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In this paper, a complete overview is given of the theoretical de-
velopment of various estimators generated by the jackknife statistic. In
particular, the jackknife method is extended to stochastic processes by
means of two estimators referred to as the Jw-estimator and the Je(2'-
estimator. These estimators are studied i some detail and shown to have
the same properties as the jackknife when one considers the length of the
process record as the sample size. Finally, it is shown that the entire
development of the jackknife procedures discussed in this paper can be
considered as a direct parallel of earlier developments in numerical
analysis surrounding the study of a transformation referred to as the
eyx-transformation.

1. Introduction. In the last several years, the jackknife statistic has been and
still remains a topic of some interest in the literature. Recently in [35] the
“classical” jackknife was extended to a more general type of estimator which
was referred to as the generalized jackknife. In that paper it was shown how
one could incorporate additional information into the jackknife procedure to
enhance its bias reduction properties without destroying its asymptotic prop-
erties. Although the results included in [35] are of interest and should be of
value to the statistician there is possibly a more interesting, as well as useful,
facet of that extension which should be pointed out. That is, it should be
observed that the jackknife and generalized jackknife have an exact counterpart
in the deterministic realm, i.e., in numerical analysis. In fact it was this coun-
terpart which suggested the generalized jackknife and hence an awareness of
the corresponding developments in that area have already proved their worth.

In this paper the jackknife technique is extended in such a manner that the
analogy to previous work in numerical analysis is complete and the sense in
which the two developments are exact parallels is discussed. In order to ac-
complish this, the jackknife method is first extended to appropriate stochastic
processes and is shown to have some value in that area. The parallel of the
current stages of the two developments is then shown to be complete. Before
proceeding to these comparisons let us first consider briefly some history re-
garding the jackknife and the generalized jackknife.
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2. The jackknife method.

DeFINITION 2.1. Let 6, and 6, be any two estimators for § defined on a

random sample'X,, X,, - --, X,. Then for any real number R 1 we define
the generalized jackknife G(d,, 0,), by the equation

P 6, — RO
(2.1 G, b = 2=

The function G in (2.1) was first introduced in [35] by Schucany, Gray, and
Owen (1970) where it was observed that if

(2.2) E[0,] =0 + byn, 0),
(2.3) E[6,] = 0 + byn, 0),
and by(n, ) + 0, then

(2.4) E[G@,,0,)] =0
when

2.5) - %E_:_:% :

In that same paper it was also pointed out that in many cases b,(n, 6) will be
of the form f(n)b(f) and, by proper selection of 8, by(n, ) will be of the form
f(n — 1)b(0), so that if

(2.6) rR=_J0 |
fin = 1)
G(b,, 6,) is an unbiased estimator for 6.

Although essentially no restriction is placed on 6, and 6, in Definition 2.1
the only situation in which any significant theory for G(0,, 6,) has been devel-
oped is when d, is the estimator obtained by restricting 6, to subsamples of
size n — 1 and averaging. That is, by letting

(2.7) b, =0,x, X, ---, X,)

(2.8) Of =0,(X, -y Xooyy Xiyyy -+ -5 X,)
and

(2.9) 6,=n Y, 0 =06,

Actually one can form the above estimators on subsamples of size n — m.
However, this increased generality is of no interest here and we shall limit
ourselves to the case m = 1.

For a given estimator §, the particular form of (2.1) studied in some detail
in [35] is defined by
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(2.10) G(0) =

where we have now removed the subscripts from our notation to stress that
we are referring to the case in which the second estimator in (2.1) is completely
determined by the first by means of (2.9). Asis obvious, when R = (n — 1)/n,
(2.10) reduces to the ordinary jackknife (first introduced by Quenouille (1956))
which we shall denote by J(f). Thus

-1

§_n=17

@2.11) JO) = —L— = — (n— 1)f,
1 _n— 1

n

and if b(n, 8) = C(6)/n, J(f) is unbiased since in that event R is the ratio of the
biases in 6 and §".

The notions set forth above have an immediate extension to the problem of
removing additional bias terms in the representation of b(n, ). That is, let

6,0, ---,0,. bek + 1estimators defined on a random sample of size n. Then
we define G(@,, 0,, 0,, - - -, 6,.,) by the equation

A A

01 02 trt 0k+1
ay Gy st Gy
A A A a Ay + - a
_ 19 k2 kk+1
(2.12) GO, 0 -+, Oh) = (T
Ay Gt Gk
Ay Qg * Qi

where the a;; are any real numbers for which the denominator in (2.12) is not
zero. Taking R = a,/a,, and trivial algebra shows that when k = 1, (2.12)
reduces to (2.1). Moreover it is also clear that when

(2.13) E[6,) = 0 + Xk, f.:(n)bi(6)
and G(,, 0,, - - -, 0,,,) is defined, taking a;; = f;,(n) yields
(2.14) E[G(él’ éz’ MR 9k+1)] =40.

When the estimators ,, 0, - - -, 8,.,, in (2.12) are defined in a manner analo-
gous to (2.9), i.e., @, is defined by restricting 6, to subsamples of size n — 1
and averaging; , is defined by restricting 4, to subsamples of size n — 2, and
averaging etc., we will adopt the notation G¥'(d,) in place of G(6,, ,, - - -, 0,.,)-
When this is done it has been shown that a natural extension to what might
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be referred to as an iterated jackknife results by taking a;; = (n — j 4 1)
When the a;; are so chosen we will use the special notation J#®(@,), and clearly
JO@,) = J(@,). Ttis trivial to see that if

(2.15) Eo] =0+ 50 L 50 . 580
n n? nk

then E[J®(f,)] = 6, which is the justification for considering J*(f,) as the
proper notion for a “higher order” or iterated jackknife.

As is well known, probably the most important properties of J[f] are not
its bias reduction properties but its asymptotic distribution properties. See
Arvesen (1969), Brillinger (1964), or Miller (1964). Although, not so well
known, the same is true for G%*(f), when k = 1,.and no results in this area
are available for larger values of k. We will not expand on this here, for the
properties to which we are alluding will become apparent in Section 6.

We are now in a position to consider the notion of jackknifing continuous
data which in some sense retains the character of a random sample. We will
not, however, be so ambitious as to attempt to consider such processes as white
noise processes but shall limit our study to those processes which are at least
piecewise continuous. This is the subject of the next few sections.

3. The J, -estimator. As was mentioned above we will limit our discussion
to stochastic processes which are piecewise continuous. There is, however,
another restriction which we will find it necessary to make. Namely, we will
only consider estimators which are functions of an estimator 6, 6 having the
structure indicated below. This is possibly unnecessary but it is the only
tractable way in which these authors have been able to construct the desired
development.

DeriNiTION 3.1. Let {G(f) |t € S} be a stochastic process defined over an
index set S containing the interval [a, b], and suppose that the probability law
of G(t) depends on @ for every t € [a, b]. Then for ¢, t,€[a, b] and 1, # t,, we
define d(t,, t,) to be an estimator for 6 of the form

(3.1) 0‘(,1’ t,) = Io(t;) — 1o(t) ,
tZ - tl
where {I,(f)|t € [a, b]} is a stochastic process, determined by the process
{G(t)| t [a, b]}, such that almost every realization is piecewise continuous.
To illustrate the above definition we include the following simple examples,
the first of which simply points out that for a regular partition, f(a, b) is the
sample mean over the (¢, t,_,).

ExampLE 1. Leta=t,<t, < - - <t,=b,andlett, —t,_, = (b — a)/n.
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Then
(3:2) O(a, b) = nt N1, 0(1,_,, 1) -

ExaMpPLE 2. Let {N(f)|t€ [0, T]} be a Poisson process with parameter 2.
Then the maximum likelihood estimator, based on the interval [0, T], for 2,
is A = N(T)/T. Thus in the notation of Definition 3.1,

(3.3) G(t)=N@),  I(t) = N(r),
@) Oty = M= M) ang g, 1y = MDD

ExampLE 3. Let E[G(¢)] = 6. Then a familiar estimator for ¢ based on the
interval [a, b] is

(3.5) (a, b) = (b — a)™ {2 G(x) dx .
Thus in the terminology of Definition 3.1
(3.6) I,(t) = ¢ G(x) dx .

We now give a definition which extends the jackknife notions to estimators
which are functions of é.

DEFINITION 3.2. Let (a, b) be defined by Definition 3.1 and let a = 1, <
L<t<---<t,=b be a regular partition of the interval [a,b], i.e.
(t; — t;.;) = (b — a)/n. Then for any real valued function f, we define the
estimator J,[ f(6)] by the following equation:

(3.7) 1(f@) = ni) — "= 3 0,7,
where
(3.8) 6 =b(a, by, 6,=0@,_,t1)
and

ji_ n 5 1 .
(3.9) 0,,_n_10 —— 0.

One should note that when the process I (¢) has stationary independent in-
crements, (3.7) is the classical jackknife obtained by considering 671, 672, cee, 9,‘
a random sample. However the notions are not identical as is quickly seen
by observing that J,[ f(6)] has the undesirable property that two different users
could get different results from the same data simply by choosing different
partition sizes for the interval [a, b]. This problem, of course, does not arise
in the estimator J[], pointing out a distinction between the roles of the pa-
rameter » in the two estimators.

Although J,[ f(6)] has only been considered in the literature for the particular
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process of Example 2 with f the reliability function, (Gaver and Hoel (1970))
this appears to be sufficient to indicate the appropriate means of eliminating
its dependence on n. That is, in [15] it was suggested that the bias in J,[e=]
is a decreasing function »n, and this immediately suggests considering the esti-
mator which one would obtain from lim,_,,, J,[f] with a and b held fixed. This
is the purpose of the next section where we shall first obtain this limit and then
justify our efforts.

4. The J_-estimator. Let {I,(?)|? ¢ [a, b]} be defined as in Definition 3.1 and
let the set £ and & be sets of realizations defined by

4.1 & ={g|g is a realization of {G(?)|te S D a, b]}},
- and
4.2) 2" ={g|lge &, 1, is piecewise continuous on [a, b]},

where I, is the realization of {I (¢)|t € [a, b]} determined by g. Then for each
ge &’ we define

(4-3) Hya) = I,(a*) — I(a),  H,(b) = I(b) — I(b7),
and
(44) Hg(t) = Ia(t+) - Ig(t_)

for each te(a, b), where + and — indicate limits from the right and left
respectively. Also, for g¢ <’ we define

(4.5) H(t) =0
foreacht e [a, b]. Itisclear thatfor eacht ¢ [a, b], the functional H,(¢), defined
on ¥ by (4.3), (4.4), and (4.5), is a random variable since
{919e &, Hy1) € [%, %]}
(4.6) = N3 Usn (919 € 7 1,0 4 n70) — 1,6 — 7Y
e[x, —m™, x, + m]},
where [x,, x,] is an arbitrary, closed interval.

Now let R, denote the range of H,() and let I' be the set of possible values
of jumps in I, i.e.,

4.7 I' = Uieran R — {0} -
Also, for each y e T, let N, be defined on & by
(4.8) N(9) == ({t|tela b], H(1) =71]),

where &7(+) denotes cardinality, and let N be defined by

(4.9) N@g) = Zyer Ny(9) >
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where by y eI’ we mean the summation is over all y such that N.(9) #0.
Thus we note that N (g) is simply the number of points in [a, b] where I, has
a jump of size y and that N(g) is the total number of discontinuities in 7, on
[a, b]. We should also observe that if g € £, N(g) is finite so that only a finite
number of the N,(g)’s are nonzero, and if ge & — £, N(g) = 0, so that the
series in (4.9) is always finite.

We are now prepared to define the estimator which, we will shortly show,
under appropriate conditions, is the limit of J,( f(8)).

DEFINITION 4.1. Let § be defined over the interval [a, b] as in Definition 3.1,
and let N and N, be random variables defined by (4.9) and (4.8) respectively.
Then if fis a real valued function defined and differentiable on the range of
g, we define the estimator J_[ f(d)] by :

@10)  LUAO) = f0) - Sy N, [ A0 = L) = 10 + L)),

where T = b — a and

(4.11) 716) = éfd'(ai)

0=0

Before establishing the conditions under which lim,_., J,[ f(8)] = J.[f(#)]
let us consider some simplifications of (4.10) and a simple example.

Case 1. Almost every realization of {I,(¢)|t€ [a, b]} is a step function. In
this event

(4.12) Y. NL =6

r

T

and

@13) LA = 0) - 07G) — Sy, S0 = 1) = 1) ]
Case 2. If T = {y,}, then

@.14) L) =10) - N| (6 = 1) — ) + Lo ) |

where N is defined by the total number of discontinuities in 7, on [a, b].

Case 3. Suppose Case 1 and Case 2 hold, then
@.15) LU0 = fi0) — brd) — N| (0 - o) - f10)].
Case 4. If almost every realization of {I,(t)|t € [a, b]} is continuous, then

(4.16) J1f0)] = 1) .

An illustrative example is now in order.
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ExampLE 1. Consider once again the Poisson process of Example 2, Section 3
with f{2) = e~*, x > 0. Taking 4 = N(T)/T as before, and noting that I" = {1},
and f'(2) = —xe~* we have, by Case 3,

(4.17) TLAD] = e {1 - N(T)|:e”/T 11— _;_]} .

The estimator obtained in (4.17) was first introduced in [15] where it was in-
vestigated with regard to its robustness to violations of the Poisson assumption.
We will not discuss it further at the present since we have included it at this
point to simply demonstrate the terminology. We now establish the sense in
which J_[ f(f)] is the limit of J,[ f{6)].

THEOREM 4.1. Let the stochastic process {I,(t) |t € [a, b]} be as in Definition 3.1
and also assume that almost every realization is of bounded variation on [a, b]. In
addition suppose that for each t € [a, b]

P[HG(I) = 0] =1,

where H,(t) is defined by (4.3), (4.4), and (4.5). Then as n — co, J,[ f(8)] con-
verges to J_[ ()] with probability one.

Proor. Let

(4.18) 4= U, {a + (b — a)|m isan integer with 0 <m < n} .
n

Then, since A4 is a countable set, it is clear that
(4.19) P[H (t) =0 for ted]l=1.

Now let .7 denote the set of all realizations of {G(f)|t e S} such that for
eachge 7~

(i) 1, is piecewise continuous on [a, b],
(ii) I, is of bounded variation on [a, b], and
(iii) H,(t) = 0 for every te 4,

where I, is the realization of {I,()|t€ [a, b]} determined by g. Then since
{I,(t) | t € [a, b]} is piecewise continuous and of bounded variation on [a, b] and
(4.19) holds, it is easy to see that .7 is a set of realizations which has proba-
bility one. Thus, it is sufficient to show that J,( f16))|, converges to J( 1)),
for each ge . 7.

Now let ge .7, te[a, b], a(t) = {x: H(x) # 0,a < x < t}, and S, and C,
be defined on [a, b] by

(4.20) Sy(t) = Zaw Hy(x) »
and
(4.21) C,(1) = I(t*) — 5,(0) -



ON THE JACKKNIFE STATISTIC 9

Obviously S,(¢) is finite, since H, is nonzero at only a finite number of points
of [a, b], and it is clear that S, is a step function. Also observe that C, is
continuous, and therefore uniformly continuous, on [a, b]. Also, for x, y € 4,

(4.22) 1y(x) = I,(y) = Cy(x) 4+ Sy(%) — S,(¥) — Cy(y) -
Leta=1t<t < ---<t,=b, witht;, —t, , = T/n. Then, given ¢ > 0,
there exists a positive integer n,, independent of ¢;, such that for n > n,

(4'23) |Cg(ti) - Cg(ti—l)l < €,
and .
(4.24) c{t|telti_, ], H(t) =0} <1,

where Z7(+) denotes cardinality.
Also, let i, and i, be defined by

(4.25) i, ={i|H(t)=0 for te[t,_,, ]},
and
(4.26) i, ={i|H(t) =r #0 forsome te[t;,,.t]}.

Then for n > n,, the sets defined by (4.25) and (4.26) are mutually disjoint
sets whose union is {1, 2, ..., n} and we have (using the same notation for
the estimate as the estimator)

LIAO = fid) + =1 52, [A0) — £6.9)]

n
= fif) + . —n— 1 Diiei [A0) — f6.9)]
F LS B, U0) — 70.9)
3 n—1 AN 5 n ACy(ti) 1 4
(4.27) =f0) + = Zi“o]:f(e) r(¢ n_1 T +n—10>]

+ n—1 2irer Zieir[ﬂé)

n

A AC (1) 1 4
_f(6_—_n_ 1 __nm Al 0)],
f( n—1T n-—1 T +n—1

where AC,(t;) = C,(t;) — C,(t,_,). Now since t; ¢ A we have N (9) = &7(i,) for

all n > n,, and
: 5 5 AC(t) 1 5
_ eiy| SO — (0 - 2= L - 222 ”)]
(*+28) hm”*""sz[f() f<0 AoiT n—1 T ' a—l

= N0)| 70 -7 (6 - L) ].




10 H. L. GRAY, T. A. WATKINS AND J. E. ADAMS

Thus, since only a finite number of the N,(g)’s are nonzero,

. n—1 2 5 i\ — 7} j_T
@.29) lim,.." zrerziei,[fw)—f(ﬂn)1—ZrerNr<0>[ﬂ">—f<"‘7>]’

the latter series of course being finite, since g € 7. Now

n—1 o rfg_ n AC1) 1L 4
(4.30) —— ey [f(ﬂ) f <" P T 0)]
a5 m ACt) 1 5
:_iéz..ﬂa) f<0 n—1 T +n—10>
n TR n AC@) 1 4
n—1 T n—1
A _ A _ n AC;(Q) 1 7]
1) f<0 A1 T Taci 0> AC,(t)

+ Ziei w AC) 1, T

Since, for n > n,,

n AC,t) 1 é
-1 T n—1
and |0|/(n — 1) can be made arbitrarily small by choosing n sufficiently large,
it is clear that, given > 0,

1 f(é)—f@_ - 1ACGT(ti) + o 19>

. 4 n— n— 7(f)
(4.32) lim, . |—0 Ty, n A 1 g - f'(©)
T

n—1

n —8-—+

4.31
( ) n—1T n—1

<

| n—1

< tim,__ 03" =@) _ 45,
n

n—00

and therefore,

A A AC (¢, 1 5
é f(a)—f@—nzl ;S‘)-Fn—lo) A A
(4.33) lim, o ——- Ties, Ty 1 = —0f'(0) .

n—1 T n—1

Similarly,
£y — 10 — 2800 4 1)
e n—1 T n—1 —f'(é _A_C&)_
(4.34) lim,_ .| T, T AC,) _ 1 4 )| —r
n—1 T n—1

. 0 0
S hmn-mo 7 Zisio |Aca(tt)l S ? V(Ig) ’
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where V(Z,) denotes the total variation of J, on [a, b]. Hence,

N _ rlp_ n AC() 1 4
/0) f<0 n—1 T +n—10>

n AC () 1 5
n—1 T n—1

A

(

m, . Zi €y

'\:‘

lmn-—wo Zieio Acg(ti)

3 5k

(4.35)

'ﬂ!

1mn_,,, [Cg.(b) - Ca(a) - ZreI‘ Zieiy ACv(ti)]

A

~
~—

7 C(0) — Cy(@)]

=f'<9) [0 SN0 L],

since N,(g) is finite for each y e I and only a finite number of the N,(g)’s are
nonzero, and a,b e 4.
Thus, combining the results of (4.29), (4.33) and (4.35), we obtain

(4'36) lim n—wo n(.f(e)) R . R
= fi0) — Zyer NA9)LSO — 7/T) — £O) + (/) )]

and the theorem follows.

5. Bias reducing properties of the J_-estimator. As was mentioned at the start,
our intention is to produce the counterpart of the jackknife for certain types
of stochastic processes. It is the purpose of this and the next section to show
that the J_-estimator is precisely that. In what follows one will quickly see
that J_[ f(0)] enjoys essentially the same properties as the jackknife with the
sample size n replaced by the record length T. The first few results are exact
counterparts of similar results given by Adams, Gray and Watkins in [2].

THEOREM 5.1. For T > T, let

(5-1) E[f(6)] = f6) + b0, T),

and

(5.2) E[f(0.)] = f16) + b6, T) .

If

(5.3) E[f(0.,)] = E[f(6,)] for all i and j,

(5-4) lim, .. E[J,(A10))] = E[J(f9))],
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and (0/0T)b(0, T) exists for T > T,, then

(5.5) EL(f))] = /1) + b0, T) + T-2- b0, 7).
when T > T,.

Proor. Since
(5.6) LA = f0) + "L 51 1f0) - 0,
we have

n

(57)  EULAO)] = f0) + b0, T) + =L £, [60, T) — b0, )]
But
(5:8) E[f6,)] = f0) + b (0.1 T),
n
and hence, from (5.3)

(5:9)  EU(f0)] = f0) + 0. 1) + "L zp.[e0, 1) — b(0.2 2 1)}

n

Taking the limit of (5.9) as n — co and imposing (5.4) yields the result of (5.5).

It should be noted that condition (5.3) could be replaced by the condition
that {I,(t)|t € [a, b]} has stationary independent increments and the theorem
would remain valid. An immediate consequence of Theorem 5.1 is the follow-
ing corollary which we might have expected.

COROLLARY 5.1. Under the conditions of Theorem 5.1 a necessary and sufficient
condition that J_[ f(0)] be unbiased is that b(0, T) = C(0)/T, where C() is an
arbitrary function of 0.

Proor. The result follows at once by setting
b(ﬁ,T)-{-Taa_Tb(ﬁ,T):O, T>T,,

and solving for b(8, T).

Another result which is of interest and is obvious from Theorem 5.1 is the
following.

COROLLARY 5.2. Under the hypothesis of Theorem 5.1, if f0) is unbiased for
f(0), then J_[ f(0)] is unbiased for f(0).

It is possible under the conditions of Theorem 5.1 to give a complete charac-
terization of the bias reduction properties of the J_-estimator in an asymptotic
sense. This is the purpose of the next sequence of definitions and theorems.



ON THE JACKKNIFE STATISTIC 13
DEFINITION 5.1. Let £;(d) and f,(f) be biased estimators of f{§) such that

(5.10) tim,_.. ZLAOI = O] _ f - ¢
E[£(0)] - 19)]

If L = 1 we shall say that f,(d) and f,(f) are “same order bias estimators” of
J6), denoted by £,(f) S.0.B.E. fi(d). If 0 < L < 1 we shall say that f£,(d) is a
“better same order bias estimator” than f(#), denoted f:(6) B.S.O.B.E. £(0).
If L = 0, we shall say that £;(d) is a “lower order bias estimator than £(6),
denoted f,(6) L.O.B.E. f,(d).

In case f,(9) is unbiased and £(#) is biased we shall say f;(d) L.O.B.E. £(0),
and if £,(6) and f,(d) are both unbiased we shall say that f,() S.0.B.E. £(6).

THEOREM 5.2. Let the conditions of Theorem 5.1 be satisfied and suppose that
there exists k > 0 such that

(5.11) lim, . T*%(@,T) = C(6) #0 or +oo,
and lim,_,, T**(0b(T, 6)/0T) exists. Then

(i) if k =1, J.(f16)) L.O.B.E. f(d),
(i) ifk <2 and k # 1, J.(f(0)) B.S.0.B.E. f(f),
(iil) if k = 2, J.(f19)) S.0.B.E. (),
(iv) ifk > 2, fif) B.S.0.B.E. J_(f(d)).
Proor. First we note that

(5.12)  C(6) = lim,._.. T8, T) = lim,._._ ( _% e _a% b6, T)) ,

and by applying (5.12) it is easily shown, using (5.5), that
(5.13) lim,__ E=(A0)] — £10)
E[ f10)] — f16)

From (5.13) it follows that (i), (ii), (iii), and (iv) hold.
Some trivial examples are now included for clarity.

=1 —k.

ExAMPLE 1. Let us again consider the process {N()| e [0, o)}, where N(7)
has the Poisson distribution with parameter iz. Then A0, T) = N(T)/T is an
unbiased estimator of 2, and a simple-minded estimator of 22 is f{1) = ().
However,

N(T) )2 _NT)
T T

and E[f(2)] = 2 + 4/T. Thus, by Corollary 5.1, J_(f()) is an unbiased esti-
mator of 22,

(5.14) T.(fiD) = (
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ExampLE 2. Consider Example 1 with k an integer greater than 2. As an
estimator for 2%, let f(1) = (N(T)/T)*. Then

(5.15) E[f(,?)] =k 4 e 48 a,(k)

where the a,(k) are functions of 2 but not of 7. Thus, by Theorem 5,2, J_( f(3))
L.O.B.E. f{{), and, by Theorem 5.1.

R a; k-1 18;
(5.16) E[J(fid)] = Vo T it

L (1= i)
— 24 i .
+ 20 T

EXAMPLE 3. We now return to the estimator f{i) = e~""/"* defined in
Example 1 of Section 4. We have already pointed out that in this case

(5.17) J.(f(d)) = e-@@imaf1 _ N(T)[e*'" — 1 — x/T]}.
It is easy to show that E[ f{1)] = e~*7"~="*/", so that by Theorem 5.1
(5.18)  E[J(f(A)] = e-Tu—"=I[1 — 2T 4 ATe~*"(1 + x/T)] .
But then
(5.19) lim,_., Th(d, T) = lim,_, T(e-*70~"/") — ¢~ir)

= LAxte= .
Thus, by Theorem 5.2, J.[ f()] L.O.B.E. f{4).

Before leaving our discussion of the bias reduction properties of J.[ f(0)] we
include a final result which shows under reasonable assumptions J_, is indeed
more effective as a bias reduction tool than J, for any finite n.

THEOREM 5.3. If the conditions of Theorem 5.1 are satisfied and J ( 1)) isan
asymptotically unbiased estimator of f(0) such that b(0, T) + Tob(0, T))oT is a
monotone function of T, then

(5.20) ELf6)) — fO)]| < |E[L(fB)) — fO)l
for all n.

Proor. First note that b(@, T) 4 Tob(@, T)/oT = d(Tb(0, T))/0T. Since
a(Th(0, T))/dT is monotone and lim,_., d(Tb(@, T))/d0T = 0, it is easily seen
that either

(i) 9(Tb(, T))/oT = 0, or
(if) 9(Tb(@, T))/0T is negative and increasing, or
(iii) 0(Th(@, T))/oT is positive and decreasing.
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Now observe that

(5.21) E[J.(f(6)) —f(é)] =nb@,T) — (n — 1)b <0,n ; 1 T)

(0, n—1 T>
n

Tb(6, T) —
Lr
n

Thus, by the mean value theorem for derivatives, there exists x,, with
n~(n — 1)T < x, < T, such that

(5.22) E[J,(f0) — fiO)) = 3. (tb(6, 1))

=&y,

Therefore, in view of (i), (ii), and (iii), we obtain

(5.23) |E[J(f0)) — fO)I| < |EL(f19) — f0)]] -

6. Asymptotic properties of the J_-estimator. This section will be devoted to
a study of the limiting distribution of J_( f(0)) as the length, T, of the interval
[a, b], becomes large. Inview of this fact, it is possibly necessary to strengthen
our notation for the J -estimator to indicate the dependency of N and N,, of
Definition 4.1, on the interval [a, b]. With this in mind, let

6.1) N = N(a,b) and N, = N,(a,b)

for each y e I'. Then a more appropriate notation for the J,-estimator becomes
6:2) I b)) = fiB(@, b)) — Z,er V(@ b) | f(0a, ) = 1)
— fi0(@. b)) + L f@(a,b)|.

The latter is, however, quite awkward, and hence we will continue to use
the more convenient notation of (4.10), and assume this short discussion will
eliminate any confusion.

In order to establish the desired asymptotic theory for J_[ f(6)] we will need
a suitable estimator for its variance. This can be accomplished in a natural
way. That is, return to the interval [a, b], subdivide it by letting 7, = a 4
(i—1)/n, i=1, ..., [nT)], and ¢, = b, and assume {I,(?)|?€ [a, c0)} has
stationary independent increments. Then, since Var [(a + (i — V)/n,a +
i/n)] = nVar [6(a, a + 1)], for fixed n, a consistent estimator as T — oo for
Var [f(a, a + 1)] is

63) o= em—p e [0(e+ et )~ daa+ B,
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where [nT] is the greatest integer not exceeding nT. Our comments leading
to (6.3) therefore suggest that a portion of the quantity we seek may be obtained
by taking the limit of (6.3) as » — co. When this is done one obtains

(6.4) lim, .. 4, = _;_ Ten N, ace. .

We will denote the right side of (6.4) by é,* and will not prove the result.
The proof is not difficult but serves no purpose here since ¢,* is the quantity
we shall need. Thatis, we have introduced ¢,* through (6.4) simply to indicate
how it arises. We should note before leaving this discussion that if ¢* =
Var [f(a, a + 1)], then for any ¢ > 0

(6.5) lim, . lim,_  P[|6: , — o’ <e]=1,

and hence when these limits can be reversed, ¢, converges to Var [0(a, a + 1)]
in probability. A number of conditions could therefore be given which would
guarantee this convergence. We will not do this however, but simply assume
&Tz —p a’.

Although 4,2 is not the desired estimator for the variance of J_[ f(d)], we
will be able to make use of it shortly to obtain our goal. First, however, let
us give the following two theorems. We state the first without proof, since
it is a trivial extension of a known result.

THEOREM 6.1. Let {I,(f)|t € [a, o0)} be a stochastic process with stationary
independent increments such that E[0(a, t)] = 6 for each te (a, ). Also let
Var [0(a, a + 1)] = ¢* < oo and assume f is differentiable in a neighborhood of 6.
Then

(6.6) T fif(a, a + T)) — fi0)] =, A7(0, *(f(O)))
as T — oo, where L denotes convergence in law.

THEOREM 6.2. Suppose the conditions of Theorem 6.1 are satisfied and that f
has a bounded second derivative in a neighborhood of 6. Moreover suppose that
é,2 —p o and that T is a bounded set. Then

(6.7) THI(f0(a, a + T)) — fi8)] =, 470, *(f'(0))) »
as T — oo.

Proor. Recall that
68)  J(f0) = 1) = Ty N, [ (0 = L)~ 1O + L1D)).
In view of Theorem 6.1, it is sufficient to show that

69) TEaN[f0-L)=fh)+ Lr@)]-0 s Too.
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Moreover, it is easily seen that 9((1, a+T)—>,0asT— co.

Now suppose that | f”/(f)| < M forallte (¢ — 0, § + J), where 6 > 0. Then,
given ¢ > 0, there exists 7, > 0 such that P[f(a,a + T)e (6 — 9,0 + 3)] >
1 — e when T > T,. Thus, for sufficiently large 7,

A 2 A
6.10 (0-L)=fb) - Zr@ + (6 —aL)
@10 f0-L)=pl)-LrO+ (0 -al
and | f(6 — a,r/T)| < M with probability greater than 1 — ¢, where «, is a

random variable such that the range of @, isa subset of [ — 1, 1] with probability
one. Thus, when T is sufficiently Iarge,

@1y [P naN (0= 1) -0+ Lro)]

S|P S g (00, 1)

< M Gt

=T
with probability greater than 1 — ¢, and since T%¢,> —»,0 as T — oo, we
obtain

612) T 8 N, (0= L) = 10) + Lrd) |-, 0

as T — oo.

In view of Theorem 6.2, an appropriate estimator for the variance of J_[ 1)
will complete the asymptotic results we have been working toward. From
our previous comments, one possibility would be to use ¢,2[ f/(§)]>. We will
not, however, use this but take the following approach which is closer to the
procedure used in jackknifing random samples.

Recall that

(6.13) 1(f0) = nfid) —"=L 52 A6,

n
and define the estimator J,( f{f)) by
(6-14) Li(f0) = nfi0) — (n — DfG,) -

Then, following the notions of jackkniﬁng on a random sample, let

(6.15) 870) = oy T WU0) — (0P

be an estimator for the variance of J,(f(f)). Under reasonable conditions it
would appear that, lim,_,, S,%(0) (when the limit is taken in some appropriate
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sense) should be a reasonable estimator for the variance of J.( f(6)). This
turns out to be the case, and under the appropriate conditions one can show
that

(6.16) lim, .. S20) = 5, er N,[ f<é — If) — f(é)]z

with probability one. Again we will not prove a result such as (6.16) since
it is only the right side of the equation that we will need. However, the dis-
cussion leading to (6.16) is germane for the reader to understand how it arises
and how it should be interpreted. A proof of the result can be found in [39].
The next theorem shows the value of (6.16).

THEOREM 6.3. Let {I(?)|t € [a, oo)} be a stochastic process with stationary
independent increments such that E [0(a,t)] = 0 for each te(a, ) and
Var [f(a, a + 1)] = 0* < c0. If 3> —p0*as T — oo, f has a continuous first
derivative in a neighborhood of 6, and if T is a bounded set, then

(6.17) T 3,00 NLAD = 7IT) — fOF —2 LS OF
as T — oo.

Proor. Suppose that f” is continuous in the interval (¢ — 4, ¢ + 9), where
> 0. Since 6(a,a + T) —,0 as T — oo, given ¢ > 0, there exists T, > 0
such that P[d(a,a + T)e (8 — 9,0 + 8)] > | — e when T > T,. Thus, since
T is bounded, for sufficiently large T,

(6.18) P[f(é_L>=ﬂ§)_Lf'<é—a,L>:|> 1 —¢
T T ' T

for every yeI', where a, is a random variable such that the range of «, is a
subset of [—1, 1] with probability one. Therefore, for sufficiently large 7,

6.19) T3, N, [f(é — LT) —f(é)T = iT e 1N, [f’(é - a’LTﬂz

with probability greater than 1 — ¢. Now, since I' is bounded,
6200  d@a+T)—al o0, lT Y o PN,(@ @+ T) —p 0

as T — oo, and f” is continuous in the interval (¢ — 9,  + 9), it follows that

(6.21) T Y, o NG — 7/T) — fOF —» LS O)F
as T — oo, as was to be shown.

Combining Theorems 6.2 and 6.3 we obtain the following theorem.
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THEOREM 6.4. Under the conditions of Theorem 6.2,

(6.22) 7 °°(f(f'9)) =JO s, 1)
[Zier VA0 = 7/T) — fIOF]

as T — co.

Before closing this section we should make a final comment with regard to
our extension of the jackknife to stochastic processes. The question which
naturally arises is in regard to extending G(d). In connection with this, note
that the definition of say G,[ f(§)] corresponding to J,[ f(6)] is

s _ f0) — Rm)fi6,)
(6.23) G.[f10)] = 1 — R(n)

=10) + ;

R(n) N
[ R = 1 (@~ DO = S8}

Thus, assuming the indicated limits exist,
(6.24)  lim,_ G,[f(0)] = i) + alim, .. {(n — D[A0) — fiG.)]},
where
a = lim,__ R(n)/[1 — R(n)](n — 1).
But
6.25)  lim,..{(» — D[A0) — fi.)]) = J.L/O)] — /D),
and hence

(6.26) lim, .. G,[fi0)] = (1 — a)f(f) + aJ.[£(0)] .

But, except for the fact that we do not have a random sample, the right side
of (6.26) is just a special case of (2.1) with R = —a/(1 — «)~*. Thus rather
than going through similar extensions for G(f) one simply takes 6, = f(d),
0, = J.[ f(6)] and selects R, as best possible, to approximate the ratio of the
biases in these two estimators.

7. The J_,®-estimator. Although J(6) is by far the most extensively studied
of the estimators we have considered, it is not necessarily the best, even from
a bias reduction viewpoint. In fact, it was pointed out in [2] that from a
reduction of bias point of view, J®(f) is more robust to departures from the
assumed form of the bias than J(f). Moreover, one can give examples where
the mean square error in J®() is smaller than the mean square error in J(f).
For these reasons it seems logical to attempt to extend the concept of J®(f)
to stochastic processes. This is the purpose of this section. To accomplish
our goal we take the obvious approach.
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DEFINITION 7.1. Let § be defined as before. Then we define J,®[ f(d)] over
the interval [a, b] by

a0 LA = 3] wfd) — 20— 17 Lm0
2 1 j ij
+(n—2) _n———l—)— iini S0 ):I s

(n —

where . . . .
4 4 8, nd 6, + 6, .
7.2 gi=""0 __ % . fii_ it )
(7.2) " n—1 n-—1 " n—2 n—-2 P#EJ

It should be noted that J,®[ f(d)] is simply J®[ f(6)] when one considers, as
before, the § as independent identically distributed random variables. That
is, when one makes this assumption, (7.1) is just the estimator defined in (2.12)
withk = 2, a;; = (n — j + 1)~'and §, and 0, determined by the drop out rule
previously described.

Due to our previous development, our interest centers on establishing the

lim,__ J,®[ f(d)]. This leads to the following definition.
DEFINITION 7.2. Let the conditions in the definition of J_[ f(d)] be satisfied

and further assume f is defined and twice differentiable on the range of 4.
Then the second order J_-estimator is defined as

Jm(z)[f(é)] =f(é) + %f,,(é)[zup aga :Iz

a3 = Beer Mo (F)0V 4 070 =20 + 24(7 = )

+ 3 Saer NN, — 1)[f(9) - 2f<é - %)

A=)+ (F)r (- 7)]

+ 3 Dars NeVg [f(é) - 2f<é N %>

(0= F )+ (F)r(0- 7))
where f"(0) = d*f(0)/d6?|,_; and T = b — a.

Under the conditions of Theorem 4.1 and the assumption that f has a con-
tinuous second derivative over the range of 6 one can show that

(7.4) lim, ... J,[ f0)] = J.*[/0)]
with probability one. We shall not prove the result here since it is along ex-

actly the same line as Theorem 4.1 and is excruciatingly long. For a detailed
proof of the result see [1].
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Although J®[ ()] appears quite unmanageable this is not necessarily the
case as we shall demonstrate shortly. First, however, let us list some additional
theorems concerning the properties of J®[ f()] which justify it as the ap-
propriate extension of J.[ f{f)]. Again we will not prove the results since they
are so similar to previous results of this paper.

THEOREM 7.1. If the following conditions are satisfied

(i) {I;(t)|te]a, b]} hAas Stationary indgpendent increments
(i) lim,.., E[J,*[f()]] = E[J.*[/0)]]
(iii) E[A9)] = f0) + b(@, T)

and
(iv) ob(0, T)/oT and 6°b(0, T)[0T* exist,
then
(@5 EUCLAON = £6) + b0, T) + 27 PO D | IO
CoROLLARY 7.1. If the theorem above is satisfied and
_ GO | GO | GO ..
(76) bo. )=S0 L GO L GO
then
EUOLAON = fi0) + 20
where D,(0) = Dy(0) = .-+ = 0 if and only if C,(0) = C,(f) = --- = 0.

To exemplify the above theory let us continue to call on the Poisson process
of several of our previous examples by considering f(4) = (N(T)/T)* as an
estimator for 23. In this event one obtains

o = (MY - (P 4 (D)
and
o= (P) - LR 2OD)

Equation (7.8) demonstrates quite vividly our earlier comment regarding
the manageability of J_®[ £(6)], and thus it is clear that (7.3) may be somewhat
misleading in this respect. Simple calculation shows

(7.9) Efd =2+ 38 1 A

(7.10) E[L(f))] = 2 — L,
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and
(7.11) E[J.2(fi2)] = 2.
Moreover
bl 3121 (2 ) _32—2624_2{ 1_2 i
E[{J.[f(D] — 2¥] — E[V.2[f(A)] — #Y] = T Tt

which is positive for 2, T > 1 and hence the mean square error in J_®[ f(1)]
isless in this case than the mean square error in J_[ f{4)] which can be shown to
be smaller than the mean square error in f(4). The example is of course rather
artificial but it does dispel the misconception, which one has a natural tendency
toward, that the J_®-estimator will always induce too much variability.

In order to complete our development of J_®[f(f)] to the same level as
J[f()] we list two final results. The first establishes (as does Theorem 5.2
for J.[ f(f)]) the range of the order of the bias for which one might expect
JP[f(0)] to reduce bias and the second establishes the asymptotic normality
theory for J_®[ f(6)].

THEOREM 7.2. If the conditions of Theorem 7.1 are satisfied and there exists
a k > 0 such that
lim,_, T*(9, T) = C(0) + 0, o0,
and
lim, .. [T"“ PB(T, 9) ]
oT?
exists, then
(i) ifk =2ork =1, then J”[ f(f)] L.O.B.E. f(f)
(ii) ifk < 3, k # 1,2, then J [ f(f)] B.S.O.B.E. f(f)
(iii) if k = 3, then J_[ f(6)] S.O.B.E. f()
and
(iv) if k > 3, then f(0) B.S.0.B.E. J_®[ f(0)].

THEOREM 7.3. Let f have a bounded third derivative in a neighborhood of 6 and
suppose the conditions of Theorem 6.4 are satisfied. Then

(7.12) J”(Z)[{I(é)] —SO ., 0,
{Zaer NS — «/T) — fOT}

as T — oo.

8. The e, -transformation. In the previous sections we have considered the
jackknife from its original conception by Quenouille through several modifica-
tions until finally establishing the J_.-estimator as an extension of this concept
to stochastic processes. In this section we will introduce a transformation
which has been studied rather extensively in numerical analysis. We will refer
to it as the e,-transformation and point out the manner in which our develop-
ment of the jackknife is related to this transformation and its extensions.
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DerINITION 8.1. Let S, be a sequence of real numbers defined by

(81) Sn = Zﬁ:l a, -

Then we define the e,-transformation of S, by

(8-2) e(S,) = Sn = PSS,y
1 — p(n)

where

(8.3) o)y = o £ 1.
an—-l

The e,-transformation was first introduted by Aitken [3] in 1926 under the
name of the *-process, although its roots go back to the middle 1800’s with
Kummer. Considerable interest in the subject was stimulated in the 1950’s
from papers by Shanks [36] and Lubkin [21] which represent the first extensive
investigations of the transformation. The primary purpose of the e,-transfor-
mation is to increase the rate of convergence of slowly convergent sequences.
In fact, it was shown in [21] that if p(n) is an analytic function of n~' and
lim,__ o(n) #+ 1, then e,"(S,), where

(8.4) e"(S,) = ee, -+ e(S,),
—————
m  applications

converges more rapidly than e,”*(S,) to the same limit for every m for which
the quantity is defined. We demonstrate this effect by the following example
which was first given in [36].

ExampLE 1. Consider the expansion for = generated by the Taylor series
expansion of arc tan @, i.e.

(8.5) T=4 44—t

Direct summation of (8.5) requires in excess of 40 million terms to produce
the accuracy obtained below by repeated application of e, to the sequence of
partial sums, §,, generated from only the first 10 terms of (8.5).

S, e(S,) e’(S,) e’(S,) e'(S,)
4.0000000
2.6666667 3.1666667
3.4666667 3.1333333 3.1421053
2.8952381 3.1452381 3.1414502 3.1415993
3.3396825 3.1396825 3.1416433 3.1415909 3.1415928
2.9760462 3.1427129 3.1415713 3.1415933 3.1415927
3.2837385 3.1408814 3.1416029 3.1415925
3.0170718 3.1420718 3.1415873
3.2523659 3.1412548
3.0418396

OO AUNH WN=OI
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As mentioned already, due to results such as Example 1, much interest has
been stimulated in this area. Before we discuss the theory which resulted from
this stimulation let us point out one other aspect of the transformation, namely,
the fact that in many instances the original sequence need not converge for
the transformation to be effective. Only a sparse amount of theory exists with
regard to this aspect of the transformation but numerous examples can be
found to demonstrate it. We shall give such an example here since we shall
mention the statistical counterpart of this notion later.

ExaMPLE 2. Consider the series
log(3) =042 — 32+ @2 — 32 + ---

which arises by erroneously setting x =2 in the Taylor’s expansion of log (1 4 x).
The series diverges rather rapidly but note the effect of applying e, repeatedly.
This is given in the following table where the last figure is correct for log 3
to every digit shown.

n s, aS)  eXS)  e¥S)  eXS)  eXS)

0 0.0000000

1 2.0000000 1.0000000

2 0.0000000 1.1428571 1.0931677

3 2.6666667 1.0666667 1.1007092 1.0984266
4 —1.3333333 1.1288421 1.0974359 1.0986841 1.0986080
5 5.0666667 1.0666667 1.0994536 1.0985761 1.0986141 1.0986122
6 —5.6000000 1.1368421 1.0989008 1.0986346 1.0986114 1.0986123
7 12.6857143 1.0493507 1.0992921 1.0985862 1.0986128
8 —19.314286 1.1657143 1.0978997 1.0986254

9 37.574603 1.0031746 1.0994152
10 —64.825397 1.2391193
11 121.35642

One of the earliest results shown concerning e, was the fact that if S, is a
geometric series then e,(S,) = S for every n > 3. Thus e, was said to be exact
on geometric series. Note that

(8’6) Sn =85 - Zl?=n+1 a

and at least for geometric series a,/a,_, = X7 ,.1 8,/ v @, Thus we see,
by considering — > 7, ., @, as “bias” in the approximation S, that the jackknife
is the precise counterpart of e,(S,). This is clear when we recall that

(8.7) J(6) =
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where R = (n — 1)/n is the ratio of the biases in §, and §,_, when the bias in
8, is C(6)/n (the subscript # is included here for clarity).

Now the e,-transform was generalized in [17] by Gray and Clark (1969) to
the general form defined by

(8-8) T[S(n); 9(n)] = 20 1— _P(Zén?(zzzli(g(n))’

where g is an integer valued function selected so that the transformation is
exact on the type of series of interest. Thus the e,-transformation is obtained
by selecting g so that the transformationis exact on geometric series just as
the jackknife is obtained from the generalized jackknife by selecting R to remove
bias of the form C(#)/n. By noting that )

1 S'n—l S'n

AS, , AS,

(8.9) e(S) =
s, s,

AS, = S, — S,_;, a natural extension of e, is the e,-transformation defined by

S'n—k Sn—k+1 tre S'n
AS'n—k A‘Sn—k+1 te ASn
A Y

(8-10) el(S,) = SI"-‘ Afﬂ S "1—”" .
ASn—k A‘gn—k-\‘-l te A‘Sn
AS, , AS, CAS, .

This transformation greatly extended the range of useful application of the
basic notions set forth by the e,-transformation. Indeed, it was shown in [36]
that if S, is the nth partial sum of a power series expansion of a rational
function, then e, is exact for some k. Further results in this area were then
obtained by P. Wynn (1956), who established an efficient algorithm for comput-
ing e,(S,). This algorithm is referred to as the epsilon algorithm and most
current studies concerning e, are related to it.

A reasonable application of the e -transformation would appear to be the
problem of evaluating improper integrals. As was pointed out by Gray,
Atchison, and McWilliams (1971) in [16] one approach to this is as follows.
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S

Fic. 1.
Let
(8.11) KT; a) = \! f(x)dx
and suppose F(co; a) is finite. Now partition the interval [a, T as shown in
figure 1. Then

(8.12) F(T;a) = S ah) = S,()
where

(8.13) a,h) = F(a + ih; a) — Fla 4+ (i — 1)h; a),
and

(8.14) F(osa) = Y2, a,h) .

Thus one could apply e, to the sequence S, (k) in hopes of obtaining a better
approximation to F(co; @). With a slight bit of reflection one can see that
forming J, [ f(B)] in Section 3 was a direct analogy of applying e,, in the fashion
above, to continuous data.

In general, it was found that e,(S,(k)) was often an increasingly better ap-
proximation as h — 0. This suggested considering the lim,_, e,[S,(4)] which
was done in [19] and extended to e,[S, (k)] in [16]. These extensions resulted
in a transformation defined as follows. Let T be fixed and # = T/n. Then
define the B, -transformation by

F foofo .. S
f fo o .. f(k)

(k—1) £k fUHD , ,, flak=1)
(8.15) B,[F(T; a)] = lim,_,e,[S,(h)] = ! fmf f(z{ . f(£ &

(2) @) ... fk+D
o f f

:f(k) Sl f(ak—n r
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where f*) denotes the kth derivative of f.

The result (8.15) has been shown to be of value and has yielded a number
of new approximation functions for tail probabilities. See [18], [19] for
example.

The B,-transformation does possess an exactness theorem just as the previous
transformations we have mentioned. That is, it has been shown that if /()4
e, f () 4+ + -+ + ¢, f(t) =0, then B,[F(T; a)] = F(oo) for all T = a and all
k = n. This and several other closely related results are established in [16]
where the properties of B,[F(T; a)] are studied in some detail.

At this point, the correspondence between the J_-estimator and B,[F(T; a)]
as well as the correspondence between the J,,¥-estimator and B,[F(t; a)] should
be clear, and our comparison is complete. We summarize our comments in
the following tabular form.

SEQUENCE TO SEQUENCE CORRESPONDING ESTIMATOR
TRANSFORMATION

1. The e-transformation. 1. The jackknife statistic, J(0).

2. The generalized e,-transformation. 2. The generalized jackknife statis-
tic, G(0).

3. The e, -transformation. 3. The higher-order or iterated jack-
knife, J®(6).

4. BJ[F(T; a)). 4. J_[fi(6)] and J_ [ f()].

One should note that the statistical analogy for B,[F(t; a)] has only been
established for k = 1, 2. Undoubtly this analogy could be obtained for all k
but in view of the complexity of the form of J_®[ f(#)] this does not appear
feasible.

9. Concluding remarks. In the previous section we have tried to point out
the manner in which the development of the jackknife, generalized jackknife,
etc. is directly analogous to the development surrounding the e,-transformation.
At times, our analogies may have seemed vague but this was necessary in order
to eliminate an extremely lengthy discussion. In any event, the analogies are
there and sufficient references have been included for those who feel some
further insight is necessary.

One point which was mentioned in Section 8, but not pursued, is the cor-
responding notion in jackknifing to that of summing divergent series by means
of the e,-transformation. We shall make some comments concerning that sub-
jectnow. First, it should be noted that no statements regarding the consistency
of G@,, 0,, - - -, 8,,,) have been made. In order to consider this property let
us restrict our discussion to G(f) and the reader can easily extrapolate our
remarks to the general case.

It is quite clear if @ is consistent for 4 and lim,_. R # 1 that G(é) is also
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consistent for /. However, as we have observed e,(S,) may converge even
though S, diverges. Thus it seems reasonable to expect that G(6) may be
consistent for § even though § is not consistent for #. No theory has been
established with regard to this conjecture and that is not our intent here.
However, we include the following trivial example for the purpose of stimu-
lating some thought in this area.

Consider § = 37, (x; — %)*as an estimator for ¢? (admittedly a foolish thing
to do). Obviously 4 is not consistent, but taking R = (n — 2)/(n — 3) in G(6)
gives G#) = Y7, (x; — %)}/(n — 1). Hence by knowing the form of the bias
in 6 we were able to generate the consistent-unbiased estimator G(4). 1t would
seem that the notion of generating consistent estimators from inconsistent esti-
mators is the corresponding problem to summing divergent series, and that
some study making use of G(@) for that purpose would be interesting. A word
of caution, however, should be injected here. Thatis, iflim,_., R = 1t is possi-
ble for G(f) to be inconsistent even though 6 is consistent. This need not alarm
us too much. For example J(9) falls in this category (i.e. lim,_., (n — 1)/n = 1)
but in practice it has caused no real difficulty. Nevertheless it is a possibility,
as the following example demonstrates. Suppose 8, = % + (—1)"/n. Then
clearly 4, is consistent for E[x] and b(n, 6) = (—1)*/n. However J(0,) =
% + 2(— 1) and hence is not consistent. Note that taking R = —(n — 1)/n
in G(f) gives G(A) = % and hence in this case we see the source of the difficulty
with J(@) lies completely in the fact that R = (n — 1)/n is a very unsatisfactory
choice for R. For the e-transformation such behavior has essentially been
characterized (see [17]) however no nontrivial results are known for G(d) in
the corresponding situation, i.e. lim, ,, R = 1.

As a final remark let us make some comments concerning the assumed form
of §(a, b) in Sections 4 through 7. It would seem that this form may be un-
necessarily restrictive, but there are certainly a large class of problems to
which the resulting developments apply. Moreover, the results of those sec-
tions should serve as a guide for further extensions. One of these extensions,
which seems most obvious at this stage, is to consider the 9i’s as a random
sample and assume that (‘7(11, b) is a U-statistic defined on that sample. There
obviously would be some difficulty in obtaining this extension, but a close
examination of this paper suggests it is feasible. Moreover, such an extension
would certainly greatly enlarge the class of problems to which the theory of
jackknifing stochastic processes is applicable and thus be of some value.
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