A COMPOSITE NONPARAMETRIC TEST FOR A SCALE SLIPPAGE ALTERNATIVE

BY MELVIN N. WOINSKY

Bell Telephone Laboratories, Inc.

Consider the 2-sample problem where the null cdf \(F(x) \) satisfies \(F(0) = 0 \) and the alternative is \(F_\theta(x) = F(x/(1 + \theta)) \) with \(\theta > 0 \). An asymptotically optimum statistic \(z \) is obtained for a parametric model where \(F(x) \) is a gamma distribution. The Mann-Whitney \(U \) and Savage \(T \) statistics are compared to \(z \) for several null densities. It is shown that the Pitman asymptotic relative efficiency, \(ARE(U/z) \), can approach zero if \(\mu/\sigma \to 0 \), where \(\mu \) is the mean and \(\sigma^2 \) the variance of the null distribution. However, a lower bound on \(ARE(U/z) \) is obtained as a function of \(\mu/\sigma \) for general \(F(x) \). Using the bound a composite test is constructed which has a specified minimum \(ARE \) of any desired value between 0 and .864. Densities exist for the composite test which result in arbitrarily large values of efficiency.

1. Introduction. Consider the two-sample problem,

\[
H: X_1, X_2, \ldots X_{n_1}, Y_1, Y_2 \ldots Y_{n_2} \text{ i.i.d. } \sim F(x) \]

\[
K: X_1, X_2, \ldots X_{n_1} \text{ i.i.d. } \sim F_\theta(x) \]

\[
Y_1, Y_2 \ldots Y_{n_2} \text{ i.i.d. } \sim F(x) \]

where \(F(x) \) is an absolutely continuous cdf with \(F(0) = 0 \) and corresponding density \(f(x) \) and mean \(\mu \) and variance \(\sigma^2 \). The \(X \) and \(Y \) data are independent. The alternative cdf is \(F_\theta(x) = F(x/(1 + \theta)) \) with \(\theta > 0 \). In a parametric model of interest \(f(x) \) is a gamma density,

\[
f(x) = (s^\lambda / \Gamma(\lambda))x^{s-1} \exp(-sx) \quad \lambda, s > 0, \quad x > 0,
\]

with known shape parameter \(\lambda \) and unknown scale parameter \(s \). This model arises in a target detection problem [19] where the \(X \) and \(Y \) data are obtained by spectral analysis of a stationary Gaussian time-series. The parameter \(\lambda \) is the time-bandwidth product used in the analyzer and \(s \) is inversely proportional to the input noise power in the analyzer band. The presence of an input sinusoid induces a noncentral gamma density which at small signal-to-noise ratio can be characterized as a scale alternative. If the form of the distribution of the input time-series data is unknown then the form of the distribution of the spectral data is unknown and a nonparametric formulation is appropriate.

In the parametric case (1.1) an asymptotically optimum statistic \(z \) defined in (2.2) is used. This statistic depends on the ratio of sample means. The restriction \(F(0) = 0 \) makes the scale alternative a one-sided slippage alternative, i.e.

Received September 25, 1970.

65

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to The Annals of Mathematical Statistics.
www.jstor.org
$F_\phi(x) \leq F(x)$, and the Mann-Whitney-Wilcoxon U and Savage T tests are suitable for use in the nonparametric model. T is the locally most powerful rank test [4] for (1.1) when $\lambda = 1$. Pitman asymptotic relative efficiency (ARE) is used to make comparisons. ARE results are obtained for the gamma and other densities. For (1.1) and $\lambda = 1$ it follows from [2], [4] that $\text{ARE}(U/z) = \frac{2}{3}$ and $\text{ARE}(T/z) = 1$. It is shown that for $\lambda > 1$, $\text{ARE}(U/z) > \frac{2}{3}$ and $\text{ARE}(T/z) > .816$. For other densities such as a mixture of gamma densities, large values of ARE can be obtained.

Of particular interest is the result that for general $f(x)$ with $f(x) = 0$ for $x < 0$ and finite second moment,

$$\text{ARE}(U/z) \geq .864 \left(1 - .458 \frac{\sigma^2}{\mu^2}\right) \quad \text{if} \quad \frac{\mu}{\sigma} \geq 2^4;$$

$$\geq \frac{27}{4} \frac{(\mu/\sigma)^6}{(1 + \mu^2/\sigma^2)^4} \quad \text{if} \quad \frac{\mu}{\sigma} < 2^4.$$

Using this result a composite test can be designed which has a specified minimum ARE of any desired value between 0 and .864. It is shown that densities exist for the composite test which result in an arbitrarily large ARE. The composite test is constructed by forming an estimate of μ/σ; if the estimate is smaller than a specified value, z is used otherwise U is used as the test statistic.

It should be noted that the literature contains several papers, for example, [4], [9], [15], concerning nonparametric tests against a scale alternative. The emphasis is usually on dispersion, i.e., $F(0) = \frac{1}{2}$. The statistics of Puri and Puri [13] and the statistic of Ansari and Bradley [1] reduce to the Mann-Whitney statistic if it is known that $F(0) = 0$. Sukhatme's S statistic [17] appears efficient for the problem considered. However, although it is not mentioned the derivation of Sukhatme's [17] efficiency equations assumes $F(0) = \frac{1}{2}$. The dispersion statistic of Mood [16] is efficient for testing for a change in variance in a Gaussian distribution [1]. However, for $F(0) = 0$ this statistic appears to be very inefficient [3].

2. Parametric statistic. For the problem considered and the gamma density of (1.1) it can be shown in a lengthy but straightforward manner that a statistic equivalent to the likelihood ratio statistic for all known λ is,

$$(2.1) \quad t = \bar{X}/\bar{Y},$$

where \bar{X} and \bar{Y} are the sample means. The critical region consists of large values of t. It has been shown [7] that in the case $\lambda = 1$, t is uniformly most powerful. The ratio t, is F-distributed with $2\lambda n_1$ and $2\lambda n_2$ degrees of freedom under H if 2λ is an integer. If λ is unknown or if the density is not given by (1.1), t cannot be used since the critical region cannot be specified, not even
asymptotically. Note also that a maximum likelihood estimator of \(\lambda \) is not available in closed form [6].

Consider the following statistic,

\[z = \hat{\phi} \log \bar{X}/\bar{Y}, \]

where

\[\hat{\phi} = n_{1}(n_{1} + n_{2})^{-1}\bar{X}/S_{x} + n_{1}(n_{1} + n_{2})^{-1}\bar{Y}/S_{y}, \]

and \(S_{x}^{2}, S_{y}^{2} \) are the sample variances of the \(X \) and \(Y \) sample, respectively. For the nonparametric formulation, \(F(x) \) continuous and \(F(0) = 0, \hat{\phi} \rightarrow_{n.a.} \mu/\sigma \) as \(\min(n_{1}, n_{2}) \rightarrow \infty \), for all \(\theta \). Also from Lehmann ([10] page 274) and the central limit theorem it follows that

\[(r(1 - r)N)^{1/2}(\mu/\sigma)(\log \bar{X}/\bar{Y} - \log (1 + \theta)) \]

is asymptotically distributed according to \(\phi(x) \) the standard normal cdf, where \(N = n_{1} + n_{2} \) and \(r = n_{1}/N \) provided \(\lim_{N \to \infty} r \neq 0, 1 \). It follows from ([8] page 236) that (2.4) with \(\mu/\sigma \) replaced by \(\hat{\phi} \) is still asymptotically distributed according to \(\phi(x) \) and, therefore, \(r \) and \(z \) are asymptotically equi-efficient. Then from the properties of the likelihood ratio [18], \(z \) is asymptotically optimum for the gamma density and all values of \(\lambda \). Clearly this remains true if \(\hat{\phi} \) in (2.2) is replaced by any consistent estimate of \(\mu/\sigma \). The statistic \(z \) can be used when \(\lambda \) is unknown or for general \(F(x) \). The critical region consisting of large values of \(z \) can be specified asymptotically from (2.4).

3. Asymptotic relative efficiency. The nonparametric statistics can be defined in terms of the ranks \(R_{i}, i = 1, 2 \cdots n_{1} \), where \(R_{i} \) is the rank of \(X_{i} \) in the pooled \(Y, X \) data. The linearly equivalent Mann-Whitney-Wilcoxon [11] statistic is,

\[U = (n_{1}n_{2})^{-1}\sum_{i=1}^{n_{1}} R_{i} - (n_{1} + 1)/2n_{2} \]

and the Savage statistic [14] is,

\[T = n_{1}^{-1}\sum_{i=1}^{n_{1}} (\sum_{j=N-R_{i}+1}^{N} l^{-1}). \]

The Savage statistic is the optimum rank statistic [14] for an exponential distribution and a scale alternative. Tables of the null distribution of \(U \) and \(T \) are available and the critical regions can be specified approximately by using the asymptotic normality of \(U \) and \(T \).

Subject to the usual regularity conditions for Pitman efficiency [12], the ARE can be obtained from the efficacy of each test. The procedure is outlined below.

Let \(E_{\phi}(Q_{i}) \) and \(\sigma_{\phi}^{2}(Q_{i}) = \sigma_{\theta=0}^{2}(Q_{i}) \) be the moments of \(Q_{i} \) representing \(z, U \) or \(T \). The efficacy of \(Q_{i} \) is,

\[\varepsilon(Q_{i}) = \left[\frac{dE_{\phi}(Q_{i})}{d\theta} \right]^{-1/2}\sigma_{\phi}^{2}(Q_{i}) \]
and
\[\text{ARE}(Q_1/Q_2) = \lim_{N \to \infty} \varepsilon(Q_1)/\varepsilon(Q_2). \]
From Section 2, \(z \) is asymptotically normal under \(H \) and \(K \) and it follows that the efficacy of \(z \) is,
\[\varepsilon(z) = n_1 n_2 N^{-1}(\mu/\sigma)^3. \]
From [11], \(\sigma^2(U) = (N + 1)/12n_1 n_2 \) and \(E_0(U) = \int_0^\infty [1 - F_0(x)] dF(x) \), using \(F_0(x) = F(x/(1 + \theta)) \) gives
\[\varepsilon(U) = 12n_1 n_2 (N + 1)^{-1} [\int_0^\infty x f^2(x) \, dx]^2. \]
From Chernoff and Savage [5],
\[E_0(T) = \int_0^\infty J[n_1 N^{-1} F_0(x) + n_2 N^{-1} F(x)] dF_0(x), \]
where \(J(x) = -\log(1 - x), 0 < x < 1 \), and \(\sigma^2(T) = n_2/(n_1 N) \) so that
\[\varepsilon(T) = n_1 n_2 N^{-1} \left[\int_0^\infty \frac{xf^2(x)}{1 - F(x)} \, dx \right]^2. \]
Note that Basu and Woodworth [3] give the efficacy of \(T \) for general \(f(x) \) as shown in (3.6) but with the lower limit of integration \(-\infty \) and \(1 - F(x) \) incorrectly replaced by \(e^{-x} \). However, they only make a numerical calculation for an exponential \(f(x) \). In that case their result and (3.6) agree.

It follows from (3.3), (3.4) and (3.6) that
\[\text{ARE}(U/z) = 12 \left(\frac{\alpha}{\mu} \right)^3 \left[\int_0^\infty x f^2(x) \, dx \right]^2, \]
\[\text{ARE}(T/z) = \left(\frac{\sigma}{\mu} \right)^3 \left[\int_0^\infty \frac{xf^2(x)}{1 - F(x)} \, dx \right]^2. \]
For the gamma density of (1.1),
\[\text{ARE}(U/z) = 12 \Gamma^*(2\lambda)/(\lambda 2^{2+1}\Gamma(\lambda)), \]
\[\text{ARE}(T/z) = I/(\lambda 2^{2+1}\Gamma(\lambda)), \]
where
\[I = \int_0^\infty dx e^{-x} x^{2+1} \left[1 - \frac{\Gamma(\lambda, x/2)}{\Gamma(\lambda)} \right] \]
and \(\gamma(\lambda, x/2) \) is the incomplete gamma function.

Using \(\lim_{\lambda \to 0} \lambda\Gamma(\lambda) = 1 \) yields \(\lim_{\lambda \to 0} \text{ARE}(U/z) = 0 \) and by numerical evaluation \(\text{ARE}(U/z) \) is a monotonically increasing function of \(\lambda \). For \(\lambda = \frac{1}{2} \) (density function has infinite discontinuity at the origin) \(\text{ARE}(U/z) = 6/\pi^2 \) and for \(\lambda = 1 \) (exponential density) \(\text{ARE}(U/z) = \frac{3}{2} \). Also if \(f(x) \) is the gamma density, \(\sigma f(\sigma x + \mu) \to \phi(x) \) the standard normal density as \(\lambda \to \infty \). Then from (3.7) with \(x = \sigma y + \mu \) and \(\mu/\sigma = \lambda t \),
\[\text{ARE}(U/z) = 12[\lambda t \int_0^\infty y[\sigma f(\sigma y + \mu)]^3 \, dy + \int_0^\infty [\sigma f(\sigma y + \mu)]^3 \, dy]^2, \]
and

\[
\lim_{\lambda \to \infty} \text{ARE} \left(U/z \right) = 12 \left[\int_{-\infty}^{\infty} \phi^2(y) \, dy \right]^2 = 3/\pi ,
\]

since \(\int_{-\infty}^{\infty} |y| \phi^2(y) \, dy < \infty \). This efficiency is the same as the translation value for \(U \) and a normal density.

Similarly, by numerical integration, \(\lim_{\lambda \to 0} \text{ARE} \left(T/z \right) = 0 \) and \(\text{ARE} \left(T/z \right) \) reaches its maximum at \(\lambda = 1 \). At \(\lambda = \frac{1}{2} \), \(\text{ARE} \left(T/z \right) = .978 \) and by direct evaluation \(\text{ARE} \left(T/z \right) = 1 \) at \(\lambda = 1 \). The function falls monotonically for \(\lambda > 1 \). As before, with \(\Phi(x) \) the standard normal cdf,

\[
\lim_{\lambda \to \infty} \text{ARE} \left(T/z \right) = \left[\int_{-\infty}^{\infty} \frac{\phi^2(x)}{1 - \Phi(x)} \, dx \right]^2 ,
\]

since

\[
\int_{-\infty}^{\infty} \frac{|y| \phi^2(y)}{1 - \Phi(y)} \, dy < \infty .
\]

Expression (3.12) has the value .816 by numerical integration. The result of (3.12) corresponds to the translation value for \(T \) and a normal density.

It follows that \(\text{ARE} \left(T/z \right) \geq .816 \) and \(\text{ARE} \left(U/z \right) \geq \frac{3}{4} \) for \(\lambda \geq 1 \) if \(f(x) \) is a gamma density. Note that \(\text{ARE} \left(U/z \right) \) can be near zero and that this occurs for small \(\lambda \) or small values of \(\rho^2/\sigma^2 \). This will be shown to hold for general densities with a “large concentration” of mass near the origin resulting in small values of \(\text{ARE} \left(U/z \right) \).

If other densities are considered, large values for \(\text{ARE} \) can be obtained. For a mixture density of \(f(x) = (1 - \varepsilon)f(x: \lambda, s_1) + \varepsilon f(x: \lambda, s_2) \), the value of \(\text{ARE} \left(U/z \right) \) can be obtained by multiplying (3.9) by

\[
M = \frac{\left[1 + \varepsilon(R^2 - 1) + \lambda(1 - \varepsilon)\varepsilon(R - 1)^2 \right]}{\left[1 + \varepsilon(R - 1)^2 \right]}
\times \left[1 - 2\varepsilon(1 - \varepsilon) \left(1 - \frac{2R^2}{(R + 1)^2} \right) \right] ,
\]

where \(R = s_1/s_2 > 1 \). The factor \(M \) is the relative improvement due to non-parametric processing when there is contamination of the underlying gamma density. Note that

\[
\lim_{\varepsilon \to 0, R \to \infty, \varepsilon R^2 \to \lambda} M = 1 + (1 + \lambda) \lambda ,
\]

so large improvements are possible. With \(\lambda = 8 \) and \(\lambda = \frac{3}{4} \) the limiting value of \(M \) is 4. For the Savage statistic the limiting value of \(M \) is the same as in (3.14) and the actual value approximately the same as (3.13).

Based on the examples, for the alternative \(F_\theta(x) = F(x/(1 + \theta)) \), the Savage statistic in general appears to perform better than the Mann-Whitney statistic. When the density has a very heavy upper tail or is concentrated far from the
origin there is a slight preference for the Mann-Whitney statistic. The Savage statistic does relatively well for densities with both heavy and sharp upper tails. It does particulary well when there is a sharp cut-off on this tail. For instance if \(f(x) \) is triangular (decreasing linearly from \(x = 0 \)), \(\text{ARE}(U/z) = \frac{2}{3} \) while \(\text{ARE}(T/z) = 2 \).

4. Lower bound on \(\text{ARE}(U/z) \). It is clear from the previous section that \(\text{ARE}(U/z) \) can approach zero. However it is possible to obtain a lower bound as a function of \(\mu/\sigma \).

Since all factors are positive, minimizing \(\text{ARE}(U/z) \) of (3.7) is equivalent to minimizing

\[
L = \int_0^\infty x f(x)^2 \, dx,
\]

subject to \(1 = \int_0^\infty f(x) \, dx, \mu = \int_0^\infty x f(x) \, dx, \mu_2 = \int_0^\infty x^2 f(x) \, dx \) and \(f(x) \geq 0 \). Let, \(V = x f^2(x) - 2(\lambda_1 + \lambda_2 x + \lambda_3 x^2) f(x) \) where the \(\lambda \)'s are numbers determined by the integral constraints. The necessary Euler equations are \(\partial V / \partial f = 0 \) for \(f(x) > 0 \) and \(\partial V / \partial f \geq 0 \) for \(f(x) = 0 \). The first equation yields

\[
f(x) = \lambda_1/x + \lambda_2 + \lambda_3 x.
\]

Assume \(\lambda_1 \leq 0 \) so that the integral constraints can be satisfied with \(\lambda_2 > 0 \) and \(\lambda_3 < 0 \). The resulting \(f(x) \) intersects the \(x \) axis at \(r_1 \) and \(r_2 \), \(0 \leq r_1 < r_2 \) where \(r_1 \) and \(r_2 \) are solutions of

\[
\lambda_1 + \lambda_2 x + \lambda_3 x^2 = 0.
\]

Taking \(f(x) = 0 \) outside of \([r_1, r_2] \) allows \(f(x) \) of (4.2) to satisfy both Euler equations. From (4.3), \(\lambda_2/\lambda_3 = -(r_1 + r_2), \lambda_1/\lambda_3 = r_1 r_2 \) and if \(y = r_1/r_2 \) it is clear that \(0 \leq y < 1 \). Using the integral constraints and \(\sigma^2 = \mu_2 - \mu^2 \) gives after much algebra,

\[
\frac{\sigma^2}{\mu^2} = \frac{3}{2} \left(1 - 2y + 2y^2 - y^3 \right) \frac{(1 - y^2 + 2y \log y)}{(1 - 3y + 3y^2 - y^3)^2}
\]

and

\[
\left(\int_0^\infty x f^2(x) \, dx \right)^2 = \frac{(1 - 8y - 12y^2 \log y + 8y^3 - y^4)^2}{9(1 - y^2 + 2y \log y)^4}.
\]

The min \{\text{ARE}(U/z)\} is obtained by using (4.4) and (4.5) in (3.7). This calculation was performed on a computer for \(y \in [0, 1] \). As \(y \) goes from zero to one, \(\mu/\sigma \) monotonically increases from \(2^\dagger \) to infinity. The min \{\text{ARE}(U/z)\} is a linearly decreasing function of \(\sigma^2/\mu^2 \) (to the accuracy of the plotting) with a value of .864 as \(\mu/\sigma \to \infty \) and \(\frac{2}{3} \) at \(\mu/\sigma = 2^\dagger \). It then follows that

\[
\text{ARE}(U/z) \geq .864(1 - .4586\sigma^2/\mu^2), \quad \text{if} \quad 2^\dagger \leq \mu/\sigma < \infty
\]

except for small computational error in the lower bound.
The result is a global minimum. This is easily verified by substituting an arbitrary density into (4.1), consisting of the minimizing density plus a term $\varepsilon(x)$ with $\int_0^\infty \varepsilon(x) = \int_0^\infty x \varepsilon(x) \, dx = \int_0^\infty x^2 \varepsilon(x) \, dx = 0$, and $\varepsilon(x) \geq 0$ for $x \in [r_1, r_2]$.

To obtain a solution for $0 \leq \mu/\sigma \leq 2^4$, assume that $\lambda_1 = \varepsilon_1 > 0$ with $\lambda_2 > 0$, $\lambda_3 < 0$. Taking $f(x) = 0$ outside of $(0, r_2)$ allows $f(x)$ of (4.2) to satisfy the Euler conditions if r_2 is the positive root of (4.3). In order to satisfy the constraint that the density integrates to one, let $f(x) = 0$ outside of (ε_2, r_2). By letting ε_1 and ε_2 approach zero at an appropriate rate it is possible to satisfy both this constraint and in the limit the minimizing Euler equations with $0 \leq \mu/\sigma \leq 2^4$.

Using (4.2), $xf'(x) = x(\varepsilon_1/x + \lambda_2 + \lambda_3 x)f(x)$ so that from (4.1), $L = \varepsilon_1 + \lambda_2 \mu + \lambda_3 \mu x$. In the limit as $\varepsilon_1 \to 0$, $\varepsilon_2 \to 0$, it follows from (4.3) and the constraints on the first and second moments that $r_2 = -\lambda_2/\lambda_3$, $\mu = \lambda_2 r_2^2/2 + \lambda_3 r_2^3/3$, and $\mu_2 = \lambda_2 r_2^3/3 + \lambda_3 r_2^4/4$. Then $r_2 = 2\mu_2/\mu$, $\lambda_2 \to 6\mu_2/r_2^2 = 3\mu_2/(2\mu_2)$, $\lambda_3 \to -3\mu_2/(4\mu_2^3)$, $L \to 3\mu_2/(4\mu_2^3) = 3\mu_2/(4(\sigma^2 + \mu^2))$ and from (3.7),

\[
\min \{\text{ARE}(U/z) \} = 12(\sigma^2/\mu^2)L^2
\]

or

\[
\min \{\text{ARE}(U/z) \} = \frac{27}{4} \frac{1}{(1 + \mu^2/\sigma^2)^{\gamma}}.
\]

For this procedure to be valid and consistent with (4.6) it is necessary to show that the constraint $1 = \int_0^\infty f(x) \, dx$ can be satisfied if and only if $0 \leq \mu/\sigma \leq 2^4$. Using the constraint yields,

\[
1 = B + \lim_{\varepsilon_1 \to 0, r_2 \to 0} (\varepsilon_1 + \lambda_3 r_2^2/2),
\]

where $B = \lim_{\varepsilon_1 \to 0, r_2 \to 0} (\varepsilon_2 \log \varepsilon_2)$. Equation (4.8) is equivalent to $1 = B + (3\mu_2/(\sigma^2)(2[1 + \mu^2/\sigma^2]))$ so that $\mu_2/\sigma^2 = 2(1 - B)/(1 + 2B)$. Since $\varepsilon_1 > 0$ and $\varepsilon_2 > 0$, it follows that $B \geq 0$. It is then possible to let ε_1 and ε_2 approach zero such that (4.7) is valid only for any given $\mu/\sigma \in [0, 2^4]$. Note that for $\mu/\sigma = 2^4$ both bounds give $\text{ARE}(U/z) = \frac{27}{4}$ and that the density resulting in this value is triangular, decreasing linearly from a peak at $x = 0$. The bounds of (4.6) and (4.7) are monotonically increasing functions of μ/σ.

Relation (4.7) and its derivation points out what was indicated in Section 3 for the gamma density. $\text{ARE}(U/z)$ can be small when μ/σ is small due to a "great concentration" of mass near the origin.

5. Composite test. The results of Section 4 can be used to construct a test that has a lower bound but not an upper bound on its relative efficiency.

Let z and ϕ be as defined in (2.2) and (2.3) and let

\[
W_z = 1 \quad \phi < k,
\]

\[
= 0 \quad \phi \geq k;
\]

\[
W_u = 1 \quad \phi \geq k,
\]

\[
= 0 \quad \phi < k.
\]
The number \(k \) is a design parameter for the test. A proper choice for \(k \) will be made clearer in the following discussion. The composite test rejects \(H \) if

\[
C = W_z z + W_U U \geq W_z z + W_U U ,
\]

where \(L_z = \Phi^{-1}(1 - \alpha)/(r(1 - r)N)^4 \), \(r = n_i/N \), \(N = n_i + n_s \) and \(\alpha \) is the desired size of the test. \(L_U \) is determined from the null distribution of \(U \) such that \(P[U \geq L_U] = \alpha \) or using the asymptotic normality of \(U \),

\[
L_U = \Phi^{-1}(1 - \alpha)/12r(1 - r)N + \frac{3}{2} .
\]

Since as \(N \to \infty \), \(\hat{\theta} \to_{a.s.} \mu/\sigma \), it follows that \(W_z \) and \(W_U \) approach 1 or 0 a.s. depending on whether \(\mu/\sigma \) is less than or greater than the chosen \(k \). Then it follows ([8], page 236) that for any \(k \geq 0 \), the test of (5.3) is asymptotically size \(\alpha \) and

\[
(5.4) \quad \text{ARE}(C/z) = \text{ARE}(U/z) \quad \mu/\sigma \geq k ,
\]

\[
= 1 \quad \mu/\sigma < k .
\]

From Section 4,

\[
\text{ARE}(C/z) \geq \min_{\mu/\sigma = k} \{ \text{ARE}(U/z) \}
\]

and

\[
\text{ARE}(C/z) \geq (27/4)k^4/(1 + k^2)^4 \quad \text{if} \quad 0 \leq k \leq 2^\dagger ,
\]

\[
\geq 0.864(1 - \frac{458}{k^2}) \quad \text{if} \quad 2^\dagger \leq k \leq \infty .
\]

The parameter \(k \) for the test can be chosen to give any desired lower bound between 0 and .864.

It can be shown that for any \(k \geq 0 \), \(\text{ARE}(C/z) \) does not have an upper bound. Let \(g(x) \) be a density with mean \(\mu_y \) and variance \(\sigma^2 \) such that \(g(x) = 0 \), \(x < 0 \). Take \(f(x) = g(x - m) \) \(m > 0 \) and from (3.7)

\[
\text{ARE}(U/z) = 12 \frac{\sigma^2}{(\mu + m)^2} \left[\int_{-\infty}^{\infty} x g(x - m) \, dx \right]^2
\]

\[
= 12\sigma^2 \left[\int_{-\infty}^{m} x g(x) \, dx + \frac{m}{\mu + m} \int_{\mu}^{\infty} g(x) \, dx \right]^2 ,
\]

\[
(5.5) \quad \text{ARE}(U/z) \geq \left[\frac{m}{\mu + m} \right]^2 \cdot 12\sigma^2 \left[\int_{-\infty}^{m} g(x) \, dx \right]^2 .
\]

For any fixed \(g(x) \), \(\mu/\sigma = (m + \mu_y)/\sigma \) can be made arbitrarily large and \(m/(\mu_y + m) \) arbitrarily close to one, by choosing a sufficiently large value of \(m \). The second term in (5.5) is the ARE value for a translation alternative and null density \(g(x) \). It is well known that densities \(g(x) \) exist which make this term arbitrarily large. Therefore for any \(k \geq 0 \), a density exists such that \(\text{ARE}(C/z) \) is arbitrarily large.

To implement the composite test a choice for \(k \) must be made. Although large values of \(k \) give a lower bound close to .864 and still allow the possibility of a large ARE value, in most cases this will result in essentially using the z-test.
A reasonable choice is $k = 2^t$ this gives a lower bound of $\frac{2}{3}$ and should frequently result in the use of the U-test.

Acknowledgment. The author is grateful to C. L. Mallows who provided the derivation of (4.7).

REFERENCES