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1. Introduction. In the present paper we investigate the asymptotic distribution
of the sequence of random variables (Yy,); <r < Where (¥,); <,<o, is a sequence of
random variables and (V,); <r <, iS a sequence of positive integer-valued random
variables, both defined on a probability space {Q, o, P}. About the behavior of the
random indices we assume the following condition:

(CO) The sequence (N,/n,); <r<, converges in probability to a positive random
variable A where (1,); <r<., i an increasing sequence of positive integer numbers
tending to infinity when r tends to infinity.

The main problem is the following: when does the sequence of random variables
with random indices (Ynr);<r<o have the same asymptotic distribution as the
sequence (Y,)1 <n< o ? To simplify let us denote this main question by Q.

The first general result in this area (but with 4 = 1) was obtained by F. J.
Anscombe (1952). Theorem 2 gives us the exact content of this result. Here
condition (C4), known as ‘““Anscombe’s condition,” is very important.

After the papers of W. Richter (1965a) (1965b), the latest general assertion in this
direction (with A arbitrary positive random variable) was formulated by
J. Mogyorédi (1967). According to it an affirmative answer to the question Q is
possible if both the classical Anscombe’s condition (C4) and a mixing condition
(similar to (C5)) hold. Unfortunately the proof given to this assertion is not correct.
Professor Mogyorédi has kindly pointed out to me the error in his paper (1967).
Therefore the validity of Mogyorddi’s assertion is still an open question.

In the present paper we shall establish some theorems answering to the problem
O mentioned above. The main result is Theorem 3, similar to Mogyorodi’s
assertion. In fact, in Theorem 3 one condition is stronger while the other one is
weaker than the analogous Mogyordédi conditions. At the same time, taking A =1,
Theorem 3 becomes just the classical Anscombe theorem.

Theorem 1 is more complicated but it is useful from the point of view of applica-
tions in the present topic. Simplifications are obtained if the random variables
(Y,)1<n<w are asymptotically independent with respect to A (Theorem 4) or if the
random variable 1 takes on only discrete values (Theorem 6). Finally, all essential
conditions are satisfied by sums of independent identically distributed random
variables.
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2. Generalities and a useful lemma. Let (#2,,); << ., be a sequence of partitions of
the sample space Q, i.e. ,, = (A} )1 k<> (M = 1,2, ---) where

Ao ={(k=1)27" < A= k27"} = {v,, =k27"},

(Vm)1=m<o being the usual sequence of elementary random variables which
approximates the random variable A. Obviously

A O Ao =D, (K # K3 U1 A =Q,(m =1,2,-+).

Call (Z,1)1 <m< o the sequence of partitions corresponding to the random variable A.
Since for every m (m = 1, 2, ---),

21 P4, =1

then, for every # > 0 and every m there exists a natural number /, = Iy(m, n)
such that

ZE":M 1 P(Ay,n) <,
or equivalently
z;(0=1P(Ak,m) 21-n.

We shall call the set of events {4 ,,, A3, s Aly ). the essential part of the
partition 2,,. Without any loss of generality we may suppose that all events of the
essential parts of the partitions have positive probabilities.

Of course, for every n > 0 we have one essential part of the partition £,
containing a finite number /, = Iy(m, n) of events. We shall denote this essential
part by &(lo(m, 1)). The sequence &,(n) = (E(lo(M, 1)1 <m<o Will be called the
sequence of the essential parts corresponding to A. Naturally, for another sequence of
elementary random variables (v,,); <<« Which approximates the random variable
A we will have generally a different sequence of essential parts corresponding to A
and it is possible, of course, to take it into consideration.

If A is a positive random variable which takes on discrete values, 4, < 4, <
v < A < Ayq < -+~ then we shall consider as sequence of partitions correspond-
ing to A the constant sequence (Z,); <m<w> Pm = (A)1<k<w fOr every m(m =
1,2, ---), where

Ak={/1=lk}, (k=1>2’),

Particularly, if 4 = ¢, where c is a positive constant, then for every n > 0 we

shall consider &,(n) = {Q}.
Let us prove now a useful lemma, a slightly different form of a result of Blum,

Hanson and Rosenblatt (1963):
LemMMA. Let

(Wr)1§r< 0 (xm,r)1§m<oo,1 <r<o» (ym,r)l <m<ow,1sr<o



2020 SILVIU GUIASU

be sequences of random variables such that for every m and r we have
I/Vr = xm,r + y m,r

Let us suppose that the following conditions are satisfied, i.e.

(A) The distribution functions of the sequence (X, )1 <r< ., converge to the distri-
bution function F for each fixed m;

(B) For every ¢ > 0 we have
lim,,_, , lim sup, P(|y,.,| > &) =0.
Then the distribution functions of the sequence (W,); <,  ,, converge also to F.

ProoF. If x and y are two random variables and 4 = 0 then we have the obvious
inequalities :

(1) P(x+y<a—-b)—P(ly|>b) SP(x<a) < P(x+y < a+b)+P(|y| > b).

Let now « be an arbitrary point of continuity of the distribution function F and
let ¢ > 0 be an arbitrary real number. We want to show that for r sufficiently large
we have

@ |P(W, < @)~ F(@)| <.

We put
x=W, Y= —Ymr a=a, b=6>0

in the inequalities (1) and we obtain
P(x,,, S a—8)—F(@)— P(|ym,| > 8) £ P(W, < o)

—F(®) £ P(x,, £ a+8)—F(0)+P(|yn,| > 6).
Then

(3) [PV, S )= F@)| < max;_ ;. [PCop, < a+j8) ~ F@)|+P(|ym,| > 0)
< max;_ ., [F(a+j8)—F(x)|
+max;- 1 [P(Xp, S a+j0)—F(o+j8)| + P(|ym,| > 6).

We choose now 6 > 0 such that: )
“ a+6 and o—& be continuity points of the distribution function F;
©) max;_ , ; [F(2)— F(a+j6)| < ¢/3.

Using (B) we choose m sufficiently large such that
(6) lim sup, P(|yp,.| > &) > &/3.

Using now (A) and (6) we choose r, such that for r = ry we have
7 max;_ , | |P(xp, < a+j8)— F(a+j8)| < /3,
®) P(|ym,| > 6) <e/3.
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From (5), (7), (8) and (3) we obtain for every r = r, the inequality (2). ]

3. A general theorem.

THEOREM 1. We suppose that we have the convergence (CO) and the following two
additional conditions:

(C1) For every n > 0 and every A, ,, € &,(n),
lirnn—*oo PAk,m(Yn é a) = F(a)

Jor all continuity points a bf the function F;

(C2) For every ¢ > 0, n > 0 and every A, , € &,(n) there exist a small real
number sy = so(e, 1) and a natural number ny = ny(e, 1, k, m) such that for every
n > ny we have

PAk,m(maxi,li—n|<son IK_ Ynl > 8) <n;
then, in every continuity point of the function F we have
lim,_, , P(Yy, < a) = F(a).
ProOF. According to the notation of the lemma given above we put
Xmr = I’[n,.vm], Ymr = YN,-_ Y[n,vm]7 I/Vr = YN,.
where the sign [v] denotes the integer part of the real number v. Obviously,
Wl’ = xm,r +ym,r

whicheverber, m(r,m = 1, 2, ---). Let us show that all conditions of the lemma are
satisfied. Indeed, ([7,k27™]); <r<o, is @ sequence of natural numbers, for every m
and k (m,k = 1,2, ---). The condition (C1) implies that for every # > 0, 4, ,,€&,(1n)
and every continuity point a of the function F(a) there exists a natural number
ro = ro(1, a, k, m) such that for every r > r, we have

Pt Yinpz-my < a)—F(a)I <.
We put now
F = Fo(n,a,m) =max, i1, "o, a,k,m),  (lo = lo(m,n)).
Then for every m(m = 1, 2, ---) if r > F, we have
|P(xp, < @)= F(a)| = |P(Yy,y,1 < a)—F(a)|
= | X 1 P(Yin,v S @) O A ) = F(a)|
< 3 s (Vg < @) 0 A ) — F(@) 20 1 P(Ap )|
+Y i t04 1 P(Yinuy @) O Ain) +F(@) 2% 141 P(Aim)
< 201 [P Yinpiz-m S @)~ F(@)|P(Ay, )
+2) it 1 P(Aim) <1 0= 1 P(Aim) +21 < 31
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ie. lim,_, P(x,,, < a) = F(a), in every continuity point of the function F(a),
whichever be m (m = 1, 2, ---). Therefore condition (A) of the lemma is satisfied.
Let us notice further that from conditions (C0) and (C2) we have for arbitrary ¢ >0,

1im,,, o lim sup, P(|Yp.,| > &) = lim,,_,, limsup, P(|Yy, = Y( 3| > &
lim sup, P((| Yy, = Yiu,uoa| > & 0 (IN,/n,— 2] <27™)
+lim,, o, lim sup, P(|N,/n,—A| 2 27™)
®) =lim,, -, ,lim sup, P(U% 1 ((| Yv, = Yinv,a| > ©)
A (N /n,— 2] <27™) O Aiw))

< lim

m-— o0

< lim,_, limsup, P(i% ; ((Max; im,—2j<2-m | Yi— Yoz -m1| > &)
@ Ak,m))
< lim,,, ,limsup, P(Uff: 1 ((maxi,(k—z)z—mn,<i<(k+ 1)2-mn,

> 8) @ Ak,m))

Yi— Yinu2-m

where in the last inequality we have taken into account that from the inequality
|ifn, — A] < 27™ it results
(10) (k—=2)27"n, < i< (k+1)27"n,

because on the set 4, ,, we have (k—1)27" < 4 < k2™ From condition (C2) it
results that for every & > 0, # > 0 and every 4, ,, € &,(n) there exists a small real
number s, = sq(€, 1) such that

(11) lim sup, P 4, (MaX; ;- p <son | Yi— Y| > &) <1

Let us choose the natural number m, = mg(e, ) such that mes, > 2 and such
that for m > m,

(12) P(A<m2™™) <.

Some simple calculations show that for every m > mq and k 2 m if r is suffi-
ciently large, the inequality (10) implies

(13) |i—[n,k2_"']| < so[nk27™].
Now, using (11) and (12) it results that for m > m, we have

Y, — Y[n,.k2‘"‘]| > &) N Aym))

lim SUPrP(U;cD: 1 ((Max; (- 2y2-mn, <i<(k+1)2-mn,
(14) < P(A <m2™™+ Y limsup, Py, (MaX; ji—a,k2-m1) <solnk2 -]
Y- Youuz-my| > e)P(Am)+ Y i1+ 1 P(Am)
<+ Y P(Ap ) +1 < 31.
Thus from (9) and (14) it results
lim sup, P(|ym,| >¢€) =0,

lim

m— o0
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for every ¢ > 0. Therefore the condition (B) of the lemma is satisfied too and we
have

lim,_, , P(Yy, £ a) =lim,_ , P(W, £ a) =lim,_, , P(x,,, < a) = F(a),
at every continuity point of the function F(a). ]

ReMARK. From the proof of Theorem 1 it results that the sequences of random
variables (¥Yyr)1<r<o and (¥, D1 <r<o have the same asymptotic distribution.

4. The classical Anscombe theorem. Let us consider the particular case 4 = 1.
Obviously, in this case for every # > 0 we take &,() = {Q}, and from Theorem 1
we obtain just the classical Anscombe theorem (see Anscombe (1952)):

THEOREM 2. If the sequence (N,/n); <, <., converges in probability to 1 and if we
have the following two conditions:

(C3) At every continuity point of the function F,
lim,, ., P(Y, < a) = F(a);

(C4) For every ¢ > 0 and n > 0 there exist a small real number s, = so(¢, n) and
a natural number ny, = ny(s, n) such that for every n > nq the following inequality
holds,
P(maxi,li—n|<son l Yi_ Ynl > 8) <.
Then, in every continuity point of the function F, we have

lim,, , P(Yy, < a) = F(a).
5. A simple general theorem. Let us denote by ', the o-algebra generated by

the random variable A. Obviously, ", = A and 2,, = A, whichever be m(m =
1, 2, ---). We are able now to formulate the following theorem:

THEOREM 3. We suppose that together with (CO) the following conditions are
satisfied:

(C5) For every A€ XA ,, (P(4) > 0),
limn-#oo PA(Yn é a) = F(a),
at every continuity point of the function F.

(C6) For every ¢ > 0, n > 0 and every A € A ';, (P(A) > 0), there exist a small
real number s, = so(e, n) and a natural number ny, = ny(e, n, A) such that for every
n > ny we have

PA(maxi,li—nl<son IYi— Ynl > 8) <.
Then, at every continuity point of F we have
lim, ., , P(Yy, < a) = F(a).
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Of course, condition (C5) implies (C1) and condition (C6) implies (C2). There-
fore, Theorem 1 implies Theorem 3. Notice that if 1 = 1 we have ", = {¢, Q} and
Theorem 3 becomes Theorem 2.

6. The case of asymptotic independence with respect to A. Let us suppose now
that the sequence of random variables (Y,); <,<., is asymptotically independent
with respect to 4. More precisely, we shall prove the following theorem:

THEOREM 4. Let us suppose that together with (CO0), (C4) and (C5) the following
additional condition is satisfied:

(CT7) For every sequence of events (A,)1 <,<o Such that A, € A", where A ,, = A
is the o-algebra generated by the sequence of random varzables (Yn<i<o We have

limsup, P ,(4,) =limsup, P(4,),
for all Ae A, (P(A) > 0). Then we have
lim,..., P(¥y, < a) = F(a),
at every continuity point of F.

ProoF. It is sufficient to prove that (C4) together with (C7) imply (C6). Then
Theorem 3 implies Theorem 4. Indeed, condition (C4) implies that for every ¢ > 0
and 5 > 0 there exists a small real number s, = s¢(¢, ) such that

(15) lim sup, P(Max; j;— <son | Yi— Y| > &) <.
We notice also that for every ¢ > 0 and 5 > 0 the event
(MaX; ;) <5on | Vi Ynl > &) €A (1 —soym+ 15
and from (C7) and (15) we obtain
lim sup, PA(rﬁaxi,li_"l <son |[Yi= Y| > ©)
= lim sup, P(Max; |; _ »| <son lYi_ Ynl >e) <,

for every A e A';, (P(4) > 0). Thus, for every ¢ > 0, n > 0 and every A€ X,,
(P(A4) > 0), there exist a small real number s, = s¢(¢, #) and a natural number
no = ny(e, n, A) such that for every n > n, we have

PA(maXi,|i—n|<son |Yt_ Ynl > 8) <,
which is condition (C6). []

REMARK. Ifin Theorem 4 we consider the particular case A = 1 we obtain again
Theorem 2 of F. J. Anscombe because condition (C5) becomes (C3) while, on the
other hand, the condition (C7) is obviously satisfied, with ", being just {¢, Q}. A
more restrictive variant of Theorem 4 was proved directly by W. Richter (1965b).
In his theorem, instead of £, appears the whole g-algebra . As a consequence of
this overly strong restriction, if we consider in Richter’s theorem the particular case
A =1, it is not possible to obtain Anscombe’s theorem.
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7. A condition imposed on A. Condition (C4) is weaker than (C6). However,
Theorem 4 contains a new restriction (i.e. condition (C7)) imposed on the sequence
(Y,)1 <n<w- Let us consider now Theorem 1 and let us replace the condition (C2) by
the weaker Anscombe condition (C4). At the same time, let us introduce, in com-
pensation, a new restriction imposed in this case on the random variable 1. We
shall prove thus the following theorem:

THEOREM 5. Let us suppose that together with (C0), (C1) and (C2) the following
condition is satisfied:

(C8) For every n > 0 we have
d(n) = infy <o d(m, 1) # 0,
where .
d(m,n) = min; <, <1, {P(Aim) | Am€ ()}
Then, in every continuity point of F we have
lim,, , P(Yy, £ a) = F(a).

PrOOF. Obviously, if we are able to prove that conditions (C4) and (C8) imply
(C2) then Theorem 1 will imply Theorem 5. Indeed, from the conditions (C4) and
(C8) it results that for every ¢ > 0 and # > 0O there exist a small real number
So = So(¢, ) and a natural number n, = ny(g, 1) such that for every n > n, we have

P(maxi,|i—n|<son |Yl_ Ynl > 8) < ﬂd(ﬂ),
and thus for every n > n,, using the definition of d(z), we have
PAk,m(maxi,li—n|<son IYi_ Y..| > g)
< P(max; ;| <son |}/l_ Ynl > &)[P(Aym) < nd(m)[P(Akm) <1,
for every 4, ,, € &,(n). [
8. The case when A takes on only discrete values. When is the condition (C8)
satisfied ? An example answering this problem is given by the following theorem:

THEOREM 6. Let A be a positive random variable with discrete values. Then con-
ditions (CO). (C5) and (C4) imply

(16) lim, .., P(¥y, S a) = F(a),
at every continuity point of F.

ProoF. Because condition (C5) implies (C1) it is sufficient to prove that condition
(C8) is satisfied in this case and then Theorem 5 will imply Theorem 6 mentioned
above. Indeed, let (4,); <4<, be the values taken on by the random variable A. The
sequence of partitions corresponding to A will be the constant sequence (2,,) 1 <m <>
P = (A1 <k <o Where 4, = (A = 4), (k = 1, 2, ---). Obviously, in this case for
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every n > 0 we have [y(m, n) = lo(n) and E(y(m, 1)) = &E(y(n)) whichever be
m(@m =1, 2, --)and, of course,

d(n) = ming <, <;, {P(A4,) I Ae&(ly(m)} # 0,
which is condition (C8). []

REMARK. If we put A =1, Theorem 6 becomes Theorem 2. Theorem 6, with
condition (C6) stated in a stronger form (i.e. &, is replaced there by the whole
g-algebra ") was proved directly by W. Richter (1965a). The restriction mentioned
in the brackets is too strong and as consequence, in the particular case A =1 it is
not possible to obtain Anscombe’s theorem. Also, J. Mogyorédi (1967) mentioned
that conditions (CO0), (C4) and (C5) (but with " in the place of ¢,) imply (16) even
if A is an arbitrary positive random variable. (The proof given to this assertion is
not valid. If Ais an arbitrary positive random variable it is not possible to apply the
Anscombe condition to the inequality (7) of the Mogyorddi (1967) paper, hence the
last inequality on page 467 is not true.)

9. Normed sums of independent random variables. Finally, we want to emphasize
some examples satisfying various conditions of the theory presented above.

(a) A sequence of random variables (Z,); <,<, is mixing with density F if a

every continuity point of F we have

1irnn-*oo PA(Zn é a) = F(a)’
for every A€ A", (P(4) > 0). Obviously, if the sequence of random variables
(Y,)1 <n<w is mixing with density F then conditions (C5) and (Cl) are satisfied. An
example of mixing sequence of random variables is the following one (see
A. Rényi (1960)). Let (x,); <,<, be a sequence of independent random variables,
(B))1 <n< o be a sequence of real numbers and (D,); <, <., be a sequence of positive
real numbers tending to infinity. If

lim,_ , P(x,+:-+x,—B, < aD,) = F(a),

at every continuity point of F then the sequence

Ynz(x1+"'+xn_Bn)/Dm (n=1’29"')9
is mixing with density F(a).

(b) Condition (C7) is satisfied by the following example given by J. R. Blum,
D. L. Hanson and J. I. Rosenblatt (1963): Let (x,); <,<., be a sequence of inde-
pendent random variables and (k,); <p<w» (M,)1 <n< o DE two sequences of natural
numbers. If 4, is an event depending only on the random variables x, , ---, x,, then

lim sup, P 4(4,) = limsup, P(4,)
for every A € A", (P(4) > 0). In fact condition (C1) holds any time that (Y,); <, <«
has a 0-1 tail. This follows from a result of D. Blackwell and D. A. Freedman
(1964).1

1 This fact was communicated to me by the referee of the present paper.
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(c) Anscombe’s condition (C4) is satisfied, for example, by the normed sums of
independent random variables. Indeed, if (x,); <, <., is @ sequence of independent
and identically distributed random variables with mean value 0 and variance 1, let
us define

17) Y, =(x; 4+ +x,)/n?, (n=1,2,-).
Taking into account the obvious inequality
P(max; j;_ | <son IYi_ Ynl >¢)
= P(max; |; — | <son lYi_ Y[(l—so)n]l > 8/2)+P(| Y,— Y —so)n]l > ¢/2),

and applying the well-known inequalities of Tchebychev and Kolmogorov one
obtains condition (C4).

Thus for the sequence (17), conditions (C5), (C4) and (C7) of Theorem 4 are all
satisfied, and the single condition (C0) about the behavior of the “random time”
implies

lim, ., P(xy+ -+ +xy, £ aN,#) = Qn) 742, o™ du.

This last result was conjectured by A. Rényi (1960) and was proved directly by
J. Mogyorddi (1962) and independently by J. R. Blum, D. L. Hanson and J. 1.
Rosenblatt (1963).

Acknowledgment. The author is indebted to the referee of the present paper for
his very useful remarks and comments.
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