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ON MOMENTS OF INFINITELY DIVISIBLE
DISTRIBUTION FUNCTIONS'

By STEPHEN JAMES WOLFE

University of California, Riverside and University of Delaware

Let F(x) be an infinitely divisible distribution function with a Lévy-
Khintchine function G(u) and let p be any positive number. It is shown that
F(x) has an absolute moment of the pth order if and only if G(») has an
absolute moment of the pth order, and F(x) has an exponential moment of
the pth order if and only if G(4) has an exponential moment of the pth
order. This result generalizes a theorem of J. M. Shapiro. Other related
results are also obtained.

1. Introduction and summary. A distribution function F(x) is said to be infinitely
divisible if for every positive integer n there exists a distribution function F,(x) such
that F(x) is the convolution of F,(x) with itself n times. It is well known that a distri-
bution function F(x) is infinitely divisible if and only if its characteristic function
f(t) has a unique representation of the form

€)) () = exp {ipt+ =, (€™ —1—iut(L+u?) " )((1 +u?)/u?) dG(u)}

where y is a constant and G(u) is a bounded, non-decreasing function. The constant
y is called the centering constant of F(x), G(u) is called the Lévy-Khintchine function
of F(x), and formula (1) is called the Lévy-Khintchine representation of f(¢).

Let p be a positive constant and let k be a positive integer. A distribution function
F(x) is said to have an absolute moment of the pth order if [*, |x[PdF(x) < oo
and it is said tohave an exponential momentof the pth order if [*,e? Il dF(x) < oo,
It is said to have an algebraic moment of the kth order if [* ,x*dF(x) exists, and it
is said to have a symmetric moment of the kth order if limy_, [T x*dF(x) exists.
A distribution function has an algebraic moment of the kth order if and only if it
has an absolute moment of the same order. However, a distribution function may
have a symmetric kth moment and not have an absolute kth moment if k is odd.

Let F(x) be an infinitely divisible distribution function with a Lévy-Khintchine
function G(u). J. M. Shapiro (1956) showed that if k is an even positive integer then
F(x) has an absolute moment of the kth order if and only if G(1) has an absolute
moment of the kth order. In this paper it is shown that if p is any positive number,
then F(x) has an absolute moment of the pth order if and only if G(u) has an
absolute moment of the pth order. Also F(x) has an exponential moment of the
pth order if and only if G(x) has an exponential moment of the pth order. Other
related theorems are also obtained.
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2. A theorem concerning convolutions of distribution functions. A. Wintner (1947,
Section 23) has shown that if F(x) and G(x) are distribution functions and p is a
positive number, then F*G(x) has an absolute moment of the pth order if and only
if both F(x) and G(x) have absolute moments of the pth order. In this section a
similar result will be obtained.

THEOREM 1. Let F and G be distribution functions. Let p be any positive number,
Then 1—F*G(x) = O(x™?) as x - o0 if and only if 1 —F(x) = O(x"?) as x > ©
and 1 —G(x).= O(x"?) as x > . Also F*G(—x) = O(x?) as x — oo if and only if
F(—x) = O(x™?) as x > o and G(—x) = O(x"?) as x - oo. The theorem remains
true if O is replaced by o.

PrOOF. Assume that x > 0 and that x and x/2 are points of continuity of F(»)
and G(»). Then

1=F*G(x) = [ [so>  dF (1) dG(0)
S [ fusx2 dF(u)dGW) + [y5 2 dF(4) dG(v) = 1 — F(x/2)+ 1 — G(x/2).
It follows from this that for all x > 0,
(2 XP(1—F*G(x)) < 27(x/2)°(1 = F(x/2)) +2°(x/2)"(1 — G(x/2)).
In a similar manner it can be shown that fér all x > 0,
(3) XP(F*G(—x)) £ 2°(x/2)"(F(— x/2)) + 2°(x/2)"(G(— x/2)).

Let a be a point of continuity of G(y) such that @ < 0 and G(a) < 1. Let b be a
point of continuity of G(y) such that & > 0 and G(b) > 0. Let x be chosen so that
x and 2x are points of continuity of F(y) and x > —a. Then

1= F*G(x) = | Juss»x dF(u) dG(v)
2 [ fusx-aw>a AF)dG(0) Z [ [u> 24,052 dF() dG(v) = [1-F(2x)][1 - G(a)].
Thus if x > —2a,
ON xP(1=F(x)) < (2°/(1—G(a)(x/2)"(1 — F*G(x/2)).
Similarly, if x > 25, then
(5 XP(F(—x)) < (2°/G(b))(x/2)"(F *G(—x/2)).

The theorem follows immediately from inequalities (2) to (5). []

It should be pointed out that if F, Fy, ---, F, are distribution functions such that
F(x) = F* - *F(x) and if x > 0, then 1—F(x) < n—Fy(x/n)—---—F,(x/n) and
F(—x) £ F{(—x/n)+ -+ F,(—x/n). These inequalities are obtained in the same
way as (2) and (3) are obtained.

An interesting application of Theorem 1 can be made to the study of the behavior
of characteristic functions at the origin. Let F(x), F;(x), and F,(x) be distribution
functions such that F(x) = F,*F,(x). If £ (¢), f,(), and f,(¢) are the characteristic
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functions of F(x), F,(x), and F,(x) respectively, then f(¢) = f,(¢) fo(2). It is well
known that if & is a positive even integer, then f (0) exists if and only if F(x) has
an algebraic moment of the kth order. E. J. G. Pitman (1956) has shown that if &
is a positive odd integer, then f ¥(0) exists if and only if F(x) has a symmetric
moment of the kth order and 1— F(x)+F(—x) = o(x~*) as x - oo.

If k is a positive even integer and f )(0) exists then f,¥(0) and f,¥(0) also exist.
This follows from A. Wintner’s theorem. However, if & is a positive odd integer
and f (0) exists, then it does not follow that f,¥(0) and f,¥(0) necessarily exist.
To see this, let f;(x) = 0 if x < 2 and let f;(x) = ¢/x%Inx if x = 2 where ¢ =
9 (x*Inx)~'dx]™'. Let Fy(x) = [, fi(»)dyand let Fy(x) = 1—F,(—x). It is easy
to see that neither F;(x) nor F,(x) have symmetric first moments. Thus it follows
that neither f,’(0) nor f,'(0) exist. However, 1—F,(x) + Fy(—x) = o(x ') as x = o
and 1—F,(x)+F,(—x) = o(x™!) as x — oo. It follows from Theorem 1 that
1—F(x)+F(—x) = o(x™ ") as x - co. Since F(x) is symmetric it follows that it has
a symmetric moment of the first order. Thus it follows from Pitman’s theorem that
F7(0) exists.

3. Three lemmas.

LemMma 1. Let ay, -+, a, be real numbers and let p > 0. Then |a,+ - +a,|’ <
nP(|ay [P+ -+ |a,|)"-

PROOF. Leta = max, < j<x |a;|- Then |a; + -+ +a,|? < nfa? < n"(|a, [P+ -+ |a,|?).

LEMMA 2. Let F(x) be a distribution function with a characteristic function f (t).
Let H(x) be the distribution function with the characteristic function h(t) =
exp{A(f (t)—1)} where A > 0. Let p be any positive number. Then H(x) has an
absolute moment of the pth order if and only if F(x) has an absolute moment of the
pth order, and H(x) has an exponential moment of the pth order if and only if F(x)
has an exponential moment of the pth order. Also h(t) has exactly as many derivatives
at the origin as f (¢).

PRrooF. Let E(x) denote the distribution function degenerate at the origin and
let F*"(x) denote the convolution of F(x) with itself # times. Then it follows from
Tucker (1967, Theorem 6, page 152) that A(z) is the characteristic function of a
distribution function H(x) and that

6) H(x) = e *E(x)+e *AF(x)+ (e * 22[2)F**(x) + ---.

It is obvious that F(x) has an absolute moment of the pth order if H(x) has an
absolute moment of the pth order, and F(x) has an exponential moment of the pth
order if H(x) has an exponential moment of the pth order. The converse statements
must be proved.

Assume that u = [ |x|PdF(x) < co. It follows from Lemma 1 that
D) [20 X[ dF¥(x) = [2,0 -+ [2o0 |%y oo+ %, PAF(x,) -+ dF(x,)
S nf2g e [2a (%Pt x| dF(x) - dF(x,) = 0P u.
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Thus it follows from (6) and (7) that
[20 |X[PdH(x) < e *u Y2 (A'nPl(n—1)!) < oo.
Similarly, assume that v = f?we"""dF(x) < oo. Then

(8)  [2u eI dF*(x) = [2 - [, €151+ 450l 4 (x,) -+ dF(x,)

- o0

é I‘J_OOO e IC‘_OOO ep(lxll+"' +|xn|)dF(x1) ee dF(xn) = 1)”_
1t follows from (6) and (8) that

(2 "™ dH(x) < e7*Y 2 o ()"n!) = X071 < o0.

It is easy to see that Ai(¢) has exactly as many derivatives at the origin as f (). []

LEMMA 3. Let H(x) and F(x) be the distribution functions of Lemma 2 and let p
be any positive number. Then 1 — F(x) = O(x~?) as x — oo if and only if | — H(x) =
O(x"P)as x = o, and F(—x) = O(x™?) as x — oo if and only if H(—x) = O(x"F)
as x — . The lemma remains true if O is replaced by o.

ProOF. The proof of this lemma is similar to the proof of the first part of Lemma
2. It follows from the inequality given after the proof of Theorem 1 that 1 — F*"(x) <
n(1—F(x/n)) if x > 0. Thus it follows from (6) that if x > 0, then

€) XP(1—H(x)) £ e™* Y (A"n?|(n — 1)) (x/n)’ (1 — F(x/n)).

It is obvious that 1— F(x) = O(x P)as x — o0 if 1 — H(x) = O(x~?) as x - oo and
1—F(x) = o(x™?)as x —» o0 if | —H(x) = o(x~F) as x — 0.

If 1—F(x) = O(x™P) as x —» oo then there exists a constant 4 > 0 such that
xP(1—-F(x)) £ A if x > 0. But this implies that

(10) xP(1—H(x)) £ Ae *Y 2 (A"n?/(n—1)!) < o0,
and thus 1—H(x) = O(x7?) as x = oo0. If 1—F(x) = o(x™?) as x — oo then it
follows that for each value of k there exists a constant b, such that
(1) xP(1—H(x)) £ 24 e *Y =, (A"nP[(n—1)!)
if x > b,. But this implies that 1—H(x) = o(x~?) as x = co. The rest of the
theorem follows in the same manner. []

4. Main theorems and corollaries.

THEOREM 2. Let F(x) be an infinitely divisible distribution function with Lévy-
Khintchine function G(u). Let p be any positive number. The distribution function
F(x) has an absolute moment of the pth order if and only if G(u) has an absolute
moment of the pth order. Also F(x) has an exponential moment of the pth order if
and only if G(u) has an exponential moment of the pth order.
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Proor. Let y be the centering constant of F(x). Let
G,(u)=0 if u<-—1
=G(u)—G(-1) if —-15usg1
=G(1)-G(-1) if u>1
G,(u) = G(u)—G,(u).

Let F;(x) be the infinitely divisible distribution function with centering constant y
and Lévy-Khintchine function G,(u). Let F,(x) be the infinitely divisible distribu-
tion function with centering constant 0 and Lévy-Khintchine function G,(u). It is
obvious that F(x) = F;*F,(x).

Since G;(x) has compact support it follows from a proof of Y. Linnik (1954,
page 171) that Fi(x) has a characteristic function that is an entire function. Thus
F,(x) has absolute moments and exponential moments of all orders (see Wintner
(1947, Section 17)). A. Wintner has shown (1947, Section 23) that if H(x), H;(x),
and H,(x) are distribution functions and if H(x) = H,;*H,(x), then H(x) has an
absolute moment of the pth order if and only if both H,(x) and H,(x) have absolute
moments of the pth order, and H(x) has an exponential moment of the pth order
if and only if both H;(x) and H,(x) have exponential moments of the pth order.
It follows that F(x) has an absolute moment of the pth order if and only if F,(x)
has an absolute moment of the pth order, and F(x) has an exponential moment of
the pth order if and only if F,(x) has an exponential moment of the pth order.
Finally, it follows from Lemma 2 that F,(x) has an absolute moment of the pth
order if and only if G(x) has an absolute moment of the pth order and F,(x) has an
exponential moment of the pth order if and only if G(«) has an exponential moment
of the pth order. []

COROLLARY 1. Let F(x) be an infinitely divisible distribution function with Lévy-
Khintchine function G(u). Let k be any positive integer. The distribution function F(x)
, has an algebraic moment of the kth order if and only if G(u) has an algebraic moment
of the kth order. ’
For relationships between the algebraic moments of F(x) and the algebraic
moments of G(u) see Shapiro (1956).

COROLLARY 2. Let F(x) be an infinitely divisible distribution function with a charac-
teristic function f(t) and a Lévy-Khintchine function G(u). Let §(t) be the Fourier-
Stieltjes transform of G(u) and let k be any positive integer. Then f *(0) exists if and
only if §M(0) exists.

PROOF. Let Fy(x) and F,(x) be defined as in the proof of Theorem 2. Let f,(¢)
and f,(¢) be the characteristic functions of F,(x) and F,(x) respectively. Since f,(¢)
is an entire function, it follows that f ®(0) exists if and only if £,%(0) exists. It
follows from Lemma 2 that f,¥)(0) exists if and only if §*¥(0) exists. []
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THEOREM 3. Let F(x) be an infinitely divisible distribution function with a Lévy-
Khintchine function G(u). Let k be any odd positive integer. The distribution function
F(x) has a symmetric moment of the kth order and 1 —F(x)+F(—x) = o(x™¥) as
x = oo if and only if G(u) has a symmetric moment of the kth order and G(c0)—
Gu)+G(—u) = ou™") as u - .

PROOF. Let f (¢) be the characteristic function of F(x) and let §(¢) be the Fourier-
Stieltjes transform of G(u). By a theorem of E. J. G. Pitman (1956), F(x) has a
symmetric moment of the kth order and 1—F(x)+F(—x) = o(x™ %) as x - oo if
and only if f ®(0) exists. By Corollary 2, f ®(0) exists if and only if §*(0) exists.
By Pitman’s Theorem, §‘¥)(0) exists if and only if G() has a symmetric moment of
the kth order and G(o0)—G(w) +G(—u) = o(u™*) asu — 0. []

THEOREM 4. Let F(x) be an infinitely divisible distribution function with Lévy-
Khintchine function G(u). Let p be any positive number. Then 1 —F(x) = O(x~?) as
x — oo if and only if G(00)—Gu) = Ow™") as u - o, and F(—x) = O(x~?) as
x — oo if and only if G(—u) = O(u~") as u - . The theorem remains true if O
is replaced by o.

ProoF. The proof of this theorem is similar to the proof of Theorem 2. Theorem
1 is used in the proof instead of A. Wintner’s theorem, and Lemma 3 is used
instead of Lemma 2.

THEOREM 5. Let F(x) be an infinitely divisible distribution function with a charac-
teristic function f(t) and a Lévy-Khintchine function G(u). Let §(t) be the Fourier-
Stieltjes transform of G(u). Let « < 0 and let § > 0. The characteristic function f (2)
is analytic for « < Im (z) < B if and only if §(z) is analytic for « < Im (z) < B.

PRrROOF. Let y be the centering constant of F(x). Let

G,(u) = G(u) if u<-—1
G,(u) =0 if u<-—1

=Gu)—G(-1) if —15ugl1
=G(1)—G(-1) if u>1
G3(u) = G(u)— G4(u) — Gy (u).

For 1 £j <3 let F(x) be the infinitely divisible distribution function with
characteristic function

() = exp {ipt3+ =, (™ —1—iut(1+u®) "Y1 +u?)/u?)dG (u)}

and let g () be the Fourier-Stieltjes transform of G ;(u). It is obvious that f@ =
fl(t)fz(t)fs(t) F(x) = Fy*F,*Fy(x), and §(t) = §,() +4,(t) +43(2). R

It follows from Theorem 2 and Wintner (1947, Section 17) that f (z) is analytic if
and only if §(z) is analytic. Assume that f (z) is analytic for « < Im (z) < B. Then
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1@, 7>(2), and f5(z) are also analytic for « < Im (z) < B. By a theorem of G.
Baxter and J. M. Shapiro (1960), F,(x) has support on an interval of the form
(— o0, x;] where x; < oo and F;(x) has support on an interval of the form [x, o)
where x, > —oo0. It follows from a theorem of E. Lukacs (1960, Theorem 7.2.2.,
page 139) that f,(z) is analytic for Im (z) < 0 and f3(z) is analytic for Im (z) > 0.
By a result of Y. Linnik (1954, page 171), f,(z) is an entire function. It also follows
from the same theorem of Lukacs that §,(z) is analytic for Im (z) < 0, §,(z) is an
entire function, and §,(z) is analytic for Im (z) > 0.

Since f;(z) is analytic for Im (z) < Bit follows that F;(x) has exponential moments
of all orders less than . By Theorem 2, G,(u) has exponential moments of all orders
less than B and thus §,(z) is analytic for Im (z) < . In a similar manner it can be
shown that §;(z) is analytic for Im (z) > a. Thus §(z) is analytic foroa < Im (z) < B.

Assume conversely that §(z) is analytic fora < Im (z) < f.Letd = min (—a, f§).
By Wintner (1967, Section 17) G(u), and thus G,(u), G,(1) and G3(u), have expo-
nential moments of all orders less than §. Thus §,(z), §,(2), and §5(z) are analytic
functions.

By a theorem of Lukacs (1960, Theorem 7.2.2., page 139), 4,(2) is analytic for
Im (z) < 0, §,(z) is an entire function, and §,(z) is analytic for Im (z) > 0. Since
4(z) is analytic for « < Im (z) < B it follows that §,(z) is analytic for Im (z) < B
and §(z) is analytic for Im (z) > a. It follows from this that f,(z) is analytic for
Im (z) < B and fs(z) is analytic for Im (z) > a. Thus f(z) is analytic for a <
Im(z)<p. [

COROLLARY 3. Let F(x) be an infinitely divisible distribution function with a charac-
teristic function f (t) and a Lévy-Khintchine function G(u). Let §(t) be the Fourier-
Stieltjes transform of G(u). The characteristic function f(2) is an entire function if
and only if §(z) is an entire function.

Note that Theorem 4 follows immediately from Theorem 2 in the case when

= —o. It follows from Theorem 5 and a theorem of E. Lukacs (1960, Theorem
7.1.1., page 132) that i « is a singular point of f(z) if and only if it is a singular
point of §(z), and i f is a singular point of f(2) if and only if it is a singular point
of g(z). Thus f'(z) and g(z) have the same strip of regularity.
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