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RATES OF CONVERGENCE FOR SOME FUNCTIONALS
IN PROBABILITY!

By STANLEY SAWYER
Yeshiva University

Let {x1, xs, - - -} be a sequence of i.i.d.r.v. with mean zero, variance
one, and (1) P(|xx| =2 2) £ Cexp(—al’) for positive a, e. Let f(t, x)
(with its first partial derivatives) be of slow growth in x, let Fu(x) be the
distribution function of (1/n) X7 f(k/n, si/nt) where sp = x1 + x2 +--- +
X, and let F(x) be the distribution function of {{ f(t, w(t)) dt where {w(£)}
is Brownian motion. Then sup. |Fn(x) — F(x)| = O((log n)#/nt) provided
F(x) has a bounded derivative. The proof uses the Skorokhod represen-
tation; also, a theorem is proven which would indicate that the
Skorokhod representation cannot be used in general to obtain a rate of
convergence better than O(1/nt). A corresponding result is obtained if
(1) is replaced by the existence of a finite pth moment, p = 4.

1. Introduction. Let x,, x,, ---x,, --- be a sequence of independent and

identically distributed random variables with E(x,) = 0, E(x,’) = 1, and
(1.1) P(jx,| = 1) < Ce*

for some @ >0, ¢ >0. Lets, =x, + x,+---4 x, and let {w(¢): 0 < ¢t < oo}
be standard Brownian motion. Then (see Section 2)

THEOREM 1. Let f{s, x) € CY(R?) be a function such that f and its partial deriva-
tives of order one are of slow growth in x; i.e. satisfy inequalities of the form

IDfs, x)| = Q (1 + [x]7)

and assume that the probability distribution P(§} f(t, w(t)) dt < 2) has a bounded
density (i.e., bounded derivative in 2). Then, for {x,} as above

(1.2) sup, ( pals f(k Sk)g ) P(SLAt, w(t))dt<2)’ (1°g”)">

where 8 = f(e, a).
If, in Theorem 1, (1.1) is replaced by
(1.1y E(|x,[7) < o0

for some p = 4, the arguments in Section 2 also go through, and the difference
in (1.2) has the uniform bound
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(1.3) <(1°g ”)ﬁ> B = ap/8.

n?’/ (2p+8)

For example, if the {x,} have a moment generating function and f{s, x) = x*
(so that e = 1, a = 2), we have

< Lis' = 4) — P(§ow(ydt < z)‘ (10g n)“’)

sup,

If we only assumed E(x,!) < oo, the rate would be O(log n/nt).

The limiting distribution in Theorem 1 is an application of the Invariance
Principle ([1]). The density condition in the above example is satisfied, since
for any 7(f) € LY(0, 1), §§ r(¢)w(¢)* dt is’known to have an integrable character-
istic function and hence a bounded continuous density (see Section 4).

Skorokhod (1965) considered a similar problem, and proved

Elo( Lz s 5)) | = Elai e, we) dn) + A + O(1/m)

for uniformly bounded random variables x,, a fixed expression 4, and any
function g( y) with a bounded second derivative. Skorokhod’s proof, however,

is not sufficient to yield (1.2).

The proof of Theorem 1 is based on the Skorokhod representation ([1], [14])
and a martingale inequality of Burkholder. The Skorokhod representation,
applied to the variables {x,/nt}, provides random times {r;*'} such that if

(1.4) x,(kfn) = w(Zke,™) and
x,(t) = x,(k/n), kin<t<(k+ 1m0,

the variables {x,(k/n) — x,((k — 1)/n): 1 < k < n} are independent and have
the same distribution as x,/nt. Consequently x,(k/n) = s,/n* and

Lyp(E.8) = Lms( L wzt ).

n

Theorem 1 is derived from

PROPOSITION. For all b < co and 8 = f(e, a) as before
5P| Lz (% wmt ) — § e woy ar| = 8] = o1m)

In contrast, given a functional which depends essentially on a. single time,
such a result would be impossible. That is

THEOREM 2. (See Section 3.) Let {x,} be a sequence of identically distributed
independent random variables with E(x,) = 0, E(x,*) = 1, and E(x,') < oo, and
define x,(t) by (1.4). Then
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(1.6)  lim, P(xn(l) —w(l) < if) = Lo emrgunt ot gy gy
n T

where ¢ is a positive constant (¢ = o(t,"V)) satisfying 0.75 E(x/)} < ¢ <
1.25 E(x,%)t.

As a consequence

(1.7 tim, ... P(maxog,z, [5,(0) = wi)] 2 ) =1
ntlogn

for all 4 > 0. Hence it appears that, except in special cases such as (1.2),
the Skorokhod representation cannot be used to prove rates of convergence
better than O(n~%). In fact, it was this negative result which led us initially
to (1.2) in an unsuccessful attempt to find a (true) rate of convergence worse
than O(n*). Thus it would appear (i.e. one would conjecture) that all rates
of convergence coming from the Invariance Principle for decent {x,} are
O(n%). (Here “decent” means E(|x,|°) < co.)

In view of Theorem 2, the rate of convergence obtained by Rosenkrantz
(1969) for the von Mises statistic cannot be improved beyond O(n ), at least
by his methods. It is not known, however, whether the approach of Sazonov
(1969) suffers a similar limitation, although the results obtained are not as
strong.

A partial converse of (1.7) has been obtained by Fraser (1971), Section 7.
For x, satisfying (1.1), Fraser (essentially) shows

P(maxoz,z [5,() — win] = B) = o(1/m)
nt

for all finite b, where S is as in Theorem 1 (@ = 1). In particular, arguing as
in Rosenkrantz (1967), one concludes

sup, [P(Q(x,(-)) < 2) — P(@(w(-)) < 2)| = 0((105}'1)”)

where @(x(-)) is any functional defined and uniformly Lipschitz on the con-
tinuous functions on [0, 1], which is also such that the probability distribution
of ®(w(-)) has a bounded density.

See references [7]-[13] for other uniform rate of convergence theorems
arising from the Invariance Principle. A version of Theorem 2 in the form
of a law of the iterated logarithm has been given by Kiefer (1969).

2. Proof of Theorem 1.

PRrOOF oF THEOREM 1 GIVEN EQUATION (1.5). Set 6 = (log n)?/nt. Then, by
(1.5), for all 2and b < oo
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2.1 P( s f(k Sk) < z) < P(§fit, w(t)) dt < 2 + 8) + O(1/n?)
= P(5, f(t, w(r)) dt < 2 — §) — O(1/n")
k
(5 m (2, 5) < 2) - P W) dr < D)
< P(2 — 0 < §3(t, w(n) dt < 7+ ) + O(1/n) .
By hypothesis, the distribution P({} f(, w(¢)) dt < 2) has a density bounded by
some constant, say L. Hence the difference in (2.1) has the uniform bound
2L6 + O(1/nb).
We now state a lemma.

Lemma 1. Let y, ¥, ---,, be identically distributed independent random
variables with E(y,) = 0, and letd,, d,, - - -, d, be random variables with |d,| < M.
Assume further that each d, is <Z,_, measurable, where, for 1 < k < n, &%, is a
o-algebra which is independent of .., -+, V.. (E.g B (Y1 Vs > Yi).) Then,
there exist universal constants C, such that

d1y1 + d2y2 + e + dny
né

" ") < C,ME(ylr) 2<p< oo

(2.2) E<
Proor. The basic step is a martingale inequality of Burkholder (1966) ([2]
page 1502),
E(|Zt deyil) < CE(Z1 diyi)™)
for 1 < p < oo. Thus
)

g

dlyl + dzyz +---+ dny'n
nt

(e

n

1 p/2
< C,mE((— xrye))
n

< C, M E( %t InP)

= C, M E(|y,]")

+ oy

IA

by the identity |(1/n) 37 a,|” < (1/n) 331 |a,/? for real numbers and p = 1.
Proor oF EQuATION (1.5). Forany 4 > 1, define f*(s, x) € C'(R?) such that

(2.3) P45 %) = fis, %), X < 4,
IDfA(s, x)| < 2Q(1 4 4% = M

uniformly in s and x, where D is either the identity operator or a first partial
derivative. Thus
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@) P(| S wEt o)) — A wo) di| 2 69))
= P(| L e (E wmt ) - G i 2 60)

+ P(maxg,c, W) = 4) + P(X77; > 2),
where here and in the following we abbreviate r; = z,* and ¢ = ;. Thus
3
P(maXys,, (1) = A) < 2P(MaXyz,c w(t) = 4) = 2(3) = et du
T

= 2(3)5 (o ettt gy < Demi4?
T

(see [3] page 392) and
P(max,,c, |w(t)| = 4) = P(max,g,, [w(f)| = 4/2}) < 2e7#4.

Also, the random times {r;™} are independent and identically distributed for
a fixed n,7;"" = (1/n)r, and E(r) = E(x;’) = 1 (see [1]). Thus by Lemma 1

P(Ste;>2) = P(n-i Xt (e — 1) > nd)
L B(nt 57 (ne; — D7)

= nprl2

< WCPE(IT — 17, p =2

Now, for all p = 1, by Sawyer (1967), Section 2
(2.5) E(z?) < 4pL'(p)E(|x,[") < oo .

Finally, if 4 = log n, the last two terms in (2.4) are both O(1/n’) for all b.
We apply Taylor’s formula to f*(s, x), and suppress the superscript 4 in
JSA(s, x) from this point on.

(173 f(t, w(2)) dt
= 257 §gen ft, w(?)) dt

@6) = i f(5 st e
+ 2 55 L(E 4 G w(zt o) + 0,(0))(s = £ )ds
i 380 (K 4,0, m(Et ) + 0u)

X [w(s) — w(Xit;)]ds,
where {, = > #7,. Thus
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it wa) dt = L 52 f( 2, w(zt )
n

@7) = E (Tt e — 1)
— §E e, W) di -+ (1m0, 0) — (Um)fTL w(Z =)
+ ®5 + ®6 ’

where we let @, ..., ®, be the first four terms in (2.7) and @,, ®, the last
two terms in (2.6). We estimate the difference in (2.7) as follows:

B(|Siit wop ar — - T f( X wste))| > 60)

(2.8) < S P(D,| > d)
1
~ (moy

21 E(Int @, ")

forall p > 0. In the first term we apply Lemma 1 with d, = fik/n, w(3 ¥ 7}))
and y, = nr,, — 1.

(2.9) E(n®,[7) < C,M? Bz — 1?) .
Now an inspection of the proof of Burkholder’s inequality shows that
C, = O((c,p)*) as p — oo, while by (2.5) and (1.1)
E(z?) = O(p*(2p[)™") -
Hence there exists a constant ¢ > 0 such that
E(n @) < Q, Mo(cp)™ .
Now if p = ylog n for y = 1/c and ¢ = (log n)?/nt, n > 3, then by (2.3)
(1 0)7 E(|nt ®,[#) < Q,(4Q)7 57((log m)*7 s 7)((log n)**¢ )/ (log m)*r s
— QonrlogAQ/n[r(ﬁ—a)—l]log logn
= O(1/ns1og1og ™)
for some ¢ > 0 provided (8 — a)/c — 1 > 0; i.e. 8> a + c¢. In particular
any term satisfying an estimate of the form
(2.10) E(|nt®,|r) < Qv C, M» E(z™?)? E(|x|'?)

can be estimated similarly, perhaps with a larger 3.
For the second term in (2.8)

Dy = |§FT9 fit, w(t) dt| < M| Tz, — 1
nt @y < (M]nt) | Z3(ne; — 1))
E(nt@,|") < C, M? E(|jz — 1]7)

which is exactly the same as (2.9). The terms @, and @, give no trouble,
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since after multiplication by n they converge uniformly to zero. Using the
inequality |s — k/n| < |s — Y¥7,| + | X ¥ ¢, — k/n| in the integral in ®; and
integrating, we obtain

Dy < M 357 (Feiin + 1'k+1 |2t — k/n,)

R R R ICNES L C

B, < CM pien) ey = E((nrm
nel? nt

~ = 1))
n
< CM) pen) 4 c,2My E@)E(e — 1)
n e
by independence and Lemma 1. This is of the form (‘2.10); for the sixth term:
m @) < 2wt G5 jwe) — w(zt e, ds
n

The terms in the series above are independent and identically distributed by
construction, and

. 1
§EEE 75 () — w(Db o)l ds = 0§ w(s)] ds

This is because nr,™ bears the same relation to ntw(t/n) as ¢ does to w(z) (see
[1]) and thus
()
wl —
n

n9w< )
Hence forp = 1
(2.11) E(jnt@q|7) < M E((§5 [w(s)| ds)’) -

Now ¢ = inf {t; w(¢) € {x, G(x)}}, where x = x,, x is independent of {w()}, and
G(y) is a certain function ([1], [14]). Thus

§5 w(s)l ds < =(|x] + |G(x)))
E((§5 Iw(s) dsy’) = E[PLE((|¥] + |G(x)])")]*
Now if b is sufficiently small so that |G(+ b)| < oo, b > 0,
E(G(x)") = § GO P(x e dy)
(2.12) = GO + |G(=b)" + (1/b) § IG(Y)I* |y] P(x e dy)
=< Oy + (1/6) E(|x"™)
and (2.11) reduces to an estimate of the form (2.10). We have now shown

§51™ |w(s)| ds = x faaat ds
n

_ Snrl(”)

ds = — SO [w(s)| ds .
nné
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that the right-hand side of (2.8) is O(1/n*) for every finite b, and the proof
grinds to a halt.

COROLLARY 1. — Z f( WDkt J)) = LAt wp)dt + 0((1":‘; ”))

Proor. Use the Borel-Cantelli lemma in (1.5).

COROLLARY 2. For any g(y) € C'(R) with §|¢'(y)| dy < oo,
Elo( oz (L 5)) | = Erasi e wy an) + o T8
Proor. For any random variable Y,
E(g(Y)) = § 9)P(Y edy) = — § SO)P(Y £ y)dy + 9(c0) -

Now use (1.2).

REMARK. To derive (1.3) assuming only that E(|]x,|?) < oo, g = 4, we set
0 = 1/n® and, in (2.8), estimate the sixth term and the first half of the fifth
term with p = g/4, and the other terms with p = ¢/2. Using p = (¢ — 1)/3
in the sixth term would give the sharper estimate

(1.3 o(_(lig”i> .

ple—D/p+e)

3. Proof of Theorem 2. By properties of the Skorokhod representation (see
[1] page 276 +), ;" = n'z, where ¢ = 7,V and E(r) = E(x;®) = 1. Define
a constant ¢ > 0 by ¢* = ¢’(r) = E((r — 1)*). Since by Sawyer (1967), (2.4),

()E(x") = o’(r) = 2E(x)
we conclude (3)E(x*)! < ¢ < (3)E(x)t.

We continue to suppress the superscripts in z;», and write
(3.1) P(x,(1) —w(l) £ ) = P(w(Siz) —w() < 4, Bi e, < 1)

+ Pw(Xit) —w(l) =4, 2o > 1)
and handle the (easier) first term first. By construction, };77; is a Markov

time, i.e. does not anticipate the future. Hence, by one of the forms of the
strong Markov property, and properties of Brownian motion,

Pw(Zity) —w(l) < 2, Dit; < 1)
(3.2) = §1P(w(s) — w(l) < DP(Ti7; €5 + ds)
= {1 P(w(l —s) £ DP(Trc; €5 + ds)
= (2r)~t (L (At e gy P(Yir e s 4 ds) .
Assume 2 < O for definiteness. Viewing the above as a double integral and
interchanging the order of integration, we obtain
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12
oy 55 (S, = 1 — & )eh

— oo — n 22 d —4u'
(3.3) — 2yt P<n by (nr, — 1) < — u_f>e e gy
= (2z)t (3 §@inbletd o=h? gy eiu? dy
= (2m)~t (g eto? (Andlovt o= bl gy dly
by the Central Limit Theorem and a second interchanging of order of integra-
tion, plus an error term which is small uniformly in 2. Note that (3.3) is half
of the right-hand side of (1.6). The same expression is also obtained when
2> 0. )
For the second term in (3.1), assume Y77, > 1 and Y¥z, < 1 < Xitir,.
Then
w(St o) — w(l) = T (W(Zi ) — w(Ziey) + wi™ o) —wd).
Since the {Y]! ¢,} are consecutive Markov times by construction, the above is
a sum of n — k independent random variables, all but the last having the same
distribution as x,/n?. Let 7, be the s-algebra generated by {w(¢): 0 < ¢ < 1},
and assume that the variables x, themselves are independent of {w(¢)}. The
second term in (3.1) then becomes

Pw(X1t;) — w(l) £ 4, Xt = 1)
3.4 = y! E(X[z{‘ cjs1<sktle P(xl + X, 4+ X,_pa n Y < 2/.@1>>
) nt nt

n X, + X. X —
=y E(X[z;»—krngzr—kﬂrj] P< 1 :l%+ k=14 yn%" < l/.@1>>

where y, = ni{w(3 %' ;) — w(l)]. Now by construction, where x = x,.,
M, = sup {t: wt + Nk, —w(XDke; M) e {—{, __G(x)”
nt  nt
and |y,| < |x| + |G(x)|. Hence by (2.12)
3-3) E(y'| Z8) < 2E(x') + 20" + (1D)E(x[) = C .
Now for all ¢ > 0, where [x] denotes the greatest integer less than or equal
to x,
SN P(Zrte S 1< N1+
=P(Xr e, <1< Biey)
=P(Iir; > 1) — P(Ep e > 1)
= P(Zt (ne; — 1) > 0) = P(Z3e (ae; — 1) > [end])
— (2m)~h 5t et du

and similarly
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Sty P(C1 e S 1< X1 ) = P(p i, > 1)
= P(Xpte (ne; — 1) > [Mnt])
— (271')—5 Votre2 e tvidu

Hence the second sum in (3.4), within an error which is small for large n
uniformly in r and 2, is over the range

ent < k < Mnt.
For these k

P(sjnt + ylnt < 2B < P(syfnt < 2+ ¢) + P(y| > en'[ )
2 P(s/nt < 2 — ) — P(|y| > en'[ )
and by (3.5) and the Central Limit Theorem i
|P(s,[nt + ylnt < 3] GB)) — P(si/n* = A)|
< P(nt — ent < s,/nt < ant + ent) + P(|y] > ent| B,
= O(ent) + a(1) + O(1/ne?)
where o(1) is uniform in ¢ and 2. Setting ¢ = 1/n¥'8, and ignoring errors

which are small as n — oo uniformly in 2, the expression in (3.4) becomes
s PNt < 1< N fj)P<ﬁ_+_‘;'+_xk < z)
=PIt 1< zf-kﬂr,-)@(x(%)*)
_ SR > 1) — Bt > nio(4(r))
= S[P(Sy(ney — 1) >k + 1) — P(E3H (e — 1) > k)]@(l(%)*)
= L (q’(wkﬂ—lﬁﬁ )- q’”(zz(—nli—/c?))q’(*(%f)
=z (050 o 5)P((R))

— 1 M)} Gk2/2cn Sz(n/m el dy
2reint 7 -

where ®(2) is the standard normal distribution function, and ®*(2) =1 —
®(2). Setting 2 = pc/nt and letting n — oo, We obtain

1

5 W e feort e du dv
TC

= ?1_ (o et Sﬁ’{:* e dvdu
T
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which is the other half of (1.6).
4. An auxiliary result.

THEOREM 3. Let F = {}y(f)w(t)*dt for y(t) € L'(0, 1) and Brownian motion
w(t). Then, the probability distribution P(F < 1) has a bounded continuous density
(i.e., derivative).

Proor. Let N, be a sequence of independent standard normal variables,
and let {b,(u): 1 < k < oo} be a complete orthonormal system in L*(0, 1). A
Brownian motion can then be defined by

(4.1) w(t) = N7 Ny §by(u) du
This series converges almost surely for each ¢, since.by Parseval
T (86 by (u) du)* = §§ 2, M) du =1 < oo
Hence w(t) is a Gaussian process with zero mean. Another application of
Parseval’s identity gives
E(w(t)w(s)) = X7 (8§ bu(w) du)(§; by(v) dv) = min {s, #}
and {w(#): 0 < ¢ < 1} is Brownian motion. Consequently
(4.2) Fz= §ir(yw(tydt = 57 07 NN, §ir(2) §5bi(u) du §b;(v) dv dt
= X7 27 NN, § §560@)b, (V) Smaxia,o 7(2) dt dudv
where the interchanging of summation and integration can be justified by the
fact that the series (4.1) converges uniformly a.s. (See Walsh (1967).) Now,
let {b,(u): 1 < k < oo} be the complete orthonormal system in L*(0, 1) deter-
mined by the Fredholm equation
(4.3) §3 R(u, v)b(v) dv = 2,b(u) , §ibuydu=1,
Ru, v) = Shaxiuw r(®) dt.
Then (4.2) reduces to
Fz=Yr 4N
E(e") = Iy E(e*N,?) =TIt (1 — 2s4)7*

i8F\| — L 1 g
(B )| = (113 T zm) :
Hence E(e**") = g(s) = O(1/s?) for all p, and P(F < ) has a density
f(x) = (1/27) §*2 exp (—ixs)g(s) ds .

If 7(¢) = 0, the same argument also applies to F, = {j r(¢)(w(?) + a(?))*dt for
any function a(f) with {}7(f)a(t)*dt < oo, and thus F, also has a bounded
density. All of this is a generalization of a classical technique of Kac and
Siegert (1947).
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