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SHORT COMMUNICATIONS

INEQUALITIES FOR MODES OF L FUNCTIONS!

By STEPHEN JAMES WOLFE
University of California, Riverside and University of Delaware

Inequalities are obtained for the modes of L functions whose Lévy
spectral functions have support on the positive axis. An application of
these inequalities is made to certain stochastic processes.

1. Introduction. For a definition of the class of L functions, i.e., distribution
functions in class L, and some of their elementary properties, see [3, Chapter 6].

N. L. Johnson and C. A. Rogers have shown [4, Theorem 2, page 434] that if a
unimodal distribution function has mean m, mode .#, and standard deviation o,
then (# —m)* < 302 It has been shown in [6, Theorem 1] that every L function
that has a Lévy spectral function with support on the positive axis is unimodal. In
this paper other inequalities are derived for the modes of these L functions. An
application is made to certain stochastic processes.

2. A lemma.

LemMa 1. Let F(x) be an infinitely divisible distribution function with a centering
constant y and a Lévy—Khintchine function G(u). The distribution function F(x) has
a finite mean m if and only if G(u) has a finite mean m* in which case m = y+m*.

Prook. It follows from [5, Theorem 2,] that F(x) has a finite mean if and only if
G(u) has a finite mean. It is easy to see that m = y+m*.
3. Another lemma. Let 0 < p, < -+ < p, < 0. Let 4y, -+, 4, be positive
constants. Let
Aou) = A+ -+ +4,  if O0<u = py
=+ +4 if py<u=sp,

=0 if u>p.
Let
6 Jo(®) = exp {J1& (™ —1)(Ao(u)/u)du}.
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The function f(z) is the characteristic function of an L function Fy(x). It has been
shown in the proof of [6, Lemma 1] that Fy(x) is unimodal with a unique mode /4
and that

©) f(x) = 0 if x <0,
(3) f(x) = (A/x)[Fo(x)—=Fo(x—p)]+ -
+(A/X)[Fo(x)—Fo(x—py)] if x>0,

(4)  f(x) is strictly increasing on the interval (0, ], and
(5)  f(x) is strictly decreasing on the interval [.#, ).

LEMMA 2. Let Fy(x) be the distribution function defined above. If Ay(+0) > 1
then Fy(x) has a finite mean m and a unique mode M such thatm—p, < M < m.

PrOOF. Let Gy(u) be the Lévy-Khintchine function of Fy(x). It follows from
Lemma 1 that Fy(x) has a finite mean m and that

m = ')’+§8° udG(u) = jofo Ao(w)du = Zli‘=1 AiD;.
It follows from (3) that if x > 0,

Q) J&x) = (/%) [i-p Sy + - +Qfx) 3 Sy
It follows from (6) that
(7 fm) = (y/m) [y, D)y + -+ +(hfm) [5_, f(0)dy.

It follows from (4) and (5) that f(x) cannot be constant on any interval of (0, c0).
Thus f(x) is not constant on [m—p,, m]. If f(x) were increasing on [m—p,, m] it
would follow from (7) that

f(m) < (Api/m+ - +4pfm)f(m) = f(m)

and this is an obvious contradiction. Similarly if f(x) were decreasing on [m—p,, m]
a contradiction could be derived in a similar manner. Thus it follows that

m—p, < M < m. []

4. The main theorem.

THEOREM 1. Let F(x) be an L function with a Lévy spectral function M(u) such that
M(u) = 0 for u < 0. Ifthere exists a constant p > 0 such that M(u) = 0 foru > p
then F(x) has a finite mean m and a mode M such that m—p < M =< m. If F(x)
has a finite mean m then F(x) has a mode M such that 4 < m.

PROOF. Let G(u) be the Lévy-Khintchine function of F(x). Then G(u) = 0 for
u < 0 and F(x) has characteristic function

(8) f(0) = exp {ipt+[& (™ —1—iut(1+u®) =) (1 +u?)/u?)dG(u)}.
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The theorem will first be proved when F(x) does not have a normal component.
In this case G(u) is continuous at 0 and (8) is equivalent to

) F(®) = exp {ipt+[%0 (e™—1—iut(1+u?)~")(Au)/u)du}

where A(u) = uM’'(u). If M(u) = O for u > p then G(u) has support on [0, p] and
it follows from Lemma 1 that F(x) has a finite mean m and that

(10) m =y+[ udG(u) = y+[2o u? A1 +u?) " 'du.
It has been shown in the proof of [6, Theorem 1] that it is possible to construct a

sequence of L functions {F,} such that F, —, F and such that each L function F,
has a characteristic function

Fit) = exp {iyt+[%o (™ — 1= iut(1+u) ™ YA (u)fu)du}
where 4,() is a nonnegative step function for each value of n of the type described

at the beginning of Section 3 and A,(u) converges to A(u) from below. From
Lemma 1 it follows that each F,(x) has a finite mean m, and that

(11) m, = y+[%o u?A,w)(1+u?)~'du.

It follows from (10), (11), and the monotone convergence theorem that
m = lim,_, , m,. '

If A(+0) £ 1 then 4,(+0) < 1 for each value of n. It follows from the proof of
[6, Lemma 1] that F,(x) has a mode at

My = =[5 d(w)(1+u>) .

By a theorem of A. L. Lapin [3, Theorem 4, page 160] # = lim sup,.,, #, is
a mode of F(x). It follows from the monotone convergence theorem that

M= y—[§ M w)(1+u?*)"'du.

Thus # < m. If M(u) = 0 for u > p then it follows from (10) and the fact that
A(u) is non-increasing on (0, co) that m—p < A.

If A(+0) > 1 then it can be assumed without loss of generality that 4,(+0) > 1
for all values of . It follows from Lemma 2 that each L function F,(x) has a mode
M, such that #, < m,. By Lapin’s theorem .# = lim sup,_,,, .#, is a mode of
F(x). It is easily seen that # < m. If M(u) = 0 for u > p then it follows from
Lemma 2 that m—p < A.

Finally, assume that F(x) has a normal component variance ¢ > 0. In this case
G(u) has a discontinuity at 0 and (8) is equivalent to

(12) (O = exp {ipt—0?t?2+ % (€™ — 1 —iut(1 +u?)™ Y A(u)/u)du}

where A(u) = uM’(u). Let p* > 0 and let {a,} be a sequence of constants such that
0 < a, < 2 for each value of »n and lim,_, ,, a, = 2. For each value of n let

L¥x) = Mx)+Q2—a)e*x" " if 0<x < p*
= A(x) if x> p*
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and let
M,(u) =0 if u<0
= — |2 A*x)/xdx if u>0.

It is easily seen that for each value of n, M,(u) is a Lévy spectral function. Let
H,(x) be the distribution function with characteristic function

h(t) = exp {iyt+[%o (€™ — 1 —iut(1+u?)~1)dM,(u)}.

Then H,(x) is an L function without a normal component. By simple computations
it can easily be seen that lim,_, , M,(u) = M(u) for u # 0 and that

lim,_ o, lim sup,_,, (1§ u?dM,(u) = lim,_o, lim inf, , , {{¢u?dM,(u) = o2

It follows from [3, Theorem 2, page 88] that H,(x) —. F(x). Let G,(u) be the
Lévy-Khintchine function of H,(x). It is easily seen that G,(u) has a finite mean for
each value of n and

lim,_, , [ udG,(u) = [§ udG(u).

It follows from Lemma 1 that H,(x) has a finite mean m,* for each value of n and
lim,_,, m,* = m where m is the mean of F(x). It has been shown that for each
value of n, H,(x) has a mode .#,* such that .#,* < m,*. Thus F(x) has a mode
M such that # < m. If M(u) = O for u > p then it can be assumed that p* < p.
It follows that m,* —p <. ,* for each value of n and therefore m—p < 4. [

5. Anapplication. This paper will be concluded with an application of Theorem 1.
Let a and b be finite constants. Let {X(v), a < v £ b} be a real, centered stochastic
process with independent increments and with no fixed points of discontinuity.
Let F(v, x) be the distribution function of X(v)— X(a). Then F(v, x) is infinitely
divisible for a £ v < b and has a characteristic function

Jw, 1) = exp {ip@)t+ [2, (€™ —1—iut(1+u?) ™) (1 +u?)/u?)dG(v, u)}.

Also y(v) is continuous on [a, b] and G(v,, u)— G(v;, u) is a Lévy-Khintchine
function for a £ vy, < v, < b (see [1, Chapter VIII, Section 7]). It follows that if
G(b, u) has a finite mean then G(v, u) has a finite mean for ¢ < v < b. The
stochastic process {X(v), a < v < b} with independent increments will be called
an L process [2, page 186] if the distribution function F(v, x) of X(v)— X(a) is an L
function for @ £ v < b. The following theorem follows immediately from Lemma 1
and Theorem 1.

THEOREM 2. Let {X(v), a < v < b} be a real centered L process with no fixed
points of discontinuity. For a < v < b let F(v, x) be the distribution function of
X(v)— X(a) and let G(v, u) be the Lévy—Khintchine function of F(v, x). Assume that
G(v,u) =0fora<v=<>bandu < 0. Ifthere exists a constant p > 0 such that
G, u) = G(v,p) fora < v < b and u > p then fora < v < b, F(v, x) has a finite
mean m(v) and a mode M (v) such that m(v)—p < M) £ m@v). If F(b, x) has a



2130 STEPHEN JAMES WOLFE

finite mean then for a < v < b, F(v, x) has a finite mean m(v) and a mode M (v)
such that #(v) < m(v).
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