MOMENTS OF OSCILLATIONS AND RULED SUMS¹

BY HOWARD H. STRATTON

SUNY, Albany

0. Introduction. Let $\{X_i\}$ be a sequence of independent identically distributed random variables for which $EX_1 = 0$ if it exists and $S_n \equiv \sum_{i=1}^n X_i$. Let $\{b(n)\}$ be a sequence of real numbers and $N_{\infty}(b(n)) \equiv$ number of times $|S_n| \geq b(n)$.

In [4] Slivka and Severo show that if $b(n) \equiv \delta n$, then for $\beta \geq 1$, $E(X^{\beta+1}) < \infty$ implies $E[N_{\infty}^{\beta}(\delta n)] < \infty$ for all $\delta > 0$. Their proof of this result depends heavily on a paper of Katz [1]. We will show here how the use of symmetrization and a fuller use of the above mentioned paper of Katz, not only gives the converse of the above result, but more generally gives:

RESULT 1. For $\beta \geq 1$ and $\alpha > 0$; $E(X^{(\beta+1)/\alpha}) < \infty$ iff $E[N^{\beta}(\delta n^{\alpha})] < \infty$ for all $\delta > 0$.

In an earlier paper [3], Slivka showed that if $EX_1^2 < \infty$ and $EX_1 = 0$, and if one chooses the sequence $\{b(n)\}$ that appears in the law of the iterated logarithm, i.e., $b(n) = [(1+\delta)2n\log\log n]^{\frac{1}{2}}$, then $N_{\infty}(b(n))$ has no moments for all $\delta > 0$. A perusal of the proof used shows that he actually proved that if $b(n)/(2n\log n)_n^{\frac{1}{2}} \to 0$, then $N_{\infty}(b(n))$ has no moments for all $\delta > 0$. We will show here that the sequence $b(n) \equiv (2(1+\delta)n\log n)^{\frac{1}{2}}$ is more sensitive to the moments of $N_{\infty}(b(n))$ than any of the above mentioned sequences. More precisely:

RESULT 2. If X_1 is symmetric, if $E(X^{2m}) < \infty$ with $m \ge 1$, and E(X) = 0, then:

$$E[N_{\infty}^{\beta}(2(1+\delta)n\log n)^{\frac{1}{2}}] < \infty \quad \text{if} \quad 1 \leq \beta < \min(m, 1+\delta);$$

= \infty \text{if} \quad \beta > 1+\delta.

Finally we will let (): $I^+ \to 2^{I^+}$, where (n) is a subset of I^+ with n elements, be called a rule and its corresponding ruled sum be defined by $S_{(n)} \equiv \sum_{i \in (n)} X_i$. We will show the moments of the function corresponding to $N_{\infty}(b(n))$, very much depends on the "rule" ().

1. On S_n . The only if part of Result 1 and the boundedness part of Result 2 are obtained by using the argument of Slivka and Severo in [4], with the following modifications:

RESULT 1. Use Theorem 3 instead of Theorem 1 from Katz [1].

RESULT 2. Incorporate the fact

(***)
$$E\,|X|^{2+\varepsilon} < \infty \quad \text{implies} \quad \sup_x |\Phi(x) - P[S_n \le x]| < n^{-\varepsilon/2}$$
 for all $x>0$,

Received September 29, 1970; revised November 4, 1971.

¹ This research was supported in part by N.S.F. Grant GP-19225.

where $\Phi(\cdot)$ is the cumulative normal distribution, along with Theorem 3 of Katz [1].

We will now establish the other parts of Results 1 and 2.

Let I_A be the indicator of the event A, and let

$$N_m(b(n)) \equiv \sum_{j=1}^m I_{\lfloor |s_j| \leq b(j) \rfloor}$$
.

 $N_m(b(n)) \uparrow_m N_\infty(b(n))$ and thus by the monotone convergence theorem, $\lim_m E[N_m{}^\beta(b(n))] = E[N_\infty{}^\beta(b(n))]$ for all $\beta > 0$. (Convergence to ∞ is allowed.) Let $X_i{}^{(s)} = X_i - X_i{}'$ be a symmetrization of X_i ([2] page 247) (We adopt the convention that all quantities relative to $X_i{}'$ and $X_i{}^{(s)}$ will be denoted by ' and 's' respectively.)

Lemma 1. Let β be a positive integer, then for $b \ge 0$,

$$\begin{split} 2^{\beta+1} E[N_m{}^{\beta}(b(n))] E[N_m{}^{\beta}(b(n)) I_{[|S_m| \ge b]}] \\ &+ 2 E[N_m{}^{\beta}(b(n))] P[|S_m| \ge b] \\ &\ge E[(N_m{}^{(s)}(2b(n)))^{\beta} I_{[|S_m{}^{(s)}| \ge 2b]}]. \end{split}$$

Proof. Since $I_{\lceil |S_j| \ge a \rceil} + I_{\lceil S_j' \mid > a \rceil} \ge I_{\lceil |S_j' \mid > 2a \rceil}$ we have:

$$\begin{split} &E[(N_m^{(s)}(2b(n)))^{\beta}I_{[|S_m^{(s)}| \geq 2b]}] \\ &\leq \sum_{j=0}^{\beta} \binom{\beta}{j} E[N_m^{\beta-j}(b(n))(N_m'(b(n)))^j \cdot (I_{[|S_m| \geq b]} + I_{[|S_m'| \geq b]})] \,. \end{split}$$

Now using the fact that the primed and nonprimed quantities are independent and identically distributed completes the proof.

Let $[\cdot]$ be the largest integer function and I^+ be the set of positive integers.

LEMMA 2. Let $\beta \geq 1$. Then $E[N_{\infty}^{\beta}(b(n))] < \infty$ implies

(i) for
$$\beta \notin I^+$$
, $\sum_{m=1}^{\infty} m^{\beta - \lceil \beta \rceil - 1} E[N_m^{\lceil \beta \rceil}(b(n))I_{\lceil \lceil S_m \rceil \geq b_m \rceil}] < \infty$;

(ii) for
$$\beta \in I^+$$
, $\sum_{m=1}^{\infty} E[N_m^{\beta-1}(b(n))I_{\lceil |S_m| \geq b_m \rceil}] < \infty$.

PROOF. Letting $N_0 \equiv 0$, we see $N_{m+1}^{\beta}(b(n)) \equiv \sum_{i=0}^{m} (N_{i+1}^{\beta}(b(n)) - N_{i}^{\beta}(b(n)))$. But each term of this sum is positive and thus

$$E[N_{m+1}^{\beta}(b(n))] \ge \sum_{i=0}^{m} E\{((N_{i}(b(n)) + 1)^{\beta} - N_{i}^{\beta}(b(n)))I_{\{|S_{i}| > b(i)\}}\}.$$

 $\beta \notin I^+$. Letting $\alpha \equiv \beta - [\beta]$, we see $\min_{1 \le h \le i} ((h+1)^{\alpha} - h^{\alpha}) = (i+1)^{\alpha} - i^{\alpha}$ because $\alpha < 1$. But the mean value theorem shows $(i+1)^{\alpha} - i^{\alpha} \ge \alpha i^{\alpha-1}$, and thus we can use the fact that $N_i(b(n)) \le i$ to see

$$\begin{split} E\{&((N_i(b(n)) \, + \, 1)^{\beta} - N_i{}^{\beta}(b(i)))I_{[\,|S_{i+1}| \, \geq \, b(i+1)\,]}\} \\ & \geq (\beta - [\,\beta])E\{N_i{}^{(\beta)}(b(n))i^{\beta - [\,\beta] - 1}I_{[\,|S_{i+1}| \, \geq \, b(i+1)\,]}\} \; . \end{split}$$

Substituting this into (**) and applying the monotone convergence theorem, we obtain (i).

 $\beta \in I^+$. The binominal theorem applied to (**) gives

$$\begin{split} E[N_{m+1}^{\beta}(b(n))] &= \sum_{i=1}^{m} \left(\sum_{j=0}^{\beta-1} \binom{\beta}{j} E[N_{i}^{j}(b(n)) I_{[|S_{i}| \ge b(i)]} \right) \\ &\ge \sum_{i=1}^{m} E[N_{i}^{\beta-1}(b(n)) I_{[|S_{i}| \ge b(i)]}] \end{split}$$

which combined with the monotone convergence theorem gives (ii).

Lemma 3. If X_1 is a symmetric random variable and $\beta \in I^+$, then for $0 < \alpha < 1$, there exists a constant $C(\alpha) > 0$ $m_{\alpha} \in I^+$ so that for $m \ge m_{\alpha}$

$$E[N_m{}^{\beta}(b(n))I_{\lceil |S_m| \geq b_m \rceil}] \geq C(\alpha)m^{\beta}P[S_{\lceil \alpha m \rceil} \geq b_m].$$

PROOF. Let $l \in I^+$ and $i_0 \le i_1 \le i_2 \le \cdots i_l$, then

$$\begin{split} I_{[\cap_{j=1}^{l}[|s_{ij}| \geq c]]} & \geq I_{[s_{i0} \geq c]} I_{[\cap_{j=1}^{l}[s_{ij} - s_{ij-1} \geq 0]]} \\ & + I_{[s_{i0} \leq -c]} I_{\cap_{j=1}^{l}[s_{ij} - s_{ij-1} \leq 0]} \,. \end{split}$$

The differences $[S_{i_j} - S_{i_{j-1}}]_{j=1}^l$ are symmetric independent random variables since the X_i 's are, and so we have

$$(*) E[\bigcap_{j=1}^{l} I_{[|S_{i_j}| \ge C]} = P[\bigcap_{j=1}^{l} [|S_{i_j}| \ge C]] \ge 2^{-l} P[|S_{i_0} \ge C].$$

Letting $1 > r > \alpha$, and noting that there are at most β distinct factors in each term of the binominal expansion of $(x_1 + x_2 + \cdots + x_n)^{\beta}$, we see by (*)

$$\begin{split} E[N_m{}^{\beta}(b(n))I_{[|S_m| \ge b(m)]}] &\ge E[(\sum_{j=[\alpha m]}^m I_{[|S_i| \ge b(m)]})^{\beta} I_{[|S_m| \ge b(m)]}] \\ &\ge 2^{-\beta} (1 - r - m^{-1})^{\beta} m^{\beta} P[|S_{[\alpha m]}| \ge b(m)] \end{split}$$

and so the lemma holds.

We now establish the if part of Result 1.

For X_1 symmetric, Lemma 2 and Lemma 3 show that $E[N_{\infty}^{\beta}(b(n))] < \infty$ implies $\sum_{m=1}^{\infty} m^{\beta-1} P[|S_{(\alpha m)}| \ge b(m)]$ for $0 < \alpha < 1$. But because $\{[\alpha m]\}_m = I^+$, and $b(n) = \alpha n^{\alpha}$, we have by Theorem 3 of Katz [1], $E[|X|^{\beta+1/\alpha}] < \infty$.

If X_1 were not symmetric, then one considers the symmetrization of X_1 and notes that by Lemma 1, Lemma 2's conclusion holds for $N_m^{(s)}(b(n))$ in place of $N_m(b(n))$. Proceeding now as above we get $E[|X^{(s)}|^{\beta+1/\alpha}] < \infty$. But $E[|X^{(s)}|^r] < \infty$ implies $E[|X|^r] < \infty$ for all r > 0 and so the proof of Result 1 is complete.

The unbounded part of Result 2 is proved by noting that Lemma 2 and Lemma 3 imply for some number C

$$E[N_{\infty}^{\beta}(2(1+\delta)n \ln n)^{\frac{1}{2}}] \ge C \sum_{m=1}^{\infty} m^{\beta-1} P[|m^{-\frac{1}{2}}S_m| \ge (2\alpha(1+\delta) \ln [\alpha m])^{\frac{1}{2}}].$$

But this and (***) show there is a constant C' for which

$$E[N_{\infty}^{\beta}(2(1+\delta)n \ln n)^{\frac{1}{2}}] \ge C' \sum_{m=1}^{\infty} m^{\beta-1} m^{\alpha(1+\delta)}$$

and so the result follows.

2. On ruled sums. Let () be a rule (refer back to the end of the Introduction) and let $N_m(b(n), (n)) \equiv$ number of times $|S_{(n)}| \geq b(n)$ for $n \leq m$, $(m = 1, 2, 3, \dots, \infty)$. The rule $(n) \equiv \{1, 2, 3, \dots, n\}$ will be denoted by n, and $\langle n \rangle$ will denote a rule for which $\langle n \rangle \cap \langle m \rangle = \emptyset$ if $n \neq m$ (i.e., $\{S_{\langle n \rangle}\}$ is a sequence of independent random variables).

It is clear that $E[N_{\infty}(b(n))] = E[N_{\infty}(b(n), (n))]$ for all rules (). However, higher moments can behave quite differently. For instance by Result 1 we see the existence of higher moments of $N_{\infty}(b(n))$ depends on how many moments

 X_1 has, but this is not the case for $\langle n \rangle$. To see this, note that by (**) and by the independence between the sums,

$$E[N_{\infty}^{2}(b(n),\langle n\rangle)] = \lim_{m\to\infty} \sum_{j=1}^{m} E[N_{j}(b(n),\langle n\rangle)]P[|S_{j}| \ge b(n)]$$

$$\le E^{2}[N_{\infty}(b(n),\langle n\rangle)]$$

and, continuing by induction, one sees that

Lemma 4. If $E[N_{\infty}(b(n))] < \infty$, then $E[N_{\infty}^{\beta}(b(n), \langle n \rangle)] < \infty$ for all $\beta \in I^+$.

The dichotomy in behavior between the rules n and $\langle \cdot \rangle$ illustrated by Lemma 4 and Result 1, combined with the fact that $S_{\langle n \rangle}$ unlike S_n , has "no memory of previous sums," gives credence to the following notion:

 $N_{\infty}(b(n))$ is more likely to be determined by the number of consecutive times S_n is large as opposed to the number of "new" times S_n becomes large.

Reconsidering the proof used in the "only if" part of Result 1, one sees that it holds for all rules (). By Lemma 4 though, we see the converse certainly does not hold for all rules. So we will close this section by showing that if X_1 has at least two moments and $\alpha > 0$, then for each relation R (not outlawed by the above observation) between the moments of X_1 and the moments of $N(\varepsilon n^{\alpha}, (n))$, there is a rule () so that R holds. More precisely we will show

RESULT 3. If $\beta \in I^+$, $2 \le r \le \alpha^{-1}(\beta + 1)$, and X_1 is symmetric, then there is a rule () so that

$$E|X|^r < \infty \text{ iff } E[N^{\delta}(\delta n^{\alpha}, (n))] < \infty$$
 for all $\delta > 0$.

For convenience of exposition, we will indicate the construction of () for $\alpha=1$ and $\beta=2$; however, the other cases are either just a matter of taking moments of this () or constructing a rule in an analogous fashion to the way () is constructed. So let $2 \le r \le 3$, l = r - 1, $\{\pi_t\}_{t=1}^{\infty}$ be the portion of I^+ given by $\pi_t = \{j \in I^+ : [t^t] \le j < [t^{t+1}]\}$, and let () be any rule for which the following properties hold:

PROPERTY a.
$$(n) \cap (m) = \emptyset$$
 if $n \in \pi_t$, $m \in \pi_{t'}$, and $t \neq t'$

PROPERTY b. (n)-(n-1) is a singleton set if n, $n-1 \in \pi_t$ for some $t \in I^+$. For convenience of notation we let $v(t) \equiv [t^t]$, $d(t) \equiv v(t+1)-v(t)$, $h(t) = v(t) + 2^{-1}d(t)$, and $K = \sup_t v(t+1)/v(t) < \infty$.

We will show that for such a rule there are constants a, d, and f such that if $m = [l(t_0)]$ for some $t_0 \in I^+$, then

$$(+) a \sum_{j=1}^{m} j^{l-1} P[|S_j| \ge K^2 \varepsilon j] \le C(m) = E[N_m^2(\varepsilon n, (n))]$$

$$\le d \sum_{j=1}^{m} j^{l-1} P[|S_j| \ge \varepsilon j] + f.$$

Once these inequalities are established, then one only need let $t_0 \to \infty$, and refer once again to Theorem 3 of Katz [1] in order to prove our result. To show the above set of inequalities hold, we

(i) note by the mean value theorem that $l(t+1)^{l-1} \ge d(t)$ and $h(t) \ge lt^{l-1}$ and thus for $j \in \pi_t$: $d(t) \le l2^l j^{l-1}$ and $h(t) \ge l2^{1-l} j^{l-1}$

(ii) define D(m) by

$$C(m) = \sum_{t=1}^{t_0} \sum_{j=l(t)}^{l(t+1)} \sum_{k=l(t)}^{l(t+1)} P[|S_j| \ge \varepsilon j] \cap [|S_k| \ge \varepsilon k] + D(m)$$

and, by noting that $D(m) \uparrow$ and $D(m) \leq E(N_m^2(\varepsilon n, \langle n \rangle))$, see that Lemma 4 gives $D(m)_m \to f$, where f is some number $< \infty$.

Combining (i) and (ii), we easily see that the righthand inequality of (+) holds with $d \equiv l \cdot 2^{l-1}$.

To establish the lefthand inequality of (+) we first note that (ii) and (*) imply

$$C(m) \ge \sum_{t=1}^{t_0} \sum_{j=l(t)}^{h(t)} 4^{-1} h(t) P[|S_j| \ge \varepsilon l(t+1)]$$
.

Second we note by (i) and the definition of K

$$\sum_{j=l(t)}^{n(t)} h(t) P[|S_j| \ge \varepsilon l(t+1)] \ge \sum_{j=l(t)}^{h(t)} (l2^{1-l}) j^{l-1} P[|S_j| \ge (\varepsilon K) j]$$

and

$$\textstyle \sum_{j=l(t+1)}^{h(t+1)} h(t+1) P[|S_j| \ge \varepsilon l(t+2)] \ge \sum_{j=h(t)}^{l(t+1)} (l2^{1-l}) j^{l-1} P[|S_j| \ge (K^2 \varepsilon) j] \ .$$

Thus the lefthand inequality of (+) holds with $2 \equiv l8^{-1}2^{1-l}$.

REFERENCES

- [1] KATZ, M. (1963). The probability in the tail of a distribution. Ann. Math. Statist. 34 312-318.
- [2] LOEVE, M. (1955). Probability Theory. Van Nostrand, Princeton.
- [3] SLIVKA, J. (1969). On the law of the iterated logarithm. Proc. Nat. Acad. Sci. U.S.A. 63 289-291.
- [4] SLIVKA, J. AND SEVERO, N.C. (1970). On the strong law of large numbers. Proc. Amer. Math. Soc. 24 729-734.