
D; < G and it follows that

P(H) = sup {x:D; < H, x = P(D;)} = P(D;) <
P(D;) = sup {x:D; < G, x = P(D)} = P(G).

This verifies that P(H) = P(G) = H = G. Therefore, we have shown that P, as
defined above, agrees with =. []

An example of an ordering >= satisfying C1, C2, C3 but not C4 can be developed
from the lexicographic order. Let Q = [0, 1], & be the Borel field of subsets of
Q, L Lebesgue measure, F a measure having a density f with respect to L given by

Sx) =x if x € [0, 1].
Define an ordering > between elements G, H of & as follows:
G>=H if L(G)>LH) or L(G)=LH) and F(G) = F(H).

It is easily verified that >= satisfies C1, C2, C3. The proof that it violates C4 follows
from a proof of Debreu that there is no utility function for commodities that are
lexicographically preferenced.

Theorem 1 may prove to be of value in axiomatizations of = when the quotient
space & /= is infinite; it is, of course, trivially satisfied when &% /= is finite. For
example, a somewhat more appealing sufficient condition for the existence of a
quantitative probability P is supplied by the following corollary to Theorem 1.

CoROLLARY. If = satisfies Cl1, C2, C3, and (3{D;})(V4 < B)(3j}(4 < D; < B),
then there exists a (not necessarily additive) quantitative probability.

[Note added in proof. It has been established, and will be proven in Fine (1972),
that if > satisfies C1, C2, C3, and is monotonely continuous (4,14, (Vi)4; <X B =
A < B) then there exists P agreeing with >=.]

2. Almost uniform partitions and the existence of finitely additive quantitative
probability. Following Savage we define an n-fold almost uniform partition
P2, = {E;™} of Q to be a partition of Q such that for all k(1 £ k < n) the union
of no k of the {E;"} is more probable than the union of any (k+1) of the
{E;™}. Introduce axiom

CS. (Ym)(32,).
Concerning C5, Savage has proven the following
THEOREM. If = satisfies C1, C2, C3, C5, then there exists P additive and such that
A > B= P(A) = P(B). (Almost agreement.)
Furthermore, (V0 = o = 1)(VB)(34 < B)(P(A) = aP(B)).

A connection between agreeing and almost agreeing P is given by

THEOREM 2. If > satisfies C1, C2, C3, CS5, then there exists P additive and agreeing
with = if and only if there exists any agreeing P’ (not necessarily additive.)
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PRrROOF. The “only if” part is trivial. To verify the ““if”” part assume P’ agrees with
7. From Savage’s theorem we know that there exists P additive and almost
agreeing with >=. Either P agrees with =, in which case there is nothing to be proven,
or it does not. If P does not agree with >= then there exist F, G such that F > G
but P(F) = P(G). Either P(F u G) < P(Q) or P(F U G) = P(Q).

IfP(FuU G) < P(Q)then (VO < o = 1)(3H, = F v G)(P(H,) = aP(Fu G) > 0).

Weclaim thatfora # f {4:GU H, < A<FUH,}Nn{A:GUH; <A< Fv
Hpy = .
To verify this claim say & > f, and hence,
P(G U H) = P(G)+aP(Fu G) > P(G)+pP(F u G).
= P(F)+fpP(Fu G) = P(Fu Hp).

Since P almost agrees with =, G U H, > F U Hy. Hence, in terms of the agreeing
P’ we find that « > = P'(G U Hy) < P'(Fu Hp) < P(GU H,) < P'(Fu H,).
Corresponding to each « there is a non-void interval (P (G v H,), P'(Fu H,))
with disjoint intervals for unequal . However, there are uncountably many values
of a but only countably many disjoint, non-void, open intervals and we have
reached a contradiction. Hence, if P(F U G) < P(Q2), then P(F) = P(G) = F = G.

To complete the proof we need to treat the case of P(Fu G) = P(Q), F > G,
and P(F) = P(G). This case can be dealt with by reducing it to the previous case
as follows. Replace F, G by A = F—(Fn G), B= G—(Fn G), where now
P(4) = P(B) and 4 > B. If P(4 u B) < P(Q) then we have just proven that
A ~ B and thisis a desired contradiction. If P(4 U B) = P(2), then by Savage’s
theorem there exist A’ = A, B’ = B such that P(4’) = P(B’) = $P(A). Since
(A—A)Yu A" > (B—B’) u B, at least one of (4—A"), A’ is more probable than
one of (B—B'), B, say A" > B’. However, P(4' u B’) = }P(A v B) < P(Q).
Hence, by our preceding discussion A’ ~ B’, and we again reach the desired
contradiction.

Thus, we have shown that if P(F) = P(G) then F ~ G, the almost agreeing,
additive P in fact agrees with >=. []

COROLLARY. If > satisfies Cl, C2, C3, C4, CS5, then there exists an additive
quantitative probability.

Proor. Immediate from Theorem 1, 2, and Savage’s theorem. []

Theorem 2 in combination with Savage’s theorem informs us as to the most
that can be expected from an hypothesis about almost uniform partitions. Any
agreeing additive P satisfying C5 must have the strong property that (VB)(V0 =
a < 1)(34 = B)(P(A) = aP(B)). While C4, C5, are implied by Savage’s hypotheses
that 2= be fine and tight, and, therefore, are at least as general, they in turn imply
sufficient conditions for the existence of additive, quantitative probability proposed
by Luce. Furthermore, since Luce’s axioms hold in certain instances where
F |~ is finite, the converse implication does not hold. Thus we have shown that,
despite the intuitive appeal of the almost uniform partition hypothesis, any theory
based upon C5 will be but a special case of Luce’s theory.
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3. The existence of countably additive quantitative probability. A necessary
condition for the existence of a countably additive quantitative probability is
stated in axiom

Co. (V{BD((B: 2 Bivy, ()21 Bi = @)= (21 {4:F <A< B} = Q).
To substantiate the value of C6 we assert

THEOREM 3. If P is a finitely additive quantitative probability, then P is countably
additive if and only if = satisfies C6.

Proor. To verify ““only if”” assume P is countably additive and that {B;} is such
that B, 2 B,,y, (;B;= . If 34 e (), {4: & < 4 < B;}, then (Vi)(P(B) =
P(A4) > P()). However, by the well-known continuity equivalence to countable
additivity, lim;_, , P(B;) = 0, and this contradicts P(4) > 0. Hence

mi{A:Q <A4= Bl} = Q,

as claimed.

To verify “if ” assume, to the contrary of our expectations, that 3{B;}, B; 2 B, 1,

Z1Bi=0, (1{4:F<A4=B} = yet lim_, P(B) =¢>0. Hence
there is no 4 for which ¢ > P(4) > 0; if there were such an 4 then (Vi) <
A < By in contradiction to ();{4:J <4 = B;} = . It follows from
B, | &, P(B) | ¢ that if for some n,d < ¢, ¢4+0 > P(B,) > ¢ then (3k > n)
(6 = P(B,—B,) > 0). This, however, contradicts (A4)(e > P(A) > 0). Hence,
either P(B;) = 2¢ or P(B;) = ¢, and it follows from P(B;) | & that (3j)(P(B)) = ).
However, this shows that (Vi)(B;e {4:J < A £ B;}) in contradiction to
ﬂ{’il {A: & < A £ B;} = . The contradiction can only be avoided by rejecting
the tentative hypothesis that ¢ > 0. Hence, P is continuous; and, therefore,
countably additive. []

Villegas has proposed axioms for countable additivity that correspond to
C1-C4, a strengthened form of C6, and the hypothesis that there are no atoms
(i.e., VA > NEB = A)J < B < A). It follows from Villegas’ Theorem 5
that his axioms imply C1-C6. Hence, combining our remarks at the end of Section
2 with Theorem 3, we see that Villegas’ theory of countable additivity is a special
case of the theory we have if we adjoin C6 to Luce’s axioms for finite additivity.
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