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WEAK CONVERGENCE OF U-STATISTICS AND VON MISES’
DIFFERENTIABLE STATISTICAL FUNCTIONS

By R. G. MILLER, Jr.! AND PRANAB KUMAR SEN?
Stanford University and University of North Carolina

For partial cumulative sums of independent and identically distrib-
uted random variables (i.i.d.r.v.) with a finite (positive) variance, weak
convergence to Brownian motion processes has been established by
Donsker (1951, 1952). The result is extended here to differentiable sta-
tistical functions of von Mises (1947) and U-statistics of Hoeffding (1948).
Along with the extension to generalized U-statistics, a few applications
are briefly sketched.

1. Introduction. Let v = {X,, X,, - - -} be a sequence of i.i.d.r.v. with each
X, baving a distribution function (df) F(x), x € R?, the p(=1)-dimensional
Euclidean space. Let g(X, - - -, X,,), syminetric in its arguments, be a Borel-
measurable kernel of degree m(=1), and consider the regular functional

(1.1) O(F) = § . §9(xy, « -, x,)dF(x,) - - - dF(x,,)

defined on &# = {F: |§(F)| < o}. For a sample (X, ---, X,), consider the
empirical df
(1.2) F(x,0)=n"'3 7", ¢(x — X)), XeRr,

i=1

where c(u) is 1 if all its p arguments are nonnegative, and otherwise c(u) is equal
to 0. Then, the corresponding functional of F,, viz.,

(1'3) 0(Fn’ (0) = S ) m S g(xl’ ) xm) an(xl’ O)) tte an(xm’ (0)

is termed a differentiable statistical function by von Mises (1947). Though F,
unbiasedly estimates F, 6(F,, o) is not necessarily an unbiased estimator of
6(F). The unbiased estimator (U-statistic) as considered by Hoeffding (1948) is
defined by

(1.4)  Uho) =G)" X, , 9 X -5 Xi,) 5
Com={1Si< - <ip=<n},
where n is = m.
When 6(F) is stationary of order zero and g e L? it has been shown by
Hoeffding (1948) that (i) n[ U,(») — 6(F)] is asymptotically normally distributed
with zero mean and a finite (positive) variance, (i) under an additional condition
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32 R. G. MILLER, JR. AND PRANAB KUMAR SEN

on g, n{U,(w) — 0(F,, ®)] —p0 as n — oo, and hence, (iii) B}[0(F,, w) — 6(F)]
is also aymptotically normally distributed. The earlier proof of (iii) by von
Mises (1947) is more elaborate and complicated.

In particular, whenm = 1, 6(F,, 0) = U, (o) = n7* 1,2, 9(X;) = g.(), say. If
we assume that0 < ¢* = E{g(X;) — 0(F)}* < oo, and let, forevery e I =[0, 1],

(1.5)  Y,(t, 0) = {[n]Fta(@) + (nt — [M])9(X1aysa) — n1O(F)}/on*

where [s] denotes the largest integer contained in s (=0), then by the Donsker
theorem [cf. Billingsley (1968, page 68)], as n — oo,

(1.6) Y (0) =[Y,(t, ), tel] 5o W=[W,tel],
where W,, t > 0, is a standard Brownian motion, so that
(1.7) EW,=0 and E[WwW,]=s, 0<s<t< oo,

and — , stands for convergence in distribution.

For m = 1, proceeding as in Hoeffding (1948, pages 298-299) and Sproule
(1969), it can be easily shown that the joint moments of k[ U (@) — 6(F)]/n* and
q[U(®) — O(F)]/n}, where k = [ns], ¢ = [nt], 0 < s < t <1, haveasymptotically
(as n — oo) the structure (1.7) (apart from a multiplicative factor). Also,
the weak convergence of {n[U, (0) — O(F)]/nt, n; = [nt.], i =1, .-+, k(= 1}
(where 0 < t, < -+ < t, < 1) to a multinormal distribution follows trivially
by the same projection technique as in Hoeffding (1948). Similar results hold
for {#(F,, )}. This leads us intuitively to consider suitable processes for
{U,(®)} or {0(F,, »)}, and to study weak convergence results similar to (1.6).
With this goal in mind, we define for every 4: 0 < h<m,

(1.8)  gu(Xp -5 %) = EQ(Xy5 - +5 Xpy Xpyns ++ 05 Xi) g9, = O(F),
(1.9) Cu(F) = EgX(Xy, - -+, X,,) — O(F); C(F)=0.
Then, our basic assumptions are

(I) 0 < {(F) < oo, i.e., O(F) is stationary of order zero, and

(IIa) ¢, (F) < oo, or
(Ib) {X(F) = maxX,g; <...<i,sm ES(Xs), -+ -5 X;,) < 00,18, 9€ L2 uniformly
nlsi<... i, <m.

Note that (ITb) — (IIa) but not conversely. The same assumptions underlie
the asymptotic normality results of Hoeffding (1948) and von Mises (1947).

Consider the space C[0, 1] of all continuous functions on I, and associate
with it the uniform topology.

(1.10) o(X(+), Y(+)) = sup.e. |X(t) — Y(1)| ,
where both X and Y belong to C[0, 1]. For every n (x1), we consider the
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two processes Y, (0) = [Y, (¢, ), teI]and Y, *(w) = [Y, *(¢, »), t € I], defined
below. Let Y,(0, w) =0,

(1.11) Y, (k/n, o) = k[0(F,, ) — O(F)]/m[nl(F)]}, k=1,...,n,
and for te[(k — 1)/n, k/n], k = 1, - - -, n, by linear interpolation,
(1.12) Y. (t, 0) = Y, ((k — 1)/n, ®)

+ n(t — (k — Dm[Y,(k/n, ©) — Y,((k — 1)/n, 0)].
Similarly, we let Y *(t, o) =0for0 <t <m — 1,
(1.13) Y, *(k/n, 0) = k[Uy(w) — O(F)]/m[nl(F)]t, k=m,---,n,
and for t e [(k — 1)/n, k/n], k = m, - -, n, by linear interpolation,
(1.14) Y, *(t, w) = Y, *((k — 1)/n, w) .

+ n(t — (k — Dm[Y,*(k[n, 0) — Y, *((k — 1)/n, @)] .

Thus, Y,(») and Y,*(w) both have continuous sample paths and they belong
to C[0, 1]. Then, our main theorem of the paper is the following.

THEOREM 1. Under (I) and (Ila), Y, *(w) converges weakly in the uniform
topology on C[0, 1] to a standard Brownian motion W. The same result holds for
Y (w) provided (11a) is replaced by (IIb), under the latter condition,

(1.15) o(Y (@), Y, (@) —>p0 as n— oo .

In Section 2, some results on §(F,, w) and U,(w), having importance of their
own, are established in a sequence of lemmas. These lemmas are then utilized
in the proof of the theorem in Section 3. Lemmas 2.1—2.3 constitute the
basis for the proof of the convergence of differentiable statistical functions,
and Lemmas 2.4—2.5 the basis for the convergence of U-statistics. The asymp-
totic equivalence (1.15) of the differentiable statistical functions and U-statistics
will follow from these two separate proofs, but a direct enumeration proof is
also given in Lemma 2.6. Pedagogically, this means the proof for the conver-
gence of U-statistics can be obtained from the proof for differentiable statistical
functions with the aid of Lemma 2.6, or vice versa. A direct extension of
Theorem 1 to two-sample U-statistics and von Mises’ statistics is considered in
Section 4. A few applications are also briefly sketched in Section 5. Throughout
the paper, unless otherwise stated, we consider m > 2.

In a related paper Loynes (1970) studies weak convergence of reverse mar-
tingales and cites U-statistics as an example. His results are complementary
to ours since his process is constructed from the tail sequence {U,, k = n}
whereas our process involves the variables {U,, m < k < n}.

2. Some results on (F,, o) and U,(»). For every h (1 < h < m), define
@0 Vau@) =5 §9:05, s ) T dIFx;, @) — F(x)]
R
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so that
(2.2) nV, (o) = 21, [9(X;) — O(F)] = S,(0),  say.

Now, writing dF,(x;, w) = dF(x;) + d[F(x;, ) — F(x;)], 1 < j < m, weobtain
from (1.1), (1.3), (2.1) and some simplifications that

(2.3) [0(F,, @) — O(F) — mV, (@)] = £ies (WVan(0),  nz1.
Let 27, be the o-field generated by {X;, i < n}, and let
(2.4) Vifw) = nV, (o), 0,* (F) = § 9y(x, x) dF(x) .

LeMMA 2.1. {V¥(w) + n[0(F) — 0,%(F)], £Z,} forms a martingale sequence.
Proor. By (1.2), (2.1) and (2.4),
(2.5) V(o) =V}, (o)
H2LIST - 59400 X[ —Xo) = Fxa)ld[e(x — X,) — F(x,)]

5 -2 § 0 ) el — X,) — Fe)]dle(x, — X,) = F(x)]

Also, foralli<n — 1,
(2.6)  E{dle(x, — X)) — F(x)]d[e(x, — X,) — F(x)]| Z, .} =0,
2.7)  Edle(x, — X,) — F(x)]d[e(x, — X,) — F(x)]| Z, )
= (0,,,) dF(x,) — dF(x,) dF(x,) ,
where d, ,, is 1 or 0 according as x, = x, or not. Hence,
(2‘8) E{Vn*,z(w) | *@n—l} = V:—I,Z(w) + 02*(F) - 0(F) ’ nz= 2,
and the lemma follows. []
Now, forallr, > 1,j=1,-.-,1(21), ', r;=25,5s =1,
|E({d[e(x, — X;) — F(x)]}r - - - {d]e(x, — X,) — F(x)]}™)]
(2.9) =0, if at least one of r, - -+, r, =1,
< dF(x,) - - - dF(x}), otherwise ;
and hence, the maximum / for which (2.9) is different from zero is s, where
rp = - :r8=2.

LeEmMA 2.2. Under (IIb), for every ¢ > 0,

21%2

(2.10) lim, ., P{w: max,g,., k|V, (o) > en!} =0.
Proor. For every ¢ > 0, there exists an ny(¢), such that
(2.11) [O(F) — 6,*(F)| < ent forall n = nye).

Hence, for n > ny(¢), by definition in (2.4),
(2.12) Plo: max,g,., K|V, (0)| > ent)
< Plo: max,,., k7|V¥ () + K[O(F) — 0*(F)]| > 4en'} .
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Now, under (IIb), by (2.1) and (2.9),
(2.13)  E{Viy(o) + KO(F) — 0,F)]f < HE[Vi(o)] + KOF) — 6,%(F)J*}
< C,kCH(F),
where C, (< o) does not depend on k.
Hence, by Theorem 1 of Chow (1960) (i.e., the semi-martingale extension of
the Hajek-Rényi inequality), Lemma 2.1, (2.12) and (2.13), it follows that
for n = ny(e),
Plo: max,_,., k|V, (0)| > ent}
(2.14) = (@G E) )1 + D5 = G+ D7)
< (8C,(*(F)[logn]/ne®) >0 as n—oo. []
LemMA 2.3. If m = 3 and (1Ib) holds, then for every ¢ > 0,

(2.15) lim, ... Plo: max,gc, k| 57 (F)Vi (@) > ent} = 0.
Proor. By (IIb), (2.1) and (2.9), for all k = 1,
(2.16) E[ X5 (MVis(@)]} = Ck7CHF) C; < oo

Hence, by the Bonferroni and Markov inequalities,

Plo: max, g, o, k| Dy (3)Vin(@)| > ent)
(2.17) < N Plo k| Dy (WViu(@)] > en')
< D (GO F) netk™ < Cy(log n)2*(F)/ne?
which converges to 0 as n — co. []

By (1.4), for all n = m,
(218)  U@)=n™ el - §90xs -+ o5 Xn) I dle(x; — X))
= O0(F) + 27 (M) Un (@) »
where U, ,(0) = V, (o) is given by (2.2), and for 2 < h < m,
(219) Upu@) =n"M2p, - - § 9u(xis -+ o5 x) IG5 dle(x; — X)) — F(x;)]
where P, , ={1 <i + -+ # i, = n} and ™ ={n... (n —k + 1)}7". Let

%, be theo-field generated by the unordered collection {X, - - -, X,}and by X, ,,
X, -+, s0that 2 is | inn > 1.

Lemma 2.4. For every h(1 < h < m), {U, y(w), ©,, n = h} forms a reverse
martingale sequence.

Proor. For a U-statistic, the reverse martingale property is established by
Berk (1966). By (1.8) and (2.19), U, ,(w) can be expressed as

(2:20) ()™ Zon 96 (X -5 Xyy) 5
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where gh*(Xv ) Xh):gh(Xv St Xh)_ Z?:l gh—l(Xv ) Xj-v X'+1a Tty Xh)+

J

ngkkgh Iho( Xy - s Xj—n X5+p s X Xy s X)) — oo+ (= DMO(F).
Therefore the lemma directly follows from (2.20) and Berk (1966). []

LemMA 2.5. Under (11a), for every ¢ > 0,
(2.21) lim, ., Plo: max, ., k| 57 (R Up ()] > nte} = 0.

Proor. By Lemma 2.4, {U,*(w) = 27, (7)U, (@), €4 k = m} forms a
reverse martingale sequence. Hence, reversing the order of the indexing set
{m, - .-, n}, and thereby, converting the above into a (forward) martingale, we
obtain on using Theorem 1 of Chow (1960) (i.e., the semi-martingale extension
of the Hajek-Rényi inequality) that for every n > m,

(2.22)  P{w:max,., k|U*()| > ent}
< ()M E[U,* (@) + Ziom (2k + DE[U(@)F} -

Now, by (2.18), for every n = m,
(2.23)  E[UM@) = ()7 i (MGZDEE) — m*nG(F)

< Cn*,(F), where C (< oo) does not depend on n.
Hence, the right-hand side of (2.22) is bounded above by
(2:24)  CLNI + 3 Xiemn k7Y/(n)

< 3C¢,(F){logn}/(n) -0 as n—oo. []

Finally, we prove the following lemma on the asymptotic equivalence of
O(F,, w) and U, (w).

LEMMA 2.6. Under (IIb), for every ¢ > 0,
(2.25) P{w: max, <, k|0(F,, 0©) — U w)| > en*} >0 as n—oo.
Proor. By (1.3) and (1.4), we have for every n = m,
(2.26) O(F,, 0) = n~mni™MU,(0) + 17" T, , 9( X -+ 05 Xi) 5
where G, ,, is the collection of n™ — nt™1 (= (T)n™~* 4 O(n™~*)) sets of m indices
out of n with not all the m indices distinct. Then, for &k = m,
(2.27)  KO(F,, 0) — Uyo)| < k(1 — k=k")|Uy(o)|
+ kT By (X s X

Since k(1 — k—"k™)) = (3) + O(k™), and {Uy(w), &}, k = m} forms a reverse
martingale, by the extended Kolmogorov inequality, P{max, ., |UJ(®)| >
ent} — 0 as n — oo, and hence, to prove (2.25), it suffices to show that

(2.28) P{max,,, [k~ 'Zak,m 9(Xip - o5 X ) > ent} >0 as n—oo.
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Let g*(X;, - --» X:,) =9(X;p -5 Xy,) — E9(Xy, -0 X;,). Since, by (IIb),
k—(m—l)IZGk,m Eg(Xil’ cee, Xim)l < [C*(F)]ék—(m—l){km - k[m]} — (';)[C*(F)]%{l +
O(k™)}, for every ¢ > 0, it can be made smaller than en? when n is taken
adequately large. So, we complete the proof by showing that
(2.29) P{o:max, ., k=™ 3. %X, -+, X;,)| > enl} -0

as n-—oo.
Now, in the expression E{Y 6 n 9 (Xip oo XV = Xohm Dichm E{g*(Xil,T .
X, )9%X,, - -, X;,)}, there are (3)’k*™~* 4 O(k'~%) terms of the type
E{g*( X X, Xopy -+ 5 Xo 9% (X5 X X o+ 5 X, )} where {iy, -0} 0

K2 Im— m—
{Jis ** s Jmes} :2(3, and the repeated varfable X (lel) can appear in an;/ of
the (7) pairs of arguments. By independence, the contribution of these terms
is equal to zero, while the contribution of the remaining terms is O(k*"~%).
Therefore, Efk="" ¥, g*X;, -+, X;,))) = CC*(F)[k, where C < oco.
Hence, by Boole’s and Chebyshev’s inequality, the left-hand side of (2.29) is
bounded by
Zic Plo: [k Yo, % (X - -5 )| > en'}
(2.30) < (ne) ™ Lk CCM(E)/K
< [CC*(F)][(log n)/ne*] -0 as n— oo . []
3. The proof of Theorem 1. For ¢ ¢ I, define Y ,%(w) = [Y,'(¢, w), te I], by

(B.1) Yt 0) = (Spa(@) + (1t — [1)[9:(Xinaer) — OFE)H{REE}

where S,(0), k = 1, are defined by (2.2). Then by the Donsker theorem [cf.
Billingsley (1968, page 68)],

(3.2) Y”"(w) -, W, as n-—oo.
We complete the proof of our theorem by showing that
3.3) (Y o), Y,Y(®)) >0, o(Y,*(w), Y, (w)) >, 0, as n—oo.
Now, by (1.11), (1.12), (2.2), (2.3) and (3.1), under (IIb),
oY (@), Y,Y(0)) = sup,., [Y,(t, 0) — Y, o)

= {maxiz,z, KO(F,, @) — O(F) — mV, ()]} {m[nC,(F)I}

(3.4) < {maX,gug, k(3)|Vi (@)
+ max; g, K E s (R)Vi (@) M m[nl(F)]})

—>P0 as n— oo,

by Lemma 2.2 and Lemma 2.3.
Hence, Y, (0) —, W. Also (3.2) along with lim,_, m/n = 0 implies that

(3.5) SUPy<isimenyfn | Y (85 @) —p 0.
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Further, by (1.13), (1.14), (2.18), (3.1) and (3.5),

oY (), ¥,%0)
= sup,., |V, *(, o) — Y,'(t, )]
(3'6) é Sup0§t§(m—l)/'n |Yn0(t’ w)l + Supmlnstgl |Yn*(t’ Cl)) - Y’no(t’ (l))l

= SUPs<i<imnyn | Ya (£ @)
+ {max,,c,z, k| U(0) — 0(F) — mU, \(o)[}/{m[nC,(F)]} ,

where by Lemma 2.5, the second term on the right-hand side of (3.6) —, 0
as n — co. Hence by (3.5) and (3.6), o(Y,*(), ¥, (»)) >0 asn — oo, i.e.,
Y, *0) >, W. )

Finally, o(Y,*(®), Y ,(®)) —, 0 follows from Lemma 2.6, or directly from
(3.3)—(3.6) along with the triangle inequality )

oYX (@), Y (@) < o(Y,*(@), Y,(@)) + oY, (@), Y.(@)) -

4. Generalizations. For brevity and simplicity of presentation, we only con-
sider the case of generalized U-statistics; for von Mises’ functionals, the results
follow on parallel lines. Letw = {X,, X, ---; ¥}, ¥,, - - -} be a sequence of rv
where each X; has a df F(x) and each Y, has a df G(y). For a regular func-
tional 8(F, G) of degree (m,, m,) (m, = 1, m, = 1), viz.,

(A1) OF,G)=1§ - §9(x5 s Xp3 Vo> -+ o5 V) I dF (%) 1172, AG(5) »

where the (real-valued) kernel g(-; +) is symmetric in the m, arguments in the
first m, places and also symmetric in the last m, arguments, the generalized
U-statistic [cf. Lehmann (1951)] is defined, for n, = m,, n, = m,, by

(4'2) U'rbl,'rbz(w) = (;ii ‘—1(;’;%)_1 ZC"I'"‘I ch2,m2 g(Xsl’ Tt Xsml; le’ ] Y"mz) )

whereC, , ={l <5< .- <5, =m}andC, , ={l=rn<-- <rp= n,}.

The sample sizes (n,, n,) will be defined by n, 4 n, =n, n, = ni,, n, =
n(1 — 2,), and it is assumed that (i) na, and n(1 — 1,) are non-decreasing
functions of #, and (ii) 2, tends to a constant 2(0 < 2 < 1)asn — co. Let then

(4.3) Go(%) = Eg(x Xy -+ s X3 Yy o+, ¥, ),
(4.4) 9u(») = Eg(Xy -+ X5 v Yoo -5 V) s

(4.5)  C(F, G) = Egi(X,) — 6(F, G),  Cu(F, G) = Egi(Y,) — 0X(F, G);
(4.6) UF, G) = m2A7C(F, G) + mX(1 — )7 Cy(F, G) .

Define a process [Z,(t, w), t € I] on C[0, 1] by
4.7) Z,(t,0) =0 if [nt)A,,<m, or [naf](1 — A.) <m,,

k[kak,ku—xk)(‘”) — 0(F, G)]

(4.8) Zulkin, @) = [C(F, O)F

9
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if k4, = my, k(1 — 2,) = m,, and by linear interpolation, let
(4.9) Z,(t, w) = Z,(k[n, ®) + n(t — k[n)[Z,((k + 1)/n, 0) — Z,(k/n, )],
for kin <t < (k+ 1)/n, k=0,1, ---,n — 1. Then we have the following.

THEOREM 4.1. Ifge L*and {(F,G) > 0,asn — oo, Z,(0) = [Z,(t, ), t €]
converges weakly in the uniform topology on C[0, 1] to a standard Brownian motion.

The proof is omitted because it is a straightforward duplication of the proof
of Theorem 1. The theorem directly extends to regular functionals 6(F,, - - ., F,)
of ¢ (=2) independent distributions.

5. Applications. (i) Asymptotic normality for random sample sizes. For every
(index) variable r (=1), let N, be an integer-valued (nonnegative) random
variable and #n, be a real (positive) number, such that
(5.1) lim,_,n, = o and lim,_, (N,/n,) =1, in probability.
This implies that for every 6 > 0,

(5.2) lim,__, P{n,'N, —'1| > 46} =0.

Now, by the tightness property [cf. Billingsley (1968, page 54)] of W,, t > 0,
for every ¢ > 0 and 5 > 0, there exists a 6 > 0, such that

(3-3) P{Supj,sj<s [We — W, > e[t sel} < 7.

By (5.1) and a well-known theorem of Cramér (1946, page 254) N, H[O(F , w) —
6(F)] and n }[0(Fy , @) — 6(F)] both have the same limiting distribution, if
they have one at all. Since n}0(F, , w) — 6(F)] is asymptotically normally
distributed [cf. Hoeffding (1948)] with zero mean and variance m*{,(F), we
need only show that as r — oo

(5-4) n}0(Fy,, ) — O(F, , o)| —,0

to establish that N [0(Fy , ) — 6(F)] is asymptotically normally distributed
with zero mean and variance m*(,(F). But (5.4) follows readily from (1.11),
(1.12),(5.1),(5.3), and Theorem 1, so the desired asymptotic normality follows.

A similar result for U, () has been obtained by Sproule (1969) by an indirect
method involving some elaborate analysis. Our proof follows from Theorem 1,
(5.2) and (5.3).

(ii) Signed-rank statistic. Consider the kernel
(5.5) B(xy, X,) = sgn(x, 4+ x,)[2 — sgn’(x, — x,)],
and assume that the X; have a continuous df F(x), xe R'. Then

(5.6) O(F) = §=.[l — 2F(—x)]dF(x) (=0 when F is symmetric about 0).
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The corresponding 6(F,, w) is given by

(5.7) nf(F,, ) = 2n7* 3 R, sgn (X,) = 2W,°, say,

where R,; = Rank of |X;| among |X,|, - - -, |X,|,sgnu = 1,0 or —1 according
asuis >, = or < 0, and W,° is the classical Wilcoxon signed rank statistic.
Also, here

(5.8) G(F) = 2. [1 — 2F(—x)] dF(x) — 0*(F),

which equals 1 when F is symmetric about 0. Thus, if we let

(5.9) Y, o) .

= {(nt — [n)W s + (0] + 1 — n)W},y — Jnt6(F)}/[nC(F)],
0 <t < 1, we have from Theorem 1 that if {(F) > 0,
(5.10) Y (0) > W,

and thus the sequence {W,* — 1k0(F); k = 1} though not linear in the basic
random variables is attracted by the Brownian motion processes. For exam-
ple, by virtue of Theorem 1 and well-known results on Brownian motion
processes [viz., Billingsley (1968, page 79)], we obtain that for all 2 > 0,

(5.11) lim,_, P{sup,., Y, (¢, ®) > 2} = P{sup,., W, > 2} = (2/r)} (e ¥dr,
(5.12) lim, ., P{w:sup,.,|Y,(t, w)] > 2}

= P{sup,.; |W,| > 4}

=1 = 27 _o (=DHD(2k + 1)2) — O((2k — 1)2)],
where @(x) = (27)7 {*_ exp(—3#*) dt, —oo < x < oo. There is evidence (see
Miller (1971)) that the convergence to the limit in (5.11) and (5.12) is very
rapid so the limiting probabilities are good approximations for » as small as 10.

Weak convergence results studied in this paper will aid in the sequential

analysis of U-statistics or von Mises’ statistics, particularly, in the study of

the OC functions where Brownian movement approximations greatly simplify
the asymptotic results.
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