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ABSTRACTS OF PAPERS

(Abstract of a paper presented at the Eastern Regional meeting, University Park,
Pennsylvania, April 21-23, 1971.)

129-44. Methods for assessing multivariate normality (Invited). D. F. ANDREWS,
R. GNANADESIKAN AND J. L. WARNER, Bell Telephone Laboratories.

The paper reviews a variety of techniques for evaluating the normality of the
distribution of a body of multivariate data. Two broad categories of approaches
are considered: (i) methods associated with data-based transformations for
improving normality, and (ii) other techniques. Under gach category, both simple
though not sufficient methods (e.g. assessment of marginal normality) as well as
more complete techniques (i.e. evaluating joint normality) are discussed. More
specifically, the essential idea in the approaches associated with transformations
is to assess the deviations of the estimated values of the transformation parameters
involved from “‘null” (i.e. no transformation is required) values. Among the methods
not related to transformations, firstly there are the univariate techniques useful for
evaluating marginal normality of the individual variables. Secondly, linearity of
the regressions among the variables and the behaviour of the generalized distances
of the observations from their centroid may be investigated. Thirdly, and most
generally, methods for assessing joint normality can be developed. The 2
goodness-of-fit test is a classical example, but additional techniques are needed and
a few are discussed in this paper.

The detailed developments are for the bivariate case, but extensions to higher
dimensions are implicit and, in principle, direct. Several illustrative examples are
included. (Received April 21, 1971.)

(Abstracts of papers presented at the Annual meeting, Fort Collins, Colorado, August
23-26, 1971. Additional abstracts will appear in future issues.)

131-5. Arbitrary event initial conditions for branching Poisson processes. A. J.
- LAWRENCE, Thomas J. Watson Research Center.

Branching Poisson processes are now a well-known class of stationary point
processes, being introduced by Bartlett, J. Roy. Statist. Soc. Ser. B 25 264-296,
and Lewis, J. Roy. Statist. Soc. Ser. B 26 398-456; they are built up by the super-
position of main Poisson events and events from finite renewal subsidiary processes
which are initiated by the Poisson events. Arbitrary time (equilibrium) initial
conditions were given by Lewis, J. Appl. Probability 6 355-371 and here the
corresponding arbitrary event initial conditions are obtained from an extension
of Khintchine’s analytic notion of an arbitrary event in a stationary point process.
These conditions are shown to jointly specify the distribution of the number of

1782

G]
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ% )2
The Annals of Mathematical Statistics. FIEGIE ®

®

WWww.jstor.org



ABSTRACTS 1783

subsidiary processes running (which is found to be the mixture of a Poisson variate
and a Poisson variate plus one) together with the distributions of the numbers of
events remaining in each and their future durations. In such an initiated branching
Poisson process it is also shown that these conditions repeat themselves at every
subsequent event. (Received April 7, 1971.)

131-6. A note on asymptotic joint normality. C. L. MaLLows, Bell Telephone
Laboratories, Inc.

The concept of asymptotic normality takes on some new aspects when the
dimensionality of the vector random variable under consideration is allowed
to increase indefinitely. A necessary and sufficient condition for joint asymptotic
normality in a new (strong) sense, in the case of independence, is given. (Received
April 8, 1971.)

131-7. On the possibility of a multivariate extension of the variance stabilizing
transformations. PAuL W. HoLLAND, Harvard University.

After reviewing the asymptotic variance stabilizing transformations in one
dimension, a generalization of these to multivariate cases is discussed. Results are
given for the uniqueness of solutions when they exist, but unlike the one-dimensional
case, covariance stabilizing transformations need not exist. In the two-dimensional
case, a necessary and sufficient condition is given for the existence of solutions. It
takes the form of a second order partial differential equation that the elements of
any square root of the inverse of the limiting covariance matrix must satisfy. This
condition is applied to three examples with the conclusion that no covariance
stabilizing transformation exists for the trinomial distribution. It is conjectured
that this non-existence of solutions is true for the general multinomial. Finally,
some alternative formulations of the problem are mentioned. (Received April 20,

1971.)

131-8. Comparison of some two-sample nonparametric tests for scale. BENJAMIN S.
DuRrAN, Texas Institute for Rehabilitation and Research.

Suppose X, X,, -+, X,, and Y, Y,, ---, Y, are independent random samples
from two populations having unknown absolutely continuous cumulative distri-
bution functions F(x) and G(x), respectively. Consider W, =3Y7_;R; and
W, =3Yi_; R;> where R, denotes the rank of the ith smallest [Y|in the combined
ordered sample of | X|’s and |Y|’s. This paper discusses the statistics W, and W,
as test statistics for testing H,: F(x) = G(x) against H,: G(x) = F(x0), 6 # 1.
The statistic W, is asymptotically equivalent to others previously proposed,
among them that of Sukhatme (4nn. Math. Statist. 24 188-194). The asymptotic
relative efficiency of the Wi-test relative to the W,-test is 0.80 when normal
alternatives are assumed. Other comparisons are also discussed. (Received April

20, 1971.)
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131-9. On the distribution of a linear combination of correlated quadratic forms.
P. R. KRISHNAIAH AND V. B. WAIKAR, Aerospace Research Laboratory.

Let X' = (X}, -, X3;), j = 1, -++, n be independently distributed as m-variate
normal with mean vector u; and covariance matrix X. Let y; = 2'15:1 X 4:X;),
i=1,--,q where A,, -, A, are positive definite. Further, let y = Y& ¢;y,
where ¢y, -+, ¢, are arbitrary positive constants. In this paper, the authors proved
the infinite divisibility of ¢(¢) where ¢() is the characteristic function of y. Further,
using the property of infinite divisibility of ¢(¢), two representations have been given
for the distribution of y* where the characteristic function of y* is [¢(¢)]%, B being
a positive real number, and assuming u; = g, j = 1, -+, n. Finally, the authors
have derived the density of the random vector T = y~*Z where Z is distributed
independently of y as a p-variate normal with mean vector v and covariance matrix
V and y is as stated above with u; = 0, j = 1, ---, n. Thus the authors derived a
generalization of the noncentral multivariate z-distribution. (Received April 21,

1971.)

131-10. Distribution-free interval estimation of the largest a-quantile. M. HASEEB
Rizvi aND K. M. LAL SAXENA, Stanford University and University of
Nebraska.

Consider k(= 1) distributions with unknown continuous cdfs F,, i = 1, ---, k.
Let x,(F;) be the unique a-quantile (0 < a < 1) of F;and let 0 = max, <;<; x,(F)).
For specified y, we want a random interval 7 such that inf P{0 € I} = y, where
infinum is taken over the set Q of all possible k-tuples (Fy, F,, -+, Fy). Let Y, ;
denote the rth order statistic from F; obtained from independent random samples
of common size n from each F; and let Y, = max;<;<; Y, ; for r =1, n
Define Y, = —o0 and Y,,; = 4+0. For s < ¢ consider the random interval
I, = (Y,, Y,) and assert that 0 € I, where s and ¢ are chosen to satisfy the above
probability requirement. The minimization of the probability of coverage is given
by the following. THEOREM. With G.(x) denoting the incomplete beta function,
inf P{0 € I} is GX(@), 1 — G,(a) or min {G(a)— G,(), G*(@) — GX(®)} according as
I, = (Y,,0), Iy =(—0,Y) or Iy=(Y,Y) with 0<s<t<n+l. An
optimality criterion is proposed and an algorithm is given for two-sided intervals.
Large sample approximations are also considered. (Received April 23, 1971.)

131-11. Multivariate tests for nonadditivity: a general procedure. Lyman L.
MCDONALD AND GEORGE A. MILLIKEN, University of Wyoming and
Kansas State University.

In a conventional univariate linear model it is often possible to examine a more
complete model which includes nonlinear terms. This leads to tests for non-
additivity in some of the commonly used experimental designs. Consider, for
example, Tukey’s one degree of freedom for nonadditivity in the two-way cross-
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classification model. This paper extends this theory to the multivariate case (i.e.,
the case when more than one variate or response is measured on each experimental
unit) and tests are developed for the hypothesis that the multivariate model is
additive with respect to each variate against the alternative that at least one
variate requires a nonadditive model. (Received April 27, 1971.)

131-12. Two examples of invariant Bayes procedures. RICHARD E. SCHWARTZ,
Department of Defense.

Kiefer and Schwartz (4nn. Math. Statist. 36 (1965) 747-770) describe techniques
for the construction of proper Bayes tests which are invariant under non-compact
groups. Their work, as well as subsequent papers on the subject, is limited to zesting
problems concerning exponential families of p.d.f’s. The present note shows, by
means of two simple examples, that the same methods can sometimes be applied
more generally. One example considers estimation of the ratio of the mean to the
variance for the normal distribution. The second example considers testing
problems in which the p.d.f’s have an exponential factor as well as a non-exponen-
tial factor. (Received May 14, 1971.)

131-13. A test for normality based on a characterization of the Univariate Normal.
WiLLiAM B. OweN, Central Washington State College.

A characterization of the Univariate Normal is used as a basis for testing any
continuous density for normality. Empirical power comparisons of this test are
made with the Kolmogorov—Smirnov test and the chi-square goodness-of-fit test
for several densities, including the exponential, uniform, and Cauchy. (Received
May 14, 1971.)

131-14. A test for weak bandwidth stationarity. EDWARD L. MELNICK, New York
University.

Observations generated by time series models contain interrelationships which
are extremely difficult to analyze. The mathematics become more tractable if the
generating process is assumed to be weakly stationary, i.e., the first two moments
exist and are independent of time. In this paper a procedure is developed for
testing the null hypothesis that a harmonizable process is weakly stationary. The
procedure assumes only one observation to be available at each time point. The
derived tests investigate predetermined frequency bands, under the assumption of a
smoothness property by an application of complex demodulation. Basically, the
random variables du(w) and dv(w) in the representation X(¢) = [§ cos widu(w)+
[& sin wtdv(w) are tested using the discrimination information statistics. The tests
will be illustrated by applying them to artificial data whose properties are known.
(Received May 14, 1971.)
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131-15. WITHDRAWN.

131-16. Improved predictive mean square error. S. C. NARULA AND JOHN S. RAMBERG,
University of Iowa.

A method is proposed to improve the predictive mean square error (variance +
squared bias) of a least squares prediction equation. The equation is multiplied
by a constant (1) which is a function of the model parameters and the values of the
predictor variables. The distribution of A is derived and a simple illustrative
example is included. (Received May 14, 1971.)

131-17. The estimation of heteroscedasticity parameters from a marginal likelihood
function. HANS LEVENBACH, Bell Telephone Laboratories, Inc.

The linear regression model with normally distributed heteroscedastic errors is
analyzed in the conditional framework of the theory of structural inference. The
inference procedure produces a marginal likelihood function for the parameters
that describe the heteroscedasticity (unequal variances) in the model. This marginal
likelihood function is based on the distribution of a vector of standardized residuals
that is constant on orbits in the partition generated by the regression-scale group
of transformations on a Euclidean space. Given a plausible value or set of values
for the heteroscedasticity parameters, the theory also provides structural distri-
butions of the regression coefficients and the scale parameter. Comparisons are
made in two simple regression models using two sets of data drawn from the
literature. (Received May 14, 1971.)

131-19. Asymptotic joint distribution of () multiple correlation coefficients between
a certain variable and ¢ variables among p other variables (¢ < p).
MINORU SIOTANI, Kansas State University.

Let (xo, X4, -+, X,) be subject to a (p+ 1)-variate normal distribution. Then an
asymptotic joint distribution of (?) squared sample multiple correlation coefficients
(m.c.c.) rg(a) between x, and (x,,, -, X,,) was obtained. Since rg(a) are functions
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of the sample covariance matrlx S with n degrees of freedom, r3,,’s are asymptoti-
cally normal with mean po(a) ’s, corresponding squared population m.c.c. Elements
of the covariance matrix are evaluated by using the delta method and the following
formula: Cov {f(S), g(S)} ~ (2/n)f(Z)g(Z) tr (PZWX) where X is the population
covariance matrix, ® = (0,4 Inf(2)), ¥ = (0,45 In g(T)), 0,y = = (D1 +0,4)0/00 4,
and 6,; = the Kronecker symbol (Mimeo Series No. 595, University of North
Carolina at Chapel Hlll) Let us use the symbols («) = (i, k) = (iy, i,-,, ky, -+, k)
and (f) = (k,7) = (ky, -+, kry J1» -+, Ji—r) With the emphasis of common variables.
Then the obtained covariances are:

CoV (1§ Tow.p) = (2/n)-
[(1 = p30)(L = P50, (P + PS .1y — 1)
+{1= PGy — 4 Aindil 00 + 4’ AG(E — ZBZENA a5/ 00} -
{1= P800 — 4, A34,1900 + 4" Aa(Z() — 2 Zq) 25)-

AG4;l900}], Where q, = 644, —Z00Z ) 6o

A = Zw—ZBZ0 g)’, (u =1,)), ) is the covariance matrix of (x,,,-,X,
and (x,,,,x, ), E(,,) = X, 0o the variance of x,, and Gow) the column
vector of covariances of x, and x,,, -, x, . (Received May 18, 1971.)

131-20. Estimates of the renewal function when the second moment is infinite.
MorTON R. DuUBMAN, Bell Telephone Laboratories, Inc.

Let F(x), —o0 < x < o0, be a nonlattice probability distribution function with
finite positive first moment y and with [, x*dF(x) < oo Let F® denote the
k-fold convolution of F with itself and H the renewal function, given by
H=Y2,F®. Set Q(x) = 1—F(x) for x =0, and Q(x) = —F(x) for x < 0.
Set T,(x) = xfor x = 0 and T (x) = O for x < 0. For m = 2 define the functions
T, by T,,=puT,,_,—T,_,*Q, where * denotes the convolution operation.
THEOREM. Assume that: (i) F(x+1)—F(x) = O(x ' "% asx - o, where 1 < o < 2,
and (ii) 1 — F(x) ~ x™*L(x) as x — oo, where L is a slowly varying function. Suppose
that n z 2. If (n+1)/n < a < nf(n—1), then H(x) = x/p+ Y m=2 b "T(x)+0,(1)
as x - oo, where Tp(x) ~ Ly(x)x™"~DA=0%1 g0 oo with L being a slowly
varying function simply determined by m and L. In the proof Fourier analysis methods
are used to estimate the remainder term in the expansion of H. Similar results,
valid for 2 < n £ 5, are proved when assumption (i) is dropped. Assumptions of
the form 1—F(x) = O(x™"), x - oo, are also considered. The results of the paper
provide refinements of earlier estimates of the renewal function under condition
(ii) due to Feller (Trans. Amer. Math. Soc. 67 (1949) 98-119) and Teugels (J.
London Math. Soc. 2 (1970) 179-190). (Received May 19, 1971.)
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131-21. Invariance and randomization in fractional factorial designs. J. N. SRIVASTAVA

AND B. L. RaAkTOE, Colorado State University and University of
Guelph.

In this paper, we first prove: THEOREM. Consider an (s, X s, X --- X ,,) factorial.
Let po(v x 1) denote the set of (possibly) nonzero unknown parameters, the remaining
parameters being assumed zero. Let T be any (arbitrary) design, i.e. various level-
combinations may occur zero, one or more times in T. Let M denote the *“‘information
matrix” for p, using the design T. Let p, be such that if A;*'4,** --- A,/ € p, with
ky #0, then A1 4,% .- 4, € py for every k' # 0. Let (wg, wy, -+, 05, —1)
denote any permutation of (0, 1,2, ---, s, —1). Let T* be the design obtained from T
by changing level i (i = 0, 1, ---, s, — 1) of the first factor to level w;. Let M* be the
information matrix for T*. Then M* = F'MF, where F is an orthogonal matrix.
(Obviously, the theorem also holds if the levels of several factors are transformed,
instead of just one factor). This generalizes the results of Paik and Federer (4nn.
Math. Statist. 41 (1970) 369) in several directions. (i) They considered main effects
plans, for the symmetrical prime power case. Our p, is very general, T is arbitrary,
and the s; are not necessarily equal and may be any positive integers. (ii) Their
method of obtaining T* from T is a very special case of ours. (iii) They proved only
that |M| = |M*|, etc. Finally, we extend their results on randomization to our
general setup. (Received May 21, 1971.)

131-22. Reliability estimation in presence of an outlier observation. S. K. SINHA,
University of Manitoba.

Consider a situation in which the random variables (X, X, -+, X,) are such
that (n—1) of them are distributed as f(x, o) = (1/6) exp (—x/0), x = 0 and one
of them is distributed as f(x, o/x),0 < « < 1, while each X; has a priori probability
1/n of being distributed as f(x, o/a). The behavior of R,, the uniformly minimum
variance unbiased estimator of the reliability function for the family f(x, o) has
been studied in presence of an outlier observation X ~ f(x, o/a). Bounds of
E(R, | @) and the mean-squared-error of (R, | ) have been obtained and a new
estimator R, * has been proposed. Similar problems have been considered when the
pdf’s of X are g(x, ) = exp {—(x—w)}, x = p and g(x, p+6), 6 2 0. A semi-
Bayesian approach, where « and § are treated as random variables with Beta and
Gamma type priors, will also be discussed. (Received May 24, 1971.)

131-23. Un test des hypothéses: f(x) spécifié représente ou ne represente pas la
densité de la population. EUGENE H. LEHMAN, Université du Québec.

La statistique Cramér-Rao, L,, est définie comme: L, = Z(F;— 1/m)?,
i=1,-,n; m=n+1; F; = la distribution cumulative de ’observation ordon-
née, x;; x; est la plus petite observation, x, la plus grande. On veut vérifier si F est

en réalité la distribution de la population. On dérive une formule tres élaborée pour
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calculer I’espérance E(L,F),p = 1, ---, 6. Avec ces 6 moments-ci on peut approximer
la densité /4 de L, pour chaque n = 1, .-+, 100. Prochainement, on peut calculer les
valeurs de L,(a) ou 1—a = intégrale (0 & L,(a)A(L,)dL,; a = 0.0001, 0.0002,
-+, 0.5, -+, 0.9998, 0.9999. Armé de ces chiffres, on peut rejeter H, : F est en effet la
densité de la population; si L, excéde L,(a) ou a est la taille du test; semblablement,
on peut rejeter H,: Fn’est point la densité, si L, n’excéde pas L,(1—a). (Received
May 25, 1971.)

131-24. The asymptotic behavior of the joint distribution of maxima from bivariate
samples. JANET W. CAMPBELL AND CHRIS P. Tsokos, NASA Langley
Research and Virginia Polytechnic Institute and State University.

A workable method is presented for obtaining the asymi)totic joint distribution
of the maximum X and the maximum Y in samples drawn from a continuous
bivariate population. It is assumed that the marginals of this bivariate distribution
possess asymptotic extreme-value distributions and that the probability density
function associated with the original bivariate distribution has a canonical series
expansion, i.e., is “@>-bounded” as defined by Lancaster, [The structure of
bivariate distributions, Ann. Math. Statist. 29 (1958) 719-736]. Using the canonical
expansion of the density function and the univariate extreme-value distributions of
the marginals, the authors derive a general form for a bivariate extreme-value
distribution. Their technique is then applied to the bivariate gamma distribution,
and the resulting asymptotic extreme-value distribution is shown to be the product
of two double-exponential distributions, the univariate extreme-value distributions
associated with gamma marginals. Thus, it is proved that the maxima from bivariate
gamma samples, like those from bivariate normal samples, are asymptotically
independent. (Received May 25, 1971.)

131-25. An optimal test of fit based on order statistics. JAMES E. NORMAN, University
of Georgia.

Let Y = {Y;, Y,, -+, ¥,,} be a vector of K order statistics from a random
sample of size n = k. Denote the mean vector and covariance matrix of Y by u
and X respectively. The parent distribution function is to be tested as Hy: F(x)
(completely specified) vs. H,: G(x) (completely specified). The result that (Y — )" x
271(Y —p) has an asymptotic chi-square (k degrees of freedom) distribution can
be used to make this test and the choice of iy, i,, -+, §;, can be made in such a way
that the power is a maximum. (Received May 25, 1971.)

131-26. Improved predictive mean square error. S. C. NARULA AND JOHN S. RAMBERG,
University of Iowa.

A method is proposed to improve the predictive mean square error (variance -+
squared bias) of a least squares prediction equation. The equation is multiplied by a
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constant (1) which is a function of the model parameters and the values of the
predictor variables. The distribution of 4 is derived and a simple illustrative example
is included. (Received May 28, 1971.)

131-27. On three level symmetrical factorial designs and ternary group codes. BoDH
RaAy GuLATI AND E. G. Kounias. Southern Connecticut State College
and McGill University.

Consider a finite (#4r—1)-dimensional projective space PG (¢+r—1, 3) based
on three elements 0, 1 and 2. A set of k distinct points in PG (t+r—1, 3), no ¢
of which are linearly dependent, is said to be a (k, f)-set; such a set is maximal
if it is not contained in any (k*, f)-set with k* > k. The number of points in a
maximal set is denoted by m,(¢t+r, 3). In the language of experimental designs,
m,(t+r, 3) represents the maximum number of variables in a symmetrical factorial
design, in which factors operate at 3 levels, blocks are of size 3**" and no main
effect or t-factor or lower order interactions is confounded with block effects. The
problem of constructing fractional replicates of 2™ designs has been approached
in the literature from several closely related points of view, but work on 3™ designs
has scarcely begun. In this paper, we have explored a possibility of adjoining
n < t points to the basic set of E;, i = 1, 2, 3, ---, t+r, where E, is a point with a
one in the ith position and zeros elsewhere. In general, m(t+r, 3) = t+r+n for
Yrol[e-37/] < r < Y%, [t-377] where [x] is the largest integer not exceeding x.
(Received June 1, 1971.)

131-27. On detecting a spurious observation. K. S. MounT and B. K. KALE,
University of Manitoba.

Suppose we take a sample of size n(Xj, -, X,) with n—1 of the observations
having df F and one (spurious) observation having df G where F < G. A priori,
each X; has probability 1/n of being the spurious observation. Let u, be the prob-
ability that the rth order statistic X,,, corresponds to the spurious observation.
Kale and Sinha [Ann. of Math. 46, 752] have proved that u, is a monotone
increasing function of r when F and G are exponential with unknown scale
parameters. We generalize this result when: (i) F and G are members of a mono-
tone likelihood ratio (in X) family; (ii) G € #(F) = {G:G(x) = Y, C[F(x)]%,
C,z0,Y7,C,=1}. Some properties of the class of df’s o/(F) are studied.
We show that o/ (F)is closed under two types of convergence: (a) weak convergence;
(b) convergence in L? norm of the vector of constants determining the member of
&/ (F). The above results are then applied to study the slippage problem, i.e., to
test Hy: X; ~ Fo,j =1, n, vs. Hi: X;Fo, j #1, X; ~ G where Fy < G. The
optimal test such that P{rej. H, | Ho} = o and Pfacc. H; | H,} is maximized and
P{acc. H; | H;} is independent of i, has critical region X, > C,,. (Received
June 3, 1971.)
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131-28. A family of binary balanced incomplete block designs with two unequal block
sizes and two unequal replications. A. HEDAYAT AND W. T. FEDERER,
Cornell University.

The following theorem is proved. THEOREM. If there exists a balanced incomplete
block design with parameters v, by, r{, k;, 4, and a balanced incomplete block
design with parameters v, b,, r,, k,, 4,, then there exists a binary balanced
incomplete block design consisting of v+ 1 treatments (the new treatment will be
called the augmented treatment), c¢,b, blocks of size k£, +1 and c,b, blocks of size
k, with ¢, = k,(r,—A,)/d and ¢, = A,(k,+1)/d, where d is the greatest common
divisor of k,(r;—4,) and A,(k,+1). The augmented treatment is replicated c¢,r,
times while the other v treatments are each replicated c;r, 4 c,r, times. The corre-
sponding matrix of the adjusted normal equations is of the form r,;4,(v+1)x
I+r,4,J, where I is the identity matrix or order v+1 and J is the (v+1) x (v+1)
matrix with unit entries everywhere. Thus every elementary contrast is estimable
with the same variance, and hence the design is balanced. (Received June 4, 1971.)

131-29. An optimal sequential decision procedure for comparing two binomial
probabilities. THOMAs L. BRATCHER, University of Southwestern
Louisiana.

A straightforward Bayes solution is found for the two-decision problem of
comparing two binomial probability parameters where the data are taken in pairs.
The Bayes sequential procedure is shown to be truncated and an upper bound on
the point of truncation is derived. A linear loss function is utilized and the beta
distribution is taken to represent the prior information. (Received June 4, 1971.)

131-30. Percentage points of the statistic for testing hypotheses on mean vectors of
multivariate normal populations with missing observations. D. S. BHoJ,
Rutgers—the State University, Camden.

We have considered the problem of testing of hypotheses on the mean vector
of a multivariate normal distribution with unknown and positive definite covariance
matrix when a sample with missing observations from that population is avail-
able. We have assumed that the missing observations follow a special, though not
unusual, pattern. The null distributions are not in a suitable form to determine the
critical region. We have used the cumulants of the test statistic to get the approxi-
mate percentage points. The accuracy of the percentage points has been checked by
comparing them with some exact percentage points which are calculated for com-
plete samples and some special incomplete samples. The comparison showed that
our percentage points are in good agreement with exact percentage points. We
extended the above work to the problem of testing the hypothesis of equality of two
mean vectors of two multivariate normal populations with the same, though
unknown, covariance matrix. (Received June 4, 1971.)
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(Abstracts contributed by title)

71T-44. Testing equality of means of two normal populations under multiplicative
model. J. SINGH AND B. N. PANDEY, Banaas Hindu University.

Consider two Normal populations N(ui, 7,2) (i = 1, 2) where p, = apy, 0, =
a%c,?. For testing the hypothesis Hy:a = 1 against the alternative hypothesis
H, = a > 1, the following test statistics have been used (i) U = S,2%/S,? where
5.2 =YY" (qij—7)*/(ni—1)(@ =1, 2) (ii) Unilateral statistics Y(y;y,) =
(X, —X3)?/[(n;— 1)y, S, >+ (n,—1)y,S,%] where y, and y, are suitable constants
(McCullough and L. Rogen-burg (1960) (iii) p*> = (X, —X,)*n n,(n, +n,—2)/
[(n, +n,){(n;—1)S, >+ (n,—1)S,?}]. We have investigated the power function of
these statistics by taking n,, n, = 3, 5, 7, 9. We have also considered the case when
the two populations have the same coefficient of variation i.e. we have considered
N(ui, p2ui®) (i = 1, 2), p, = ap,. For testing the hypothesis H,: a = 1 against the
alternative hypothesis H,: a > 1 the likelihood ratio criterion is used and the test
statistic used is A = [2[{(X 2 +25,)(X,2+25, )} = X, X,I1"I(X; — X2)* +
2(sy 2 +5,2)]. (Received April 5, 1971.)

71T-45. On multitype Galton-Watson processes with p near 1 (preliminary report).
M. P. QUINE, Australian National University.

Let (Z,) = ({Zy.15 > Zuy})sn = 0, 1, 2, -+, be a k-type Galton—Watson process
which has probability generating function (p.g.f)F = F(s) = {F(s), -, Fi(5)},
se [0, 1T, and expectation matrix M(F) = | 0F,(1)/0sy||. Given a positive integer
U, and constants @ > 0, b > 0, ¢ < o, let K denote the class of all p.g.f.’s F of the
above kind which are proper, and satisfy (i) {MU(F)}(,,, >a, 1 20 B k; ()
S gy O2F (1)[0sg0s, 2 b; (i) Yap.y.s 0°F,(1)/0s40s,0s; < c. Denote by pp the
spectral radius of M(F). Let i = {i;, ---, i} be a fixed vector where iy, ---, i, are
nonnegative integers and Y i, > 0. Let u, = {4, 1, -, hy i) denote the conditional
expectation E[Z, | Z,=1i,Z, #0]. For n = 1, 2, ---, define Z,* as the vector of
the normed random variables Z,*, = Z, ,/it, ,» 1 £ a < k. For two vectors a, b, we
write a = b if each element of a is not less than the corresponding element of b.
Given any ¢ > 0, there exist 6 > 0 and N < co such that for n > N, sup, g«
| PIZ,* £ X|Zo =1, Z, # 0]—S(x) | < &, uniformly for all processes with p.g.f.
F € k satisfying |l—pF| < §, where S(x) = 1—exp (—min, x,) when x = 0, and
S(x) = 0 otherwise. A similar theorem has been proved for the process with
immigration, in which case conditioning on non-extinction is unnecessary, and the
limit distribution relates to the gamma rather than the exponential. (Received
April 5, 1971.)
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71T-46. On bounds for the frequency of misleading Bayes inferences. RAy E.
SCHAFER, Hughes Aircraft Company.

If the posterior probability of a true hypothesis is small, say < p, then one could
be led to the misleading inference that the true hypothesis is false. Suppose given a
finite number k of hypotheses one true, say 7, and k—1 false such that (i) the k
hypotheses have equal prior probability and (ii) all k£ are simple hypotheses. Then
Kerridge [Ann. Math. Statist. 34 (1963) 1109-1110] has given, for general stopping
rule, the upper bound (k—1)p/(1—p) on the frequency of misleading Bayes
inferences. That is, lim,., ) *P(X, | T) £ (k—1)p/(1—p) where Y * denotes
summation over all vectors X, for which sampling has terminated and P(T [ X,) £ p.
In this paper we remove the two mentioned restrictions. The k& hypotheses need
not have equal prior probabilities and they need not be simple. Denoting the prior
probabilities of the true hypothesis 7 and of the union of the k — 1 false hypotheses
by P(T) and P(F) respectively, we obtain for an upper bound on the frequency
of misleading Bayes inferences: cp/(1—p) where ¢ = P(F)/P(T). That is,
lim,_ Y *P(X, | T) < ¢cp/(1—p). (Received April 27, 1971.)

71T-47. Markov decision processes with a new optimality criterion. STRATTON C.
JAQUETTE, Stanford University.

Standard finite state and action Markov decision processes with discounting
are studied using a new optimality criterion called moment optimality. A policy is
moment optimal if it lexicographically maximizes the sequence of signed moments
of return with a positive (negative) sign if the moment is odd (even). For discrete
time processes it is shown that a stationary policy is moment optimal by examining
the negative of the Laplace transform of the total return random variable. An
algorithm is developed to construct all stationary moment optimal policies. The
algorithm iteratively examines the moment of return beginning with the first
moment. The algorithm is shown to be finite. The corresponding results for
continuous time processes are proved when general piecewise constant policies are
allowed. A convergent Laurent expansion for all moments of retura is derived for
stationary policies, and this expansion is used to show that there are stationary
policies that are moment optimal for all sufficiently small interest rates. The criterion
of maximizing the expected utility of total return for exponential utility functions
is also considered as related to the rest of the paper, and it is shown that for two
related Markov decision processes stationary policies maximize utility. (Received

May 3, 1971.)

71T-48. Doubly non-central F distribution-tables and applications. M. L. Tixu,
McMaster University.

The distribution of F” = (f,x,"?/f1x2’%), where x,’? and x,’? are two indepen-
dent non-central chi-square variates with degrees of freedom f; and f, and non-
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centrality parameters 4, and 1,, respectively, is called the doubly non-central
F-distribution. This distribution has applications in analysis-of-variance in which
interaction or bias effects occur (Scheffé, H. The Analysis of Variance, Wiley,
New York; Madow, W. G. Ann. Math. Statist. 19 (1948) 351-9, and in information
theory and engineering (Price, R. IRE Trans. Inf. Theory IT-8 305-16). In this
paper an expression for the probability integral of F” is obtained from the Laguerre
series expansion of the distribution of noncentral chi-square (Tiku, M. L. Bio-
metrika 52 (1965) 415-27). The probability integral is tabulated for various values
of the parameters f;,f,, 4, and 1,. An application in analysis-of-variance is

discussed. (Received May 4, 1971.)

71T-49. The law of the iterated logarithm for U-statistics and related von Mises
statistics. R. J. SERFLING, Florida State University.

Let X,, X,, -~ be ii.d. random vectors with df F. Consider estimation of
O(F) = Eph(X,, -+, X,,), where h is symmetric and Ezh* < 0. For samples of
size n = m, Hoeffding (Ann. Math. Statist. 19 (1948)) introduced the unbiased
estimators U, = ()" 'Y A(X;, -+, X,,), summation being over all (},) choices of
distinct {ij, ---, i,,} from {1, ---, n}. Define h*(x) = Eph(X,, X5, =*, X 1> X)—
O(F) and set {; = Vargh*(X;). THEOREM. Let {; > 0. Then, with probability 1,
lim sup,_,, #*(U,—0(F))/(2m*{; InIn n)* = 1. ProOF. By the Hartman-Wintner
(Amer. J. Math. 63 (1941)) law of iter. log. for i.i.d. sums, the statement of the
theorem holds if U, is replaced by U, = 0(F)+mn~'Y1h*(X,). By Corollary 4.2
of Geertsema (Ann. Math. Statist. 41 (1970)), which is attributed to a referee (who,
incidentally, is not the present writer), we have, with probability 1, U,—U, =
o(n~'1Inn) and thus n*(U,—U,)/(2m?{, InIn n) - 0, completing the proof. The
related von Mises (Ann. Math. Statist. 18 (1947)) statistic for estimation of 0(F) is
V., = 6(F,), the result of putting the sample df, F,, in place of F in the definition of
O(F). Ghosh and Sen (Calcutta Statist. Assoc. Bull. 23 (1970)) show that for any
a < 1, with probability 1, n*(U,— V,) — 0, provided that E¢V,,> < co. Accordingly,
under this added proviso, the above theorem applies also with U, replaced by V,.

(Received May 6, 1971.)

71T-50. On the variance of the number of zeros of a stationary Gaussian process.
DoNALD GEMAN, University of Massachusetts.

For a real, stationary Gaussian process X(¢), it is well known that the mean
number of zeros of X(¢) in a bounded interval is finite exactly when the covariance
function r(¢) is twice differentiable. Cramér and Leadbetter have shown that the
variance of the number of zeros of X(¢) in a bounded interval is finite if (r"(¢)—
r”(0))/t is integrable around the origin. We show that this condition is also necessary.
Applying this result, we then answer the question raised by several authors regarding
the connection, if any, between the existence of the variance and the existence of
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continuously differentiable sample paths. We exhibit counterexamples in both
directions. (Received May 10, 1971.)

71T-51. On optimal estimation methods using stochastic approximation procedures.
DAN ANBAR, University of California, Berkeley.

Robbins Monro type of stochastic approximation procedures for estimating
the zero of a regression function M(x), are considered. The procedures are defined
recursively by, X,.; = X,—An"'Y,. We are interested in minimizing the asymp-
totic variance of X, by transforming the observations Y,. The problem is investi-
gated in the translation parameter case. A class of transformations & is defined.
It is shown that if the underlying distribution F is absolutely continuous with
density f, then if go(x) = c(d/dx) [log f(x)] is in &, g, is the optimal transformation.
The optimization is done with respect to the function g and the constant 4. As it
turns out the optimal solution depends on «;, the slope of M(x) at the zero. Under
conditions essentially due to Sacks (4nn. Math. Statist. 29 (1958) 373-405), we
estimate a; by &; = Y r=n,(Xe— Xx) Y(X)/DR=n(Xi— Xy)? With N = N(N) is
such that N;/N - 0 and N,(N) > o as N —» o, and show that &, — o, a.s. A
two stage optimal estimation procedure which is free of unknown parameters is
suggested. A number of applications are discussed with special reference to the
bio assay problem. (Received May 11, 1971.)

71T-52. A solution to an open problem of Bechofer-Kiefer—Sobel. SALLY SIEVERS,
Cornell University.

The inequality below is used to prove that the sequential ranking procedure
Pp* [Bechhofer-Kiefer—Sobel, Sequential Identification and Ranking Procedures]
ensures probability P* of choosing all populations having t’s §* greater than the
smallest k—t and rejecting all those with t’s 6* smaller than the largest ¢ 7’s.
(Pg* chooses from k K-D populations the ¢ with the largest t-parameters). This
extends the desired protection of Pg* beyond their case T,_,.;—T,_, = 6*.
Given two ordered k-vectors T, 7, < -+ £ T, and y, y; £ -+ £ ¥, We can form
k! permuted products t-ay, « € S;, the permutation group, where ay = (ya(1y> ***»
Yay)- Given 6* > O0and ¢, 1 = t < k, define r = r(t) and s = s(t) so that exactly
r components of t are < 7,_,,,—06* and s components = 7,_,+J*. Define
aeQ(r) = S, if {a(l), .-, a(r)} = {1, -, ¢t} and {(k—s+1), ---, a(k)} < {k—t+
L k). Let Q1) = (Tacap exp ©ay)/(¥, e s, €xp T-3y). Then O(1) = Q(t¥),
for t*suchthatt,* = --- = 7 ¥, = -~ = ,*, and 1{_,., — &, = 0*. Here
O(t*) = (exp t*-y)/(Yp exp v*-By) where B enumerates the (f) partitions of
{1, -+, k} into k — t- and ¢-cells. After crossmultiplying, each term exp (t-yy+7t*-y)
is majorized by a term exp (t-ay+t*-fy) such that t-(yy—ay) = t*-(y—By),
by using techniques related to Sobel [Proc. Amer. Math. Soc. 5 (1954) 596-602].

(Received May 14, 1971.)
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71T-53. On the stochastic approximation of the root of a linear function with
independent standard normal errors. R. A. AGNEW AND R. M.
EmMERICHS, Air Force Institute of Technology.

We consider the relation Y, = f(X,—60)+Z, where § > 0, 0 is a real number,
Z, is a sequence of independent N(0, 1) random variables, Y, is a sequence of
observations, and X, is a sequence of estimates for 6. When g is known and 6 is
unconstrained, various natural stage-wise parametric estimates correspond to
Robbins-Monro procedures. The situation is somewhat different when 6 is con-
strained or 8 is unknown. (Received May 18, 1971.)

T1T-54. A model for studying stability of variance and informativeness of labels in
sampling with varying probabilities. CLAES MAGNUS CASSEL, AND CARL
ERrIx SARNDAL, University of Umed and University of British Columbia.

This paper presents a model for investigating how information contained in the
labels of a finite population may be utilized in order to reduce variance when
sampling from a finite population with varying probabilities. The model assumes a
population of N values of a characteristic X given as X; = Y, +Z,(I = 1, ---, N),
where the mean of X is to be estimated. Here Y, is a “‘systematic’’ component in the
sense that its relation to the label I is a priori known, or intelligently guessed at,
while Z, is a “random noise’”’ component. In the with replacement case, a sample
of labels is selected with possibly unequal probabilities p,(I = 1, ---, N) attached to
the various labels in each of the n draws. Assuming that N is reasonably large, the
variance of the usual estimator is studied under various assumptions about the
shape of the continuous distribution approximating the Y-distribution (e.g.,
gamma, Pareto, Weibull shapes), various assumptions about the influence of the
random noise component Z, and different designs for distributing the probabilities
p; among the N labels. (Received May 21, 1971.)

71T-55. Skorokhod embedding of multivariate rv’s, and the sample df. J. KIEFER,
Cornell University.

Let A; = (A4, Ay, -+, Ayx) be a zero-expectation martingale with finite
fourth moments. Let {4} be i.i.d. copies of 4; and Y 4, = S, = (S,1, -+, Spo)-
(More generally, 4; can be a martingale in 7, too.) Let {{(s, ?); s, ¢ = 0} be the
0-expectation Gaussian process with two-dimensional time and EE(sy, #,)&(s,, t,)=
min (s, 5,) min (¢, t,). We define rv’s T(k, n) such that {é(k, T(k, n)); k,ne Z*}
has the same law as {S,, n € Z*} and n*[E(k, T(k, n))— E(k, ET(k, n))] is of order
n~*(log n)*wp 1. This generalization of the Skorokhod embedding yields vector
analogues of weak convergence error estimates of Skorokhod, Rosenkrantz,
Sawyer for k = 1; Strassen’s strong invariance principles and Rosenkrantz’s von
Mises statistic results are extended. For k — oo, one obtains results for certain
martingale-related processes like the sample df, F,, for uniform rv’s. Some of our
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results on the latter (where n~* becomes n~% or n™%) are only minor improvements
over recent ones of D. W. Miiller, but our embedding differs from his and that of
Breiman by exhibiting the martingale n[(s+ 1)F,(s/(s+ 1)) —s] explicitly in &(s, n)
for all s, n. It is explained why the Skorokhod approach cannot achieve the n™*
of its scalar counterpart or of the multivariate Berry—Esseen theorem. (Received
May 24, 1971).

71T-56. On a measure of efficiency of an estimating equation. V. P. BHAPKAR,
University of Kentucky.

Godambe (4nn. Math. Statist. 31 (1960)) has shown that for estimating a real-
valued parameter the maximum likelihood estimating equation enjoys an optimal
property in a certain sense under some regularity assumptions. That optimality
criterion can be used to define a measure of information, J,(0) = [£g'(X, 0%/
£g*(X, 0) contained in an estimating equation g(x, 6) = 0 and, thus, its efficiency.
We prove the following THEOREM. If T is sufficient for {P,, 0 € Q} and g*(t, 0) =
Eolg(x, 0) | 1], then J,(0) £ J,(0) with equality iff g(x, 0) = g*(¢(x), 0) a.e. (Py).
This theorem and the earlier results are then extended to the case of a vector-
valued parameter. The results here are seen to be generalizations of the Rao-
Blackwell Theorem and of the multi-parametric versions of the Cramér-Rao
inequality and the R-B Theorem so as to include estimating functions involving
the parameter. (Received May 25, 1971.)

71T-57. The log likelihood ratio in segmented regression. PauL I. FEDER, Yale
University and Princeton University.

This paper deals with the asymptotic distribution of the log likelihood ratio
statistic in regression models which have different analytical forms in different
regions of the domain of the independent variable. It is shown that under suitable
identifiability conditions, the asymptotic chi square results of Wilks and Chernoff
are applicable. It is shown by example that if there are actually fewer segments
than the number assumed in the model, then the least squares estimates are not
asymptotically normal and the log likelihood ratio statistic is not asymptotically
x?. The asymptotic behavior is then more complicated, and depends on the con-
figuration of the independent variable observation points. (Received May 25,
1971.)

71T-58. Maximum likelihood estimation for stationary m-dependent sequences.
M. Siva PrasaD AND B. L. S. Prakasa Rao, Indian Institute of
Technology, Kanpur.

Let {X,, n = 1} be a stationary m-dependent sequence of random variables.
Let p(x,, -+, x,; 0) denote the n-dimensional joint density function, which depends
on a single unknown parameter 6. In this paper, we proved the weak consistency
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asymptotic normality and first-order efficiency of a maximum likelihood estimator
(MLE) 8, of 6. The proof runs on the same lines as that of Sarma, Y. R. K.
[Premiere These 1968; Sur les tests et sur L’estimation de parame’tres pour
certains Processus stochastiques Stationnaires] for Markov chains. The strong
consistency of the MLE is proved under a different set of conditions. (Received
May 26, 1971.)

71T-59. Optimal resource allocation. E. Laska, M. MEISNER AND C. SIEGEL,
Rockland State Hospital.

To analyze the optimal allocation of a resource among » jobs, a mathematical
definition of a procedure, A, is given. The service times {X}, of the jobs are assumed
to be independent, identically distributed random variables with common distri-
bution function F having a monotone hazard function A: (h(x) = —d/dx log (1—
F(x)). A procedure A (actually A(t) since it is time dependent) induces completion
time random variables S;(4), j = 1, --, n representing the times at which j of the
n jobs are completed. The partial sums, W ;(4), of the completion times are intro-
duced and may be interpreted as the total cumulative waiting times required for the
first j completions. If the hazard function is increasing, it is shown that the pro-
cedure of allocating the full resource individually to each job until its completion
simultaneously minimizes the quantities E[;(4)] for all j. The procedure which at
any instant of time equally allocates the resource among all of the remaining jobs,
(absolute time sharing) is shown to minimize E[W,(4)] if the hazard is decreasing.
Non-identically distributed service times having hazard functions that are monotone
and are of the form h(x+A4,)i = 1, 2, ---, n, are introduced and optimal procedures
in the sense of minimizing E[W,(1)] are determined. (Received May 27, 1971.)

71T-60. A new matrix product and its applications. D. S. TRACY AND R. P. SINGH,
University of Windsor.

Matrix differential calculus, as discussed by Neudecker [J. Amer. Statist. Assoc.
64 (1969) 953-963] and by Tracy and Dwyer [J. Amer. Statist. Assoc. 64 (1969)
1576-1594], involves Kronecker product of matrices. In this paper, a new matrix
product is introduced. For arbitrarily partitioned matrices 4 = [4¥] and B =
[B*], the product A ® B is the partitioned matrix [(4¥ ® B")], where 4/ ® B*
is the Kronecker product (a3 ® B*). Some properties of this product are
stated. Two elementary matrices, related to partitioned identity matrices, are
defined. These, together with the new matrix product, are useful in differentiating
partitioned matrix functions. Formulae for partitioned matrix derivatives of some
general matrix functions are presented. The results extend those of Tracy and
Dwyer to the partitioned situation. An econometric application of the above
partitioned matrix differential calculus is provided. (Received June 1, 1971.)
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71T-61. Some families of designs for multistage experiments: mutually balanced
Youden designs when the number of treatments is prime power or twin
primes. A. HEDAYAT, E. SEIDEN AND W. T. FEDERER, Cornell University,
Michigan State University and Cornell University.

In this paper the concepts of “balance for ordered and for unordered pairs of
treatments” are introduced. Methods for constructing multistage experiment
designs which are Youden designs at each stage are given. In the construction of
these designs we have tried to accommodate as much orthogonality and balance,
both in our sense and the classical sense, as is possible in these multistage experi-
ments. These constructions are given via several theorems of which the following
results highlight the content of the paper. In one theorem we give a uniform method
of converting a set of ¢ mutually orthogonal Latin squares of order » into a t-stage
balanced (for ordered pairs and also in the classical sense) (n—1)x»n Youden
designs. If one wants to apply this theorem he should first construct ¢ mutually
orthogonal Latin squares of order n. Unfortunately if » = 6 then there are no
orthogonal Latin squares of order 6 and, besides, the known methods of con-
struction of orthogonal Latin squares of order n = 4¢+2 is not uniform. We have
partially overcome these difficulties by giving a uniform method for constructing
2-stage (n—1)xn Youden designs for all even n. In another theorem we give a
method of constructing (2A4+ 1)-stage balanced (for unordered pairs and also in
the classical sense) (244 1) x (444 3) Youden designs whenever 41+ 3 is a prime
power. A method of construction of (p*— 1)-stage balanced (in the classical sense)
(v—1)/2xv Youden designs is given in another theorem, whenever v = 4143 =
p°q%,q* = p*+2, p and g primes and « a positive integer. These constructions mainly
depend on difference sets based on the elements of Galois fields. (Received June 4,
1971.)

71T-62. Properties of Brownian motion first passage time process. M. T. WASAN,
Queen’s University.

Let {x(z), t = 0} be the first passage time process of Brownian motion with
positive drift with density function f(x, t) = t(2nx)"* exp [—(x—1)?/(2x)], x > 0,
t > 0; f(x, t) = 0, otherwise. It is shown that the process is of bounded variation
and a characterization of the process is given. It is proved that x(¢)/t - 1 as t >
with probability one. The stochastic integral of the process is defined and its
properties are investigated. (Received June 4, 1971.)



