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JOINT ASYMPTOTIC DISTRIBUTION OF THE
ESTIMATED REGRESSION FUNCTION AT A
FINITE NUMBER OF DISTINCT POINTS

By EUGENE F. SCHUSTER

University of Texas at El Paso

As an approximation to the regression function m of ¥ on X based
upon empirical data, E.A. Nadaraya and G.S. Watson have studied
estimates of m of the form ma(x) = X Y3k((x — Xi)/axn)/ Lk((x — Xi)/an).

For distinct points x; -+, xx, we establish conditions under which
(nan)(ma(x1) — m(x1), « -+, Mma(xXx) — m(x)) is asymptotically multivari-
ate normal.

1. Introduction and summary. Let (X, Y) be a bivariate random variable
having a joint density function f and let g be the marginal density function of
X. If E, Y is finite then the regression function m (of ¥ on X) may be defined
as m(x) = E[Y|X = x]. As an approximation to m based upon empirical
data, Nadaraya (1964) and Watson (1964) have considered estimates of the
form '

M%) = X Vik(x — X)Ja)| T, k(x — Xy)/a,)

where k is a univariate density function, {a,} is a sequence of positive numbers
converging to zero and (X, Y,), ---, (X,, Y,) is a random sample of size n
from f.

Nadaraya (1964) indicates that if ¥ is a bounded random variable and
na,® — oo, then (na,)}(m,(x) — Em,(x)) is asymptotically normal with mean
zero and variance E[Y?|X = x] § k*(u) du/g(x).! Of more interest is the a-
symptotic distribution of (na,)}(m,(x) — m(x)). One would normally approach
the asymptotic distribution of this statistic by attempting to establish that
(na,)}(Em,(x) — m(x)) = o(1), from which one could conclude that the asymp-
totic distribution of (na,)}(m,(x) — m(x)) is the same as that of (na,)¥(m,(x) —
Em,(x)). Instead, we approach the problem by proving that both the numera-
tor and denominator of m, are asymptotically normal and hence so is m,. In
fact for distinct points x,, - - -, x, we will establish conditions under which
(na,)(m,(x,) — m(x,), - - -, m,(x,) — m(x,)) is asymptotically multivariate
normal with mean vector zero and diagonal covariance matrix C = [C;]
with C;; = Var[Y|X = x;] { k*(u)du/g(x;). We note that this asymptotic
variance disagrees with that of Nadaraya unless m(x;) = 0. The fact that
Nadaraya’s result is incorrectly stated can be observed by noting that the
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1 Whenever the integration extends over (—co, o) no limits of integration will be given.
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asymptotic distribution should be invariant with respect to translations of Y.
If one applies Nadaraya’s theorem to bivariate samples from each of (X, Y)
and (X, Y — c), for constant ¢, one obtains different asymptotic variances for
the same statistic.

2. Statement of the theorem. We assume the kernel k and the sequence {a,}
are chosen to satisfy the conditions:

(i) k(u) and |uk(u)| are bounded.
(if) §uk(u)du =0 .
(iii) § wk(u)du < oo .
(iv) limna,? = oo and limna,’=0°
For convenience we write V[Y|X = x] = v(x)/g9(x) — w*(x)/9°(x), where

9(x), w(x), and v(x) are defined by § f(x, y) dy, § yf(x, y) dy, and § y* f(x, y) dy,
respectively.

THEOREM.  Suppose X,, ---, X, are distinct points and 9(x;) >0 for
i=1,2,...k. IfE,Y*is finite and if ', W', v', 9" and w"’ exist and are bounded,
then (na, ) (m,(x,) — m(x,), - -+, m,(x,) — m(x,))* converges in distribution to Z*

where Z* is multivariate normal with mean vector 0 and diagonal covariance matrix
C = [C;;] where

Ci = VIY|X = x]§ R@dufg(x)  (i=1,2, -, k).

3. Proof of theorem. For simplicity we shall prove the theorem for the

special case when k = 2. The method of proof remains valid in the more
general case.

For brevity we define fori = 1,2, --.,nand s = 1, 2,:
U:i(xs) = k((xs - Xi)/an)/an ’ Uni(xx) = (an)&( U;fi(xx) - EU:i(xs)) >
Vix) = Y Ui(x,) V.i(x) = (@)} (Vidx,) — EVii(x,) s

U,x) = D Un(x)»  Va(x) = D Vailx) »
Wi = (Up(x1), V(%) Uni(X%)s Vii(X5)) 5
(mPZ, = (U (%), Va(x1), Un(3)s V(%))
g(x)) w(x,) 0 0
w(x,) v(x 0 0
A = § K (u)du (0 ) (0) g wx) |
0 0 wx) vx,)

Let Z be fourvariate normal with mean vector 0 and covariance matrix 4.
We first prove two lemmas.

LemMA 1. Suppose the density k satisfies the conditions (i) and (ii) above and
suppose na,> — co. Let E,|Y[* be finite and let g’, w', and v’ exist and be bound-
ed. If x, #+ x,and 9(x;) > 0 for i =1, 2, then Z, converges in distribution fo Z.
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Proor. Using the Cramér-Wold Theorem (e.g., Theorem (xi) on page 103
of [3]), it will be sufficient to prove that c¢.Z,* converges in distribution to
c-Z' for any ¢ = (¢, dy, ¢,, d,) in R,

The following hold for s = 1,2 and r = 1, 2 under the assumption that
s # r whenever s and r appear in the same expression:

@) EU%(x,) = 9(x,) § kK*(u) du + O(a,) .

2) EV3(x) = v(x,) § K(w) du + O(a,) .

3) EU,(x)V,ix,) = w(x,) § K*(u) du + O(a,) .
) EU,(x)U,i(x,) = 0(@,)

) EV,i(x)Vai(%,) = O(a,) . -

(6 EU,(x,)V,i(x,) = O(a,) -

We will be sketch the proofs of (1) and (4) to illustrate the method. To obtain
(1), we see
EUL(x)=a,[§ k() 9(x, — a,u) dufa, — (§ k() 9(x, — a,u) du)’] .
Since ¢’ and | yk(y)| are bounded and § |u|k(u) du is finite, it follows that
|§ k@){9(x, — a,u) — 9(x,)} du| < sup, |¢'(x)la, § [ulk(u) du = O(a,)
and
|§ K2 @){9(x, — a,u) — 9(x,)} du| < sup, [9'(x)la, § |u|k*(u) du = O(a,) .
Thus we have
EU2(x,) = 9(x,) § K*(v) du + O(a,) .
As for (4), suppose x, > x,. Letd = x, — x, and 9, = 6/a,. Then
EU,(x)U,i(x) = § k(v — w)fa,)k((x, — u)/a,)g(u) dufa, + O(a,)
= § k(wk(0, + w)9(x, — a,u)du + O(a,)
= §iui<onn KWK, + u)g(x, — a,u) du
+ Siwizone K@@, + w)g(x, — a,u) du + O(a,)
< SUPjuj<o,n (0, + 1) - § K(2)9(x, — a,2) dz
+ SUPjuizs,0 KW) - § K(0, + 2)9(x, — a,2) dz 4 O(a,)
= SUPyyi54,00 K(#) - O(1)
+ SUPy 20,2 kW) - § k(2)9(x, — a,z) dz + O(a,)
< 25UPyzs,n k() -O(1) + O(a,) < 49,7
X SUPyuyzs, [4K(U)[- O(1) + O(a,) = O(a,)

which was to be shown.
Now let ¢, = Var (c-Z,') so that by (1)-(6) above, we have
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o= \K@wydu- 3 [c’9(x,) + d2v(x,) + 2¢,d,w(x,)] + O(a,) .
Put o}, = E|(c-W,;)/n}? and p,} = } %, o3, so that
Pt = R E ¢ W < n7t e E (W,
< 8n7 o] max,_, {E |Un(x)% E|Viu(x,)[} -

Since ¢’, w’ v’ and k are bounded and E,|Y]® is finite it follows by arguments
similar to those above that

ElUu(x)f = 0@, and  EV,(x)P = 0(a,™)

(s =1,2) sothat p,> = O(a, in7}).

Since g(x)v(x) — wi(x) = ¢*(x)V[Y | X = x] we can deduce that 4 is positive
definite whenever g(x,) > 0 and g(x,) > 0. Thus for.c = 0

lim,_,, 0,2 = cAct >0

since cAct is a quadratic form associated with the positive definite matrix 4.
Hence it follows that lim,_,, o, /o, = O (recall that na,® — co) whenever ¢ = 0.

An application of the Berry-Esséen Theorem on page 288 of [1] now com-

pletes the proof.
Let us write

Z* = atn (T [Uk(x) — 9(x)], D [Vi(x) — w(x,)]s
LUk (%) — 9(x)], 20 [Vi(x) — w(x,)])* -

LeEMMA. 2. Suppose § uk(u) du = 0, § v’ k(u) du is finite and na,® — 0. If g”
and w" exist and are bounded then, under the conditions of Lemma 1, Z,* con-
verges in distribution to Z.

Proor. Let B, = (9(x;) — EU}(x), w(x) — EVi(x), 9(x,) — EUX(x,),
w(x,) — EV}(x,))t. Since § uk(u)du = 0, § u*k(u) du is finite and ¢” is bound-
ed, it follows that

|EU (%) — 9(x)| = |§ k@){9(x; — a,u) — 9(x;)} du|
< sup, |9 (%)|a,? § k() du/2 = O(a,’) (i=1,2).

Similarly |EV}(x;) — w(x;)| = O(a,?) so that B, = O(a,?). Then Z, — Z * =
(na,)*B, = O(na,’)* = o(1) since na,® — 0. The desired result now follows
from standard large sample theory and Lemma 1.

We are now in a position to complete the proof of the theorem. Let the
function H from R*to R’ be defined by

H(yys Vas Yas Y1) = (Hy(P1s Vas Yas Ya)s Hy(P1s Yas Vas Vi)' >

where  H\(y1, Vi Vo ¥i) = Va/y1s and Hy(P1, s Yo pi) = yufys and let 0 =
(9(x1), w(xy), 9(x,), w(xy)). Let us now write Z, * = (na,)¥T, — ) where
T, = (Tm’ Ty T, Tm) with
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T,, = 21, Us(x)/n, T,, = 2, Vi(x)/n,

n. n

Tn3 = i=1 U;':i(x2)/n ’ T 4 = =1 V:i(xz)/n ’

n

Then the Mann-Wald Theorem (e.g., Theorem (ii) on page 321 of [3]), with
(n)? replaced replaced by (na,)} may be applied, together with Lemma 2, to,
conclude that (na,)}(H(T,) — H(6)) converges in distribution to Z* where Z*
is N(O, DAD') and where D is the matrix of partial derivatives of H, evaluated
at 6. It is readily verified that DAD* = C, and that

H(T,) — H(0) = (m,(x,) — m(x,) , m,(X;) — m(x;))*
completing the proof. ’
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