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A GENERALIZATION OF SEPARABLE STOCHASTIC PROCESSES

By E. O. ELLIOTT
Bell Telephone Laboratories Inc.

Doob introduced the standard modifications or extensions of a
stochastic process and proved that every stochastic process has a sepa-
rable standard modification. In 1964 Elliott and Morse developed a
general theory of product measures with implications in the theory of
continuous parameter processes with mutually independent random
variables. In particular, they gave a new method for obtaining exten-
sions which considerably generalizes the notion of separability. For a
separable process only certain events specified by restrictions of the
random varijables at a nondenumerable collection of time points are
measurable. Under their generalization, the restriction to only certain
events is virtually removed. The key to the new method for obtaining
extensions is a modification by means of nilsets. The definition of nilsets
has recently been adjusted to enable the application of this method to
general stochastic processes.

1. Introduction. Let {X,, e T} be a real stochastic process with a linear
parameter set 7'and let P be the associated probability measure on the space Q.

Suppose that for each reT, 4, is a subset of the real line and that
{o: X,(w) € 4,} is a measurable event (i.e., P(X, € 4,) is defined). For J any
subset of T, let us define

)] A; = Nies {0 X(w)e 4,}.

Thus 4, is the event specified by restricting the random variable X, to have
values in the set 4, at each of the time points ¢ in the set /. When J is a
countable set it follows that 4, is a measurable event, since it is a countable
intersection of measurable events and thus its probability P(4,) = P(X, € 4,
for all ¢teJ) is well defined. If J is not countable, this may not be the case.
However, if the process is separable [1], [2], then 4, will be measurable
whenever J is the intersection of an open interval and 7, and for each teJ,
A, is a fixed closed interval of the real line (say 4, = a for all e J). The
essential feature of a separable process is that both sup,.,., X,(») and
inf,.,,r X,(») are random variables when I is any open interval. Associated
with any real stochastic process is another essentially equivalent process called
a standard modification [2] which is separable.

The methods for obtaining these separable modifications or extensions were
given by Doob [2]. A new method for obtaining a more general extension of
a process with mutually independent random variables was developed in con-
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nection with a general theory of product measures [3]. Under this method,
the modified process enjoys the property that for any J c 7, the set A, is
measurable when the sets 4,, teJ, are arbitrary measurable sets. This is a
considerable generalization of separability.

This general method is based on modifying a prabability measure P with its
associated sigma-field & * by means of a family . % of “nilsets.” This family
needs to be closed under countable union and to satisfy the condition that
P(A — a) = P(A) whenever Ae & *and @ € .9 Then, a probability measure
P’ having a sigma-field . &’ of measurable sets with & * — & may be ob-
tained through outer measure extensions by the defining equation

P'(A) = inf{P(4 — @)’ae. %"} AcS.
This extension of P preserves the probabilities of members of & * but enlarges
the family of measurable sets. For various choices of the family .57 of “nilsets,”
a wide variety of events which are specified by a nondenumerable collection
of random variables become measurable. Doob’s separable standard extension

of a stochastic process of function space type is seen to be a special case of
this new type of of extension.

2. Arbitrary processes of function space type. Take . to be the space of all
sample paths of a process so that .&” consists of all real functions defined on
the linear parameter set 7, and take the Q space to be .&itself (i.e., to be of
function space type). Doing this, we then identify a point » € Q with a sample
path (function) x where x(7) = X,(®).

The event 4, defined in (1) may now be expressed by

(2 Ay =Nes {x:x(t) € 4,} .

Suppose P is now an arbitrary probability measure on .&”, and for each
teT, let &, denote the family of measurable events of the form {x: x(¢) € 4,}.
Thus, &, is a sigma-field, i.e., is closed to countable unions, countable inter-
sections, and complementation, and the probability measure P is defined on
. and is countably additive, i.e., P({,b*) = 3, P(b*) whenever b, b?, . ..
are disjoint members of 7.

We assume that P has been extended from the finite dimensional sample
spaces to countable dimensions so that for each countable J — T, it is defined
on the smallest sigmafield .5, which contains all sets of the form ), b, where
b,e &, and J={t,t, ---}. Moreover P is countably additive on &,
(making the members of .5, measurable). Thus, taking .5 * to be the union
of all such families &, the probability measure P is defined on & * and & *
is the familiar sigma-field of measurable sets.

Our goal is to modify P so that events of the form (2) are measurable when
J is nondenumerable. Let 2 be the family of all events of the form (2) where
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foreachzeJ, {x: x(t) € 4,} € & ,and J is an arbitrary subset subset of 7. Then
our task can be stated as follows: Find a probability measure P’ and a sigma-
field .’ of P’ measurable sets such that

() F*cFx', Pc.F7"

(ii) P'(4) = P(A) whenever 4 ¢ & *.

To do this by a method resembling that used for processes with mutually
independent random variables [3], [4], the definition of nilsets needs to be
modified so that additional needed sets are included. Suppose that for each
teT, a, is a subset of the real line and a, = {x: x(f) e a,} € & ,. Then the set

(3) a = Uier @, = {x: for some t e T, x(¢) € a,}

is called locally nil on 4, 4 e &# *, provided P(4 n a,) = 0 for each reT.
A nilset j is then defined to be a set of the form

4) B =U{4" nat}
where {4*} and {a*} are sequences such that for each k (=1,2, ...) a* is
locally nil on A4*.

It is convenient to first consider the outer measure extension P of P which
is defined by

) P(D) = inf{P(C): D c Ce .7 *}

where D is any arbitrary subset of .&“. (Thus, if D is a measurable set then
P(D) = P(D) and if D is not measurable there is then a measurable superset
C of D such that P(D) = P(C).)

We then define the outer measure P’ as
(6) P'(B) = inf{P(B — B): B is a nilset}

where B — .&.

Since a nilset is defined as a countable union of the intersections of nil pairs
it is clear that the countable union of nilsets is again a nilset. Thus our def-
inition (6) does indeed cause P’ to be an outer measure. Furthermore, it is
not too difficult to check, as in [5], that P’ and P assign the same values to
members of & * i.e., (ii) holds. Thus, P’ is the outer measure extension of
a measure P’ on a sigma-field &’ of measurable sets and &% * ¢ & ’.

To complete our task we need to establish the second part of (i), namely
that R ¢ F'. In[5] there is a generalization of Lemma 2.1 in [2] which asserts
that if B ¢ Z then there is a nilset D and a member 4 of % * such that B =
A — D. Now, since 4 is clearly P’ measurable, P/(D) = 0 and D is therefore
P’ measurable, it follows that B is P’ measurable, i.e., Bc # /. Since B was
an arbitrary member of .ZZ we have established the desired result that %
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.7 completing our stated goal. What we have accomplished is to simply
enlarge the family of sets to which we can meaningfully assign probabilities
to include all members of .Z (and also all nilsets since they are each assigned
a probability of zero) without disturbing the basic probabilities assigned to the
members of F *.

The above is a greatly simplified account of the role nilsets may play in the
theory of arbitrary stochastic processes. This is not only because the detailed
proofs given in [5] are not repeated here but also because there are variations
in the definition of nilsets that may be made for special purposes. In brief,
the two variations which we shall consider require the nilsets to satisfy the
respective additional condition that: -

(a) P(x(f)ea,) >0 for each teT

or
(b) a, is an open set for each te T'.

In these two variations of the definition of a nilset the other conditions relating
to (4) remain unchanged. In the following we shall refer to nilsets, a-nilsets
and b-nilsets, according to which definition is used. As a result we get three
measures, P/, P,/, and P/, depending on which nilsets are used to modify P,
and three sigma-fields, &/, %/, and .#,/. For these variations we do not
obtain the result that “# c #,/ or ZZC & ,/. Instead we obtain in case (a)
that if Be . and P(x(t)¢ B,) > 0 or B, = (—oo, o) for each te T, then
Be o. Incase (b) we obtain something more akin to that for conventional
separable processes. It is that if B e ZZand B, is a closed set for each 7 € T then
Be . Since & * ¢ &/ it follows that 4 N Be &,/ whenever B is one
of these “closed” members of 2. A similar result holds also in case (a).

As an example application of these modifications to a conventional stochastic
process, let us consider the Wiener process. Let W be the Wiener probability
measure on .5“and let P be the restriction of W to . *. Then we find that
the only b-nilsets are sets of P measure zero and hence that P/ = P and
ﬁ‘b/ = T *,

Let C be the family of continuous functions. The relationship between P
and W is that P(4) = W(A4 n C) for each 4 € & * (W is defined on a sigma-
field _# D . * to be discussed later). Actually, W is concentrated on the
continuous functions which have zero-crossings. But P,/ turns out to be
concentrated on the set of all functions which have zero crossings (we should
note that there are nontrivial a-nilsets and hence that P,’ = P). Even more
bizarre is P’ for it is not even concentrated on the functions with zero crossings.

Thus these extensions have the potential of drastically changing the subspace
upon which the probability measure is concentrated. Some interesting ques-
tions arise concerning when the extended measure may be ‘“‘reconcentrated”
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onto the original subspace and yet retain the features gained from the extension.

3. Separable processes. Let U be a probability measure on . which deter-
mines some stochastic process. Then Doob [2] calls this process separable
provided there exists some countable subset I of T and a subset A of & of
probability zero such that for any open interval A of the time axis and any
closed subset a of the real line the two sets

{x:x(t)yea forall teAn T}
and
{x:x(t)ea forall teInAnT}

differ by at most a subset of A. The second of these two sets is obviously
measurable under the standard assumptions. Hence the first set is also
measurable and the two have the same probability.

Suppose now that P is a probability measure with the associated sigma-field
& * as in Section 2. Then Doob ([2] Section 2, Chapter II) gives a method
for changing the process into a separable one. Briefly, it consists of taking a
suitably chosen countable subset I of T and an associated type b nilset A and
defining a probability measure U on . by

™) U(4) = P(4 N (& — M)

where A is a set of the form B — « for some Be . & * and o« — A.

Since A is a b-nilset we know that U(4) = P(A). This fact plus the other
details in the selection of 7 and A result in the process relating to U being a
separable process which maintains the basic probabilities of the original process
associated with P.

The definition in (7) is of the form U(4) = P(A N .&”) where .&” is a subset
of .& which has outer measure one under P, i.e., P(y’) = 1. The effect of
this relativization to ./ may be viewed as a special case of the type of modi-
fication given in Sections 1 and 2. If we define ./ 'by means of

N =S — )

and then treat _#"as though it were a family of nilsets (note that .4"'is closed
under countable union) it is easy to see that

U(A) = inf(P(4 — a): a e 4"}

so that U is a modification of P of the same type as P/, P/, and P,/. The big
difference is that the latter three are not based on a single nilset like U is.
This accounts for P/, P/, and P,/ having vastly more measurable sets than
U has.

Relative measures are used in many other applications such as, for example,
obtaining the Wiener measure from an appropriate measure P and the sigma-
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field # *. With C denoting the family of continous functions as before, W
may be defined by
W(A) = P(A N C) Ae #

where again we have that P(C) = 1, a fact first proved by Wiener. This again
may be viewed as a case of our general method of modification which we have
seen enlarges the family of measurable sets. Thus the sigma-field _# on which
W may be defined includes .# *, as we mentioned in Section 2.
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