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STRONG RATIO LIMIT THEOREMS
FOR MARKOYV PROCESSES!

By MICHAEL LIN
Hebrew University of Jerusalem

Let P be a conservative and ergodic Markov operator on
Lo(X, Z,m) (where m(X)=1). It is proved that if for 4e ¥ with
m(A) > 0and ¢ € m a finite measure with p(A) > 0 limy_,eo (g, Pr+11p>/
g, Pr14)> exists for every Bc A4, then P has a ¢-finite invariant
measure 1 and there is a sequence Ax 1 X with 4, = A such that for
0 = f, g€ Lo(Ak) {pts P fD[<pt, P g> — <4, fDI<2, g>. The result is used
to study the convergence of {u, P»f>/<y, Prg)> for p,n < m, with ap-
plications to Harris processes and strong mixing point transforma-
tions. An analogous result for a positive contraction of C(X) is given.

1. Definitions and notation. Let (X, X, m) be a measure space with m(X) = 1.
A Markov process is a positive contraction Pon L,(X, Z, m). P will be written
to the right of its variable, while its adjoint, defined in L_(X, Z, m), will be
denoted by P and written to the left of its variable. Thus (uP, f> = (u, Pf)
for fe L., ue L,. Palsoactson the space of finite signed measures absolutely
continuous with respect to m: pP(A4) = § P1,dp for p & m, Ae Z. The same
formula defines pP for a o-finite positive measure ¢  m. A positive o-finite
measure g is invariant if pP = p. The process is conservative if m(4) > 0
implies 3=, P"1,(x) = co a.e. on A. The process is conservative and ergodic if
m(A) > 0 implies ;> P*1,(x) = oo a.e.

In this paper (Section 3) we study the convergence of ratios of the form
CpP, fH[{uP, gy and {pP, f5[{nP", gy, where p, 7 & mand0 < f, g e L,
generalizing Orey’s strong ratio limit theorem [12] to more general conserva-
tive and ergodic processes.

For 0 < a« < 1in L_ we define the operator T, by uT,(x) = u(x)a(x), so
T,f(x) = a(x)f(x) and pT,(A4) = {p,al,). For «a =1, we denote T, by T,.
The complement of a set 4 is denoted by 4’. For 4 € Z we denote by 4* the
set {x: 31~ P"1,(x) = co}. If m(4) >0, we define P, =T, >, (PT,)"PT,.
If P is conservative, then P, defines a Markov process in L,(4, Z, mT)), see
[4], Lemma VI. B.

THEOREM 1.1. Let P be a conservative Markov process, and Ae X with
m(A) >0 and X = A*. If p & m is a finite measure satisfying nP, = p, then
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A= 2w o (PT )" is a o-finite measure weaker than m and iP = 2. If 2is a
o-finite measure satisfying iP = 2 and 0 < A(A) < oo, then y = AT, satisfies
pP, = p.

Proor. The first part is proved in [4] Theorem VI. C. The second, is

proved in [8], Lemma 3.2 (reading T, instead of /,. The proof does not use
the topological assumptions there).

LEMMA 1.1. Let P be a conservative and ergodic Markov process and A ¢ T with
m(A4) > 0. If p K mis a finite measure such that for BC Alim,__, >~  nP"(B)/

Y, pP™(A) exists, then there exists a o-finite invariant measure A ~ m,
0 < 4A4) < oo.

The limit serves to define a measure on 4 which is invariant for P, as in
[4], page 72.

2. Harris processes.

DEFINITION 2.1. An ergodic and conservative Markov process is a Harris
process if for some n > 0 there exist a £ x T measurable function 0 < ¢(x, y),
q # 0, satisfying for every 0 < fe L,

(*) § 9(x, )f(y)m(dy) < P*f(x) a.e.

We denote by g, the maximal function g¢ satisfying (*) for n = k, by Q, the
integral operator corresponding to ¢,. (See [4] Chapter V.)
We define, for a Harris process,

S={4eZ:3k >0inf, ., q.(x,y) > 0}.

It has been proved by Levitan [13], Theorems 2.1 and 2.2 that there is a
sequence 4; € S with X = |J 4, (mod m) and if P is aperiodic then S is closed
under the formation of finite unions. (The fact that P is a Harris process is
not affected by changing m by an equivalent o-finite measure, but S depends
on m.) It is known that a Harris process has a o¢-finite invariant measure
A4 ~ m. We assume that 2 replaces m.

3. Strong ratio limit theorems. In this section we look for conditions which
imply the convergence of (uP"*", f5/(uP*, gy when p & m, f,ge L. Our
main result is Theorem 3.1, and its method of proof is a direct generalization
of Orey’s [12]. In Theorem 3.1 P is not necessarily Harris, and we give an
example of a point transformation satisfying its hypothesis and preserving an
infinite o-finite measure. We do not assume the existence of an invariant
measure, which is shown to exist under the assumptions of Theorem 3.1.

The main theorem is then applied to study the convergence of (pP", >/
{nP", g) with p, » & m probability measures and f, ge L,,. The strong ratio
limit theorem (Theorem 3.4) is then used to yield a result about strong mixing
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processes with a finite invariant measure (which, when P is induced by a
point transformation, are not Harris processes but have the strong ratio limit
property).

Our methods are entirely analytic and can be extended to processes on a
topological space, using the results of [3], [11]. (See [6].)

The application of the results to Harris processes was suggested by the
referee’s comments.

LemMmA 3.1. For 0 < a < 1define 8 =1 — a. Then for every integer n = 1
P* = 3121 PIT(PT,)"i'P + (PTy)"P.

Proor. By induction: For n = 1 the sum is zero, having no terms. Use
the induction hypothesis and T, + T, = 1.

THEOREM 3.1. Let P be a conservative and ergodic Markov process, and let
v L m be a finite measure. If AeZ with u(A) > 0 is such that for every
B C Alim,__ pP"*'(B)/pP"(A) exists, then there exists a o-finite invariant
measure A equivalent to m, and there is a sequence A, 1 X, with Ay = A and
0 < 4(4,) < oo, such that

fm  <EPTLY _ o
TP, ) {4 9>

Jor every integer r and f, g € L., (A,, Z, m).

ProoF. Since P is ergodic and conservative, Y=, uP*(4) = co. Thusit is
easy to check that the conditions of Lemma 1.1 are satisfied, whence the
existence of 1 follows. Furthermore, the construction shows that necessarily

lim, p:P*(B)[uP™(4) = A(B)|A(A) .
By a standard approximation argument we obtain:

lim, (uP™, hy[pP(A) = (2, hy|A(A)  he L(A).

Hence
{peP™*7, hy|pP™(A) — (A, h)[A(A) for heL,(4),
since '
pP" i (A)/pPY(A) — 1.  (ris a positive integer.)
We now define the sets 4,. P is ergodic and conservative, so

Zo(PT ) PT,1 = 1a.e. — m[4], (3.2) and (3.3). Using Egoroff’s theorem
we can find a sequence {B,} of sets, B, T X, such that on B, 2, (PT, ) PT,1
converges uniformly to 1. If C, 1 X with 2(C,) < oo, we put 4, = 4 and
4, = (B, NC)UA. We now proceed to the proof: Let r be fixed, and
1 < N <n. Using Lemma 3.1 we have
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a,,(f) = {peP™, f|pP(A)
= [ T3~ PP i T(PTLYPSY + (i, (PT )7 P pP™(A)
= by (f) + Cyur(f)
with b, (f) defined as

by (f) = {uP (A} Ty, P =S T (PT,)  Pf) .
T (PT,) Pfe L.(A) whenever fe L (X, Z, m), so we may use the beginning
of the proof to obtain (¥, r are fixed):

lim, by, (f) = 2o <2, T(PT,) Pfy|A(A) .
By Theorem 1.1 47T, is invariant for P, and 2 = 33, (AT,)(PT,.)?, by unique-
ness of the invariant measure (P is ergodic). Hence

limy_. lim, . by, (f) = <4 Bf)|A(A4) = (4, 5 (4) .

Therefore a,,(f) — {4, f)/A(4) if and only if lim,__lim,__ supec,,.(f) =0
(assuming f > 0). At the beginning of the proof it is shown that a,,( ) —
{4, f>|4(4) for fe L.(X) supported in 4. Hence we have only to show the
same convergence for fe L.(X) supported in B,. Thus we assume 0 < fe
L.(B,), and it is enough to show a,,(f) — (2, f)/A(4). By the definition of
the B,’s, there is an /and constant M such that (£ = 0)f< M YZ (PT,)'Pl,.
Thus:

M7 eyu(f) = (s T3Zhas PIT(PT, Y PYY + u, (PT,.) PYY} MuP(4)
<t Titha PPOTLPT, ) P TL, (PT,) PLYuPY(A)
+ <ty (PT,) P Ty (PT,.) PLYJuP™(4) .

The P standing before summation on i will be represented as P = PT, + PT,..
We also use .7, (PT, ) Pl, < 1 and obtain:

M7 ey(f) = Dieo Kt D3 PP T(PT )7+ P15 nP(A)
+ s ZiZhn PIT(PT ) Py pP™(A)
+ Lico (s (PT)" M PLS P (A) + (g, (PT )" P1,)[/pP"(A)
= Zico Casirnmira(1a) + cym(ly) -
Sincea,(1,)—1,lim,limsup,_.cy,,(1;)=0. Hencelim,__limsup,_.cy..(f)=
0. We have proved (uP"*!, f5/pP™(A) — (2, f>/X(A) for fe L (A4,), and the
theorem now follows directly, since pP"+(4)/pP™(A) — 1. []

REMARK. Krengel’s Example 3.1 in [10] shows that the assumptions of
Theorem 3.1 do not imply that {uP", fy/uP™(A) — (4, fY/A(A) for every
Jfe L.(X) supported in a set of finite Z-measure. In that example P is a
Markov chain on {0, 1, 2, ...} having the strong ratio limit property, s is the
Dirac measure at 0, 4 = {0}, f is the characteristic function of a set of finite
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invariant measure, and lim,_,_, sup {uP", f)[uP"(4) = co.

ExaMpLE 3.1. The conditions of Theorem 3.1 are satisfied for a Harris
process of period 2 and some p. (However, with initial distribution y the
chain is aperiodic).

Let P be the symmetric random walk on the integers with P;;,, = 4. Define
A=1{0,1} and g = L (d, + 0,) where d, is the Dirac measure at i. The
invariant measure gives mass 1 to each i. P has period 2, but simple calcula-
tions show:

#sz(A) — (2;:&)2-—21» ; #P2m+1(A) — (me+l)2-—2'm-—l
B = (0) = uP™B) = } ()25 pP™(B) = § ()27
and conditions of Theorem 3.1 are easily checked.

For a Harris process the sets 4, can be identified, as done by Jain. We
shall need the following lemma.

LeMMA 3.2. If Ae X then for every j = 1 Y32 (PT,)"P1, = P'1,.
Proor. By induction. For j = 1 we have equality.
Pl = PR (PT )" Pl = 24 (PT)" PL,
+ PT, 232, (PT,)"Pl, < i, (PT,)"Pl, + P1,.
The last inequality follows from Y %_, (PT,)"P1, < 1 (see [4] Lemma VI.B).

COROLLARY 3.1. Let P be an ergodic Harris process, and let A € S satisfy the
conditions of Theorem 3.1 with the measure p.
(a) If P is aperiodic, then for G, H € S and any integer r
lim, .. xP* (G)/ P (H) = AG)/A(H) -
(b) If P is periodic and A C Fe S then the above convergence holds for
G,HCF.
Proor. (b)= (a) since for P aperiodic 4 |J G|J H = Fe S by Levitan’s
[13], Theorem 2.2.
We prove (b). Fe Sso there existane¢ >0 and k > 0 such that g,(x, y) = ¢
for every x, ye F. By Lemma 3.2
E (PT )" PLy(x) = P*1,(x) = Q. 1,(x) = § qu(x, )1 ((»)A(dy) -
If x ¢ F the right-hand side = ¢4(4) since 4  F. Thus
k1 (PT, )" Pl = cA(A)]l,
and F has the property required from B, in the proof of Theorem 3.1.
ReMaRrks. (1) If Pis Harris and given by a transition possibility, (i.e. uP

is defined for every p), then if 4 and 4 are as in Theorem 3.1 (even if 1 | m)
then the corollary may be applied. This is because for Harris processes
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AA4)>0= 3~ (PT,)"PT, 1(x) =1 for every x,

Lemmas 3.2, 3.1 hold everywhere and and the proof is the same.

(2) Corollary 3.1 is stronger than Levitan’s result [13], Theorem 3.2, where
it is proved (for P induced by a transition probability) only for x a Dirac
measure of a point g € F.

(3) Corollary 3.1 does not follow from Jain’s results [9], as Jain treats
only the aperiodic case and Example 3.1 shows that the periodic case also
happens.

ExampLE 3.2. The conditions of Theorem 3.1 are satisfied for a point
transformation preserving an infinite measure (so it is not a Harris process).

Let X=1{0,1, -.-} and let P be a conservative and ergodic Markov chain
on X preserving an infinite measure 1 and having the strong ratio limit
property. Let Q be the infinite product space [[;_, X, Z the product s-algebra
and T the shift transformation on Q. T is conservative and ergodic and
preserves an infinite o-finite measure [14] Section 4. Take 4 = {0} X X X
X, ---, and p the probability measure on Q corresponding to the initial prob-
ability concentrated at 0. Using (4.3) and (4.1) of [14] together with the
strong ratio limit property of P it is not difficult to show that x, T and 4
satisfy the conditions of Theorem 3.1.

If P is ergodic and conservative with invariant measure 4, then the adjoint
process P* is defined, is conservative and ergodic and has the same invariant
measure [4], Chapter VII. If 4 ¢ X satisfies 0 < 2(4) < oo, we wish to apply
Theorem 3.1 to P and P* simultaneously. In order to do so, we assume that
the conditions of Theorem 3.1 hold for P and P*. Since going from P to P*
interchanges the roles of functions and measures, the conditions for P* can be
stated in terms of the action of P on measures supported in 4 (with bounded
Radon-Nikodym derivatives with respect to 2).

Combining all the conditions together in terms of P we obtain the condi-
tions of the following theorem, from which we derive Orey’s theorem. In
order to simplify the statement of the theorem we drop the fact that the
conditions need hold only for measures » supported in 4 with dp/du bounded.

THEOREM 3.2. Let P be a conservative and ergodic Markov process with
invariant measure A, and let Ae¢ X with 0 < A(A4) < . Let p £ 2 be a prob-
ability measure supported in A such that for every probability measure 7 supported
in A

lim,__, »P™**(B)/uP"(A) = A(B)/A(A) for Bc 4.
Then for every finite measure v K 2 there is a sequence of measures v; | v, satisfy-
ing
M, . v P, [ pP™(A) = vi(X) <4, [H]X(A)
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for every fe L (4,). ({4} is defined in Theorem 3.1.)

SKETCH OF PROOF. The conditions of the theorem imply that p can be
replaced by any probability measure supported in 4, so we may assume
dplda = A(A)7'1,. Also, every y  m supported in A clearly satisfies the
conditions of Theorem 3.1.

For fe L.(A,). Let i be defined by djz/d2 = f. Put dy,/di = A(B)™1,.

ﬂP*n+1(B) _ S Prntl led/{ _ ](B) <0BPn+1, f> N Z(B)

fAP*"(4) § P*"1,.fdA AA) P, " A(A)
for B C 4, soby Theorem 3.1 applied to P* we have B, 1 X with (B,) < oo
and

CAP*™ L uy [ pP*™, v)y —, (4, ud[{2, V) for 0 <u,velLB,).
({B,} depends only on 4.) To conclude the proof take v = dp/d2 and

u; = ‘Zf eL.(B) withu;1 % and use

uP, fH[pP™(A) — L4, [HI(A) -

COROLLARY 3.2. Under the assumptions of the previous theorem, there exists
a sequence D, 1 X, D, = A, A(D,) < oo such that

lim, M@ P fdx _ Cauy(a, f)
TS v-Prgdd (4, 0)<A g)

for every u, v, f, ge L (D,) and integer r.

Proor. We define D, = 4, B,. All the sets depend only on 4. If
dv = udZ and dr = vd24, then from the previous proof, we have

Subrrfdd _ (P f) ppnera BB [ e f) (P g)
§oPrgdi  (pP = f) T (uPi ) (pPr gy (P g)

which tend to

UX) KAL) _ KA [
(X)<A 9> 40X 9)
COROLLARY 3.3. Let P be an aperiodic Harris process given by a transition

probability, and let Fe S satisfy Jain’s condition (F) [9]: There exists a point
0 € F such that for xe F and E C F

lim,__, P**(x, E)/P"(0, F) = A(E)/A(F) .

Then for any two probability measures 7, v & A with dn|d and dv|dA bounded with
supports in S and any G, He S

lim,_, vP""(G)/nP*(H) = XG)/A(H) .
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Proor. We first show the existence of a set 4 C F satisfying the conditions
of Theorem 3.2.

Condition (F) implies P*+!(s, F)/P*(#, F) — 1 on F so by Egoroff’s theorem
there is a set 4 C F on which the convergence is uniform, and especially

Supfnzno SupzeA P”-H(x, F)/Pn(03 F) < oo .

Hence for p a probability measure supported in 4 and B — 4 we obtain (by
Lebesgue’s theorem)

lim,; uP*Y(B)/P~8, F) = lim, §, P*\(x, B)/P~(#, F)u(dx)
= {, {lim, P*(x, B)/P~(0, F))u(dx) = X(B)/A(F) .
Hence 4 satisfies the hypothesis of Theorem 3.2.

Since P* is also an aperiodic process and the kernels are given by
9:*(%: ) = qu(y, x) [4], Chapter VII, we have S(P) = S(P*). For given
G, He S we can choose 4, to include 4 |J G|y He S (see Corollary 3.1),
hence the required result now follows Corollary 3.2.

CoROLLARY 3.4. (Orey’s Theorem [12].) Let X be the set of nonnegative
integers and P} the n-step transition probabilities of an ergodic conservative
Markov chain.

If lim, ., PGtV [P = 1, then for every i,j, m, h > 0 and integer r Pt [ Pim) s
;|2 where {2;} is the invariant measure of the chain.

ReMARKs. (1) Corollary 3.3 does not follow from [9] as it follows only
from condition (F). Orey’s theorem follows directly.

(2) If P is an aperiodic Harris process without a transition probability
condition (F) is modified as follows (and Corollary 3.3 applies): There exists
a probability measure s, € 2 supported in F such that for E ¢ F

lim,_., P**1,(x)/py P*(F) = A(E)/A(F) a.e.on F.

(3) Krengel’s Example 3.1 of [10] cited above shows that there are
probability measures v for which lim sup, _,,, vP"(4)/uP"(A) = oo, even when
the conditions of Theorem 3.2 are satisfied: Take for P the adjoint of that
example, dv/di = f|[{4, f), A = {0} and dp/d2 = 1,/i(4). Thus

vPr(A) _ NA) | (fP 1y APy
pPYA) KAy KLPY 15 KA KL, P 1)

(Here (u, f) = §ufd?). The limsup of the right-hand side is oo, as the
adjoint P* is the process of Krengel’s example.

THEOREM 3.3. Let P, 4, A and p satisfy the hypothesis of Theorem 3.2, and
{4} as in Theorem 3.1. If v K 2 is a probability measure satisfying
limsup,_, vP"*(A)/pP"(A) < 1, then for every f, g € L.(A,) and integer r
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lim, ., uP™™7, [P, g) = <4 [H[<4: 95 -

Proor. Itisenough toassume g = 1, and r = 1 by virtue of Theorem 3.1.
Let v; 1 v be the sequence of measures defined by Theorem 3.2.

liminf _ SN0 S qim PN vi(K) <A S)
TP d) S 1P () A(4)

Letting j — oo lim inf (P, f5/uP™(A) = {4, fH[A(4). If0<f<1isin
L_(A), then this last result is applied to 1, — f, and using the hypothesis

lim supnﬁww — lim Supn_..» { lJP”‘H(A) _ <an+1, lA _ f>}

n—oo

uP(A) #P(A) 1P (d)
<1 liminf P L= oy A L= _<AS)
o pPm(A) A(4) A(A)

Hence (uP", f3[uP"(A) — (A, [Y|X(A) for feL(A4). Since {uP"*, [
[pP"(A) — {4, f)/A(A), we may repeat the proof of Theorem 3.1, with v in
the numerator instead of 4, and the result is thus extended to each 4,.

REMARK. Our Theorem 3.3 is similar to Jain’s result [9], Theorem 1, but
we are not concerned with Dirac measures, for which P is not necessarily
defined, nor do we assume condition (C). Our proof is entirely analytic,
although Lemma 3.1 has a probabilistic meaning. The next theorem is similar
to [9], Theorem 3, with application of the above remark.

THEOREM 3.4. Let P conservative and ergodic Markov process with invariant
(o-finite) measure 2, and let A € X satisfy 0 < A(A) < oco. The convergence

lim,_, (P, [P, g) = (4 [5[<4: 95

holds for every integer r, 0 < f, g € L.(A,) and any two probability measures v
and 7 weaker than 2 if and only if there exists a probability measure p supported
in A such that:

(I) p satisfies the hypothesis of Theorem 3.2.
(IT) For every probability measure v & 2

lim sup, .. vP"(A)/#P™(A) < oo .

Proor. Take any probability measure u supported on 4, then (I), (II) are
clearly necessary (4, = 4).
Sufficiency: Let g satisfy (I) and (II), then pP"(4) > 0 for n greater than
some fixed N (since pP"*(A)/uP"(A) —1). For n =z N we define ¢,(x) =
P*1 ,(x)/uP(A). We identify L,(1) with the space of measures € 2 and con-
sider ¢, as a functional on L,(4). By (II) {v, ¢,>:n = N} in bounded for
every v € 4, and thus the functionals on L,{¢,: n = N} are bounded at every
element in L,(2). By Theorem 3.2 lim,_.<v, ¢,> = »(X) for v in a dense
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subspace of L,(4). Hence the conditions of Theorem II. 3.6 of [1] are
satisfied, and lim (v, ¢, > exists for every measure v, and by continuity of the
limit is v(X). Hence if v is a probability measure, it satisfies the hypothesis
of Theorem 3.3 (remembering pP"+(4)/nP*(A) — 1). This clearly implies
the needed convergence. (]

ReMARK. Condition (IT) can be replaced by:
(IT)" There exist integers N and M such that

Pl (x)/uP"(A) < Ma.e. — 2 for n=N.

(1)’ = (II) by integrating with respect to v, and (1I) = (II)’ by the principle
of uniform boundedness (the {¢,} functionals are bounded at any point, and
thus {||¢,|]: » = N} is bounded).
It is condition (II)" which appears in [9], Theorem 3. Jain’s theorem can be
proved as a corollary. We omit the rather lengthy proof.

We now show an application of Theorem 3.4 to non-Harris processes.

DeriNITION 3.1.  An ergodic Markov process P with finite invariant
measure 4 ~ m (and we assume A(X) = 1) is mixing if (P"1,, 1,5 — A(B)A(A)
for every A, Be Z. (P is conservative by [3] page 38.)

THEOREM 3.5. Let P be an ergodic Markov process with A an invariant Prob-
ability measure m. If there exists A€ X with 2(A) > 0 such that {(P"1,,1,% —
A(B)? for every B C A, then P is mixing.

Proor. If B C A4 then the condition implies {(P"(1, — A(B)), 1 ;, — A(B)Y —0
so by a theorem of Foguel [2] P"1, — A(B) weakly in L,(2) (P is a contraction
of L,(4) by [4] Chapter VII). Hence for any y « 2 a probability measure if
dpjdie L, then pP"(B) — A(B). By standard approximations this is true for
any p. Fix p supported in 4, and the conditions of Theorem 3.4 are clearly
satisfied. Hence we have a sequence A4, 1 X such that for any v « 2 and
E c A, we have (v(X) = 1)vP"(E)/uP"(A) — AE)[A(A). pPY(A)— A(A) so
vPYE) —» AE). 1If EcZ, put E, = E 4, so E, 1 E. Suppose dv/dd is
bounded. Standard approximations in L, yield vP"(E) — A(E). Take for
FeZdvjdi = A(F)™1, s0

(P1g, 1,5 = A(F)wPY(E) — AE)A(F) .
Thus P is mixing.

REMARK. The last theorem applies also to point transformations. If
A(X) = oo then no point tranformation satisfies the conditions of Theorem
3.4, as can be shown using Corollary 1 of [7].
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