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A LIMIT THEOREM FOR A BRANCHING PROCESS
WITH STATE-DEPENDENT IMMIGRATION

By JaMEs H. FOSTER
University of Colorado

Let {p;} and {a;} be probabilities defined on the non-negative integers. Consider
a Markov chain {Z,;n =0, 1, ---} defined on the non-negative integers, with
stationary transition probabilities given by
(1) pij=P(Z,r1 =j|Z, = i) = p;*, iz1

= aj,
where p,;*® is the jth term in the ith fold convolution of the sequence {p;}. {Z,}
represents the sizes of successive generations in a Galton—-Watson process, modified
to allow an immigration of particles whenever the zero state is reached. After
entering the system in accordance with the probabilities {a;}, immigrating particles
reproduce with offspring law {p;}, independently of each other and of particles
already present. Z, is considered to be positive and non-random.

The case in which the offspring distribution has mean one and finite variance
is of particular interest because the limit behavior of {Z,} is unlike that usually
observed in branching processes (with or without immigration), in that a non-linear
normalization is required in order to get a proper non-zero limit distribution. If
the offspring mean is greater than or less than one, the appropriate normalization
for Z, is the same as for the process in which the immigration is not state dependent
(Pakes, Theorems 3 and 10).

From now on it will be assumed that:

1. Yjpi=1;

2. Yj*pi<oo;

3. Yjaj=a < oo;

4. p; <1 forall j;
S. ag<1.

The last two assumptions are made to avoid trivial cases. An example will be given
to show that Z, can have an entirely different kind of limit behavior if a is allowed
to be infinite.

Set f(s) = Zp;s’, h(s) = Eajsj, s, < 1, and let f,(s) denote the nth functional
iterate of f(s) (i.e., fo(s) = sand f, . (s) = f(f,(s)) for n = 0). A simple computation
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using (1) shows that the generating functions g,(s) = ZP(Z, = j)s’, |s| < 1, are
given recursively by

In+1(5) = gu(f(5)) = (1= h(s))9.(0),

go(s) = s*.
Repeated application of the first relation gives
(2) Gn+ 1(5) =fnzf 1(5) - Zl'c'=o [1- h(fk(s))]gn—k(0)~

The moments of Z, can be obtained by differentiating (2):
EZyy1 =gnii(1=) =Zo+ak-00:0)
EZ% 1 =gner(1=)+gn+1(1-)
=Zo"+Zo(n+1)0?+Yi_o(ake® +a+b)g,_,(0)

where b = h"(1-), 6> = f"(1—). The higher moments of Z, can be computed
in a similar fashion.

To determine the asymptotic behavior of the last two quantities, set F(¢) =
[ —f,20)]", H() = Z[1—h(f,(0)]", G(r) = Zg,(0)", |t| < 1. Noting that
G(0) = go(0) = 0 and F(0) = 1 —f,%°(0) = 1, relation (2) with s = 0 becomes
G(t) = (1—1)~* = F(t)—tH(t)G(t), which can be solved for G(¢) to give

G(t) =[(1—-0)~ = F(e)]/[1+tH(1)].
Assumptions 1, 2 and 4 imply (see, for example, Theorem 1 of Kesten, Ney and
Spitzer (1966), that lim,_, (n62/2)[1—£,(0)] = 1, so F(t) ~ Z,Z[1—£,(0)]t" ~
(2Zy/0%) log (1—1t)~' as t — 1—. Similarly, H(t) ~ (2a/c?) log (1—1)~'. Thus
G(1) ~ (6%2a)[(1—1) log (1—1)"']~1. A standard Tauberian theorem (Feller (1966)
page 423) now gives the result

(3) Y r-090) ~ (¢%/2a)n/logn as n— oo.
The formulas for the first and second moments of Z, now yield
EZ,., ~nc*[2logn

EZ,,2+ [ n20'4/4 log n.

In order to investigate the limit behavior of Z,, the asymptotic behavior of the
individual terms g,(0) is needed. The following result will be required: The Markov
chain {Z,; n = 0, 1, ---} is aperiodic. The proof is as follows: Assumptions 1 and 4
imply that p, > 0 and that there exists j = 1 such that p; > 0. Assumption 5
implies that there exists i = 1 such that a; > 0. From the definition of the transition
probabilities of the process, P(Z,,, =0|Z, =0) = a;p,’ > 0 and P(Z,,; =
0 l Z,=0)2 ainiPOij > 0.

The elapsed time T until the first arrival of {Z,} at the zero state has distribution

P(T = n) =£,%(0)—£7,(0), n=1,2,.
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The distribution of the time between successive returns to the zero state is given by
bn :zgilai[fni—l(o)_fni—Z(O)]’ n = 2,3a”'
=a,, n=1.

This formula is obtained by conditioning on the first state to be visited after leaving
zero. Note that Y 7. b, = ao+Yi21a; =1, so that {Z,} retuns to zero infinitely
often with probability one. Successive returns to zero thus constitute a discrete
renewal process with the tail distribution of the first return times satisfying

Zlio=n+l by =301 _fni—l(o)]ai = l_h(fn—1(0))
~ a[l—f,-4(0)] ~ 2a/ns>.

A result of Erickson (1970) concerning the behavior of the renewal measure
u, =Y iz b,* associated with an aperiodic distribution {b,} on the non-negative
integers satisfying Y i~ ,+1 b, ~ n~'L(n), L slowly varying at infinity, states that
lim,_.,, m(n)u, = 1, where m(n) =) %i_, kb,. Thus

uy ~ [Y121 b1 =[ao+Y 5= 1i[h(f;-1(0) = h(f;-2(0))]] "
~[aY5=20(fi-1(0)—f;-20))]7"

~ ¢%[2alogn.

The result lim ., ,, (2%/6)(f;-1(0)—f;-2(0)) = 1 (Kesten, Ney and Spitzer (1966)
Corollary 1 to Theorem 1) has been used. Conditioning on T gives

9:(0) = Yi= 1 n i [fiZ(0)—£21(0)]
~ (0%/2alogn) Y k-1 [£f(0)—=£21(0)]-
Since Y-, [£2(0)—£2°4(0)] =f,%(0) > 1 as n — oo, we have
(4) 9,(0) ~ o*[2alogn.

THEOREM. Under Assumptions 1-5, lim,., P((log Z,)/logn < ) = B for
0<pB<l.

Proof. The following version of Spitzer’s Comparison Lemma (Athreya and
Ney (1972) Chapter 1, Section 9) for the iterates of a generating function f(s) =
¥p jsj whose probabilities satisfy Assumptions 1, 2 and 4 is used:

Given ¢ > 0, there is a number s, € (0, 1) such that for any k£ = 0 and for all
SE [SOa 1)’

[k an] s 1-a0 s rre-on]

Also, given ¢ € (0, a) there exists ¢y € (0, 1) such that for all se [ty 1), (a—e) %
(1—5) £ 1—h(s) £ a(l—s). By (2) and the Comparison Lemma,

G a(exp (= 5/n?)) < 20, (exp (= sin))— Ti-o (a—e)[2n s+ k(o +2)/2] ", (0).
g r(exp(—s/n?) = £72,(exp (= sjn?))— Tioo alnfs+ k(o> )/2]~*g,-4(0)
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for fixed s € [t,, 1) and » sufficiently large. By (4) we have
limsup,_, ., g+ 1(exp (—s/n*)) < 1—(0*(1 —¢/a)/2)lim,, , D 425
‘[2n*[s+ k(o? +¢)/2] ! /log (n—k),
liminf,, , g,+1(exp(—s/n”)) 2 1—(?/2)lim,_ ,, Y k25
[n?[s+k(o*—e)/2]~ ! [log(n—k).
An elementary computation, the details of which are omitted, shows that
lim,_, o Y k23 [n?s+kc] ™ /log(n—k) = ¢~ }(1—pB)

for any s > 0 and ¢ > 0. Since ¢ was arbitrary, we have lim,_, ¢g,+; (expx
(—s/n?)) = B. It follows that lim,_ E(exp (—sZ,/n%)) = B. This limit is the
Laplace transform of a degenerate probability distribution with mass f at the
origin and mass 1—pf at infinity. Applying the continuity theorem for Laplace
transforms (Feller (1966) page 408), we have lim,_,, P(Z,/n* < x) = B for each
x > 0. Setting x = 1 and taking logarithms of both sides of the inequality in the
last relation completes the proof of the theorem.

The following example shows that a different type of limit behavior is possible
if a is allowed to be infinite. For fixed o € (0, 1), let @, = 0 and @, = (%)(=1)"*!
for n = 1, so that A(s) = 1—(1—s)* and A'(1—) = 0. The first return times then
satisfy D yL,+1 b = (1-£,-1(0))* ~ (2/ng?)*. Note that b, = (1—f,_,(0))*~
(L=fu-1(0))* = (1= £, - 2(0))*[1 = (1 =f(fr- 2(0)))*/(1 = £, - 2(0))°] is decreasing with
n. In this case it is known (Williamson (1968) Corollary 3-A) that the associated
renewal measure u, satisfies u, ~ (¢2/2)* 1! sin no n*~ . Conditioning on T
then gives g,(0) ~ u,. It can then be shown, using (2), that

lim,., ,, E(exp(—sZ,/n) = 1—n~'sinna f§(2/so® +x)"%(1—x)*" " dx.

The details are omitted.

The author is indebted to Professor Peter Ney of the University of Wisconsin,
under whose direction part of this work was presented as a portion of the author’s
doctoral dissertation.
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