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ASYMPTOTIC NORMALITY OF SUMS OF MINIMA
OF RANDOM VARIABLES

By THoMAS HOGLUND
University of Stockholm

Let x1, Xz, - -+ be independent and positive random variables with
the common distribution function F. We show that if {3|F(x) — x/b| x
x~2dx < oo for some 0 < b < oo, then ¥ %_, min(xy, -« -, xz) is asymptot-
ically normal with expectation b log n and variance 522 log .

Consider a sequence of independent and identically distributed positive
random variables x,, x,, - - -. Put S, = Y17_ min(x,, - - -, x;). In[2] Grenander
has given a condition under which §,/log n converges in probability to a certain
limit. The convergence can be shown to be almost sure, [1]. In this note we
will determine the asymptotic distribution of S, under a slightly more res.ric-
tive condition than that of [2].

THEOREM. Let x,, X,, - - - be independent and positive random variables with
the common distribution function F. If b > 0 and §} |F(x) — x/b|x%dx < oo,
then the distribution of

(2b* log n)=*(S,, — b log n)
tends to the normal distribution with zero expectation and unit variance.

Proor. Suppose first that x;, x,, - - - are exponentially distributed with unit

expectation and write
ft) = Eetse

for n > 0, where S; = 0. Given n, define the random variables 1/, - .., I’ and
11,/’ R} ]n” by

I’ =1, I =1 if x, x> x

=0 otherwise , k=2,....n
and
]k//=1 if Xpp1s =0 Xy > X s
=0 otherwise , k=1,...,n—1,

I/ = 1. Theidentity > 7 I’’’ =1 a.s. yields
[,() = D1 B /1)) = Y E(eit ks E(eiSe /T | x,) .
And since x,, - - -, x, are independent
B(@S-/ L | %) = E(@SL | x )BT | x,) .
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Also
E(eitSk_llk/ l xk) — eit:l:k(k-—l)E(eit(Sk_l-—(k——l)a:k) |Ik/ - 1, 'xk)P(Ik/ — 1 ka) .
But because of the lack of memory of the exponential distribution

E(eit(Sk_l——(k——l)zk) IIIc/ =1, xk) :_f;cﬂl(t) .

Finally
E(I1) | x,) = e=k(n—k) and P =1|x,) = e ==V,

If we collect these expressions and remember that

E(eitnxk—(n—l)zk) e l/n(l — lt)

we obtain
L0 = S fuofn( — it), nx1.
Putting u, = Y7 f,(¢) this reads
u, —u, , =u, /n(l —it), n>=1
so thatu, = [+ (1 + 1/k(1 — it)).
Hence
£ = [Un(l — ] T2 (1 + 1/k(1 — it)) forn>1.

In order to find the asymptotic distribution in this case we note that

L0 = T — Yk + k(1 — i) = TI7 (1 + itfk(1 — it)
so that
[.() = [exp Drit/k(1 — it)] TT* (1 + it/k(1 — it)) exp —it/k(1 — it) .
Since (1 + z)e™* = 1 + O(z°) and 37 1/k* converges, the product to the right
equals 1 4+ O(#*) uniformly in n. Hence, since it/(1 — it) = it — £ + O(¢%),
Jo(0) = [exp (it — £) 2t 1k](1 4 O(F) + O(F Tt 1/k)) .
Finally, remembering that Y7 1/k = logn + O(1), we obtain
f.(t(2 log ny~t) exp — it(3 log n)t — e~**I? asn— oo,
so that the conclusion of the theorem is true in this special case.
Let us now deal with the case of a general distribution F satisfying the
conditions of the theorem. Following Grenander: Let v be independent and

rectangularly distributed over the interval (0, 1) and put », = min(§,, - - -, £,).
Then our variables x, can be represented as F(£v), where

F(t)y = inf{x = 0; F(x) = 1} .
Thus (b*2 log n)7*(S, — b log n) is distributed as
(b2 log n)4( X1 F(y,) — blogn) = (2logn) ¥ X1 9, — logn) 4 r, .
Suppose that r, — 0 in probability under the condition of the theorem. Then
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since the exponential distribution with unit expectation satisfies this condition
with b = 1, we may infer (think of an exponential F to the left in the identity
above) that the conclusion of the theorem holds true also in the case of uni-
formly distributed variables. Once this is done the general case follows by
inspection of the identity above once more (think of a general F to the left).
Therefore it suffices to show that r, tends to zero in probability under the
condition of the theorem to complete the proof.
Puty, = 1if 5, < d, =0 otherwise (0 < d < 1). Since

ry = (B*21og W) X1 yu(F(p) — bny) + Xt (1 — y)(E(ne) — bl
and with probability one all but finitely many y, equal one (note that the
condition of the theorem implies that y, 1 1) r, tends to zero in probability if

(log n)~* S ylF(n,) — by,
does. But since 7, has the density k(1 — #)*~* for 0 < ¢ < 1, the expectation
of this nonnegative variable is dominated by

(log n)=4 §3 |F(t) — bt| X7 k(1 — t)*—'dt = (logn)y~* §} |EF(t) — bt|t2dt .
However, for a properly chosen constant 4
§2 |F(¢) — bt|tdt < §¢ |1/F(x) — b/xjdx = §§ (bx/F(x))|F(x) — x/b|x~*dx
which becomes obvious if we observe that
G \F(t) — be|rde = {3 §y, dx

where i(t) = [min(bt, F(t)), max (bt, F(f))], and then reverse the order of inte-
gration. Thus, if we show that §j |F(x) — x/b|x~*dx < co implies that x/F(x)
is bounded in some interval (0, ¢), ¢ > 0, we have shown that r, converges to
zero in probability under the condition of the theorem. Choose ¢ > ¢/ > b.
If x > cF(x) then since F is nondecreasing y > ¢’F(y) for all y € [px, x], where
p = c’Jc < 1. Therefore, if each right neighborhood of the origin contains an
x > 0 such that x = cF(x) we can choose a sequence [px,, x,], n=1,2, ...

of disjoint subintervals of (0, 1) with the property that x > ¢’F(x) for xe
Ug, [ox,, x,]. Hence

3 1F(x) — xfblx—dx = T, Ve, (1/b — 1/e)xdx
=X, (1/b—1/c)logl/p = co. A contradiction.
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