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MOMENTS OF OSCILLATIONS AND RULED SUMS'

By HowArD H. STRATTON
SUNY, Albany

0. Introduction. Let {X;} be a sequence of independent identically distributed
random variables for which EX, = 0 if it exists and S, = 7, X,. Let {b(n)}
be a sequence of real numbers and N (b(n)) = number of times |S,| = b(n).

In [4] Slivka and Severo show that if b(rn) = on, then for 8 = 1, E(X**') < oo
implies E[N,#(0n)] < oo for all § > 0. Their proof of this result depends
heavily on a paper of Katz [1]. We will show here how the use of symmetriza-
tion and a fuller use of the above mentioned paper of Katz, not only gives the
converse of the above result, but more generally gives:

ResuLT 1. For =1 and a > 0; E(X"¥+V/) < oo iff E[N*(dn*)] < oo for all
0> 0.

In an earlier paper [3], Slivka showed that if EX,;® < co and EX, = 0, and if
one chooses the sequence {b(n)} that appears in the law of the iterated logarithm,
i.e., b(n) = [(1 + 9)2nlog log n]?, then N_(b(n)) has no moments for all 6 > 0.
A perusal of the proof used shows that he actually proved that if
b(n)/(2nlog n),t — 0, then N_(b(n)) has no moments for all § > 0. We will
show here that the sequence b(n) = (2(1 + d)nlogn)t is more sensitive to the
moments of N,(b(n)) than any of the above mentioned sequences. More
precisely:

ResuLt 2. If X, is symmetric, if E(X*™) < co with m = 1, and E(X) =0,
then:

E[N_#(2(1 + o)nlog n)t] < oo if 1 <8< min(m,1 4 9);
= if g>1+0.

Finally we will let ( ): I+ — 27", where (n) is a subset of I+ with n elements,
be called a rule and its corresponding ruled sum be defined by S,, = X};.s) X;-
We will show the moments of the function corresponding to N_(b(n)), very
much depends on the “rule” ().

1. On S,. The only if part of Result 1 and the boundedness part of Result 2
are obtained by using the argument of Slivka and Severo in [4], with the
following modifications:

ResurLt 1. Use Theorem 3 instead of Theorem 1 from Katz [1].
ResuLT 2. Incorporate the fact

(***) E | X|*** < oo implies sup, |®(x) — P[S, < x]| < n~*/
forall x >0,
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where ®@(+) is the cummulative normal distribution, along with Theorem 3 of
Katz [1].

We will now establish the other parts of Results 1 and 2.

Let I, be the indicator of the event 4, and let

N, (b(n) = X7 Iy jispiin -
N,(b(n)) 1 .N.(b(n)) and thus by the monotone convergence theorem,
lim ,,E[N,*(b(n))] = E[N,#(b(n))] for all 3 >0. (Convergence to oo is allowed.)
Let X;* = X; — X,/ be a symmetrization of X; ([2] page 247) (We adopt the
convention that all quantities relative to X, and X, will be denoted by ’ and
@ respectively.)
LeMMA 1. Let 8 be a positive integer, then for b >.0,
2 E[N A (b(m)]E[N W (b(m)iis,,1201]
+ 2E[N, (b(n))]P[|S,| Z b]
= E[(No " (2b()) Fysonza0] -

PrOOF. 8ince Ijs; 120 + Lis; /1501 = Ijjsjt01520) WE have:

E[(Nm(S)(Zb(n)))ﬁI[lsm(sngzb]]
< Do QBN ()N (B(m) - sz + lus,z0)] -
Now using the fact that the primed and nonprimed quantities are independent

and identically distributed completes the proof.
Let [+] be the largest integer function and I* be the set of positive integers.

LEmMA 2. Let 8 = 1. Then E[N_f(b(n))] < co implies

() forper,  Zg m-IATE[N, Pbm)]ys,, z,1] <

(i) forBel*,  Zno EIN.T(0m)ys,iz,] < oo

Proor. Letting N, = 0, we see M., ,,(b(n)) = Y™ ((NZ,y(b(n))— N £(b(n))). But
each term of this sum is positive and thus
**) E[N;, 11(b(m)]

= Do E{(Nub(m)) + 1)F — NAGm)Mys;12000) -

BeI*. Letting a = B — [B], we see min,,_; (k + 1)* — h*) = (i + 1)* — i#
because a < 1. But the mean value theorem shows (i + 1)* — i* = ai**, and
thus we can use the fact that N;(b(n)) < i to see

E{((N:(b(m)) + 1) — Niﬁ(b(i)))l[lsiﬂlzb(i+1)]}
= (B — [BYE[N, P (b(m))P~ I Iy s, impisn} -
Substituting this into (**) and applying the monotone convergence theorem,
we obtain (i).
B e I*. The binominal theorem applied to (**) gives
E[NL1(b(m)] = X1 (2520 QEINS (b)) iysi2000)
=2 E[Niﬂ_l(b(n))l[lsilzb(i)]]
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which combined with the monotone convergence theorem gives (ii).

LemmA 3. If X, is a symmetric random variable and 8 € I, then for 0 < a < 1,
there exists a constant C(a) > 0 m, € I* so that for m = m,

E[Nmﬂ(b(”»ltlsmlzbm]] = C(a)ym’ P[Siumy = b,] -
Proor. Letleltand i, <i, <i, < ... 1, then

20]]

I[nﬁ-:lusijlgc]] = I, gc]I[ng.zlrsij—sij_l_

0
+ I[sms—c]In§=l[s,-j—sij_lgo] .
The differences [S;, — S;,_ ]}-, are symmetric independent random variables
since the X;’s are, and so we have

(*) E[Njzi Tus; 201 = PN (ISl = €11 = 27° P[IS;, = €.
Letting 1 > r > a, and noting that there are at most 8 distinct factors in
each term of the binominal expansion of (x, + x, + - - - + x,)?, we see by (*)

E[N A (b(m) s, 1250m1] Z B[ P=tam) Tus;izomn) s, zbmn]
= 271 — r — m7 Y m® P[|Siom)| Z b(m)]

and so the lemma holds.

We now establish the if part of Result 1.

For X, symmetric, Lemma 2 and Lemma 3 show that E[N_?(b(n))] < o
implies Y »_, m*~' P[|S om| = b(m)] for 0 < a < 1. But because {[am]}, = I*,
and b(n) = an*, we have by Theorem 3 of Katz [1], E[|X]*+"/*] < co.

If X, were not symmetric, then one considers the symmetrization of X; and
notes that by Lemma 1, Lemma 2’s conclusion holds for N, (b(n)) in place of
N, (b(n)). Proceeding now as above we get E[| X [#+/] < co. But E[|X*|"] < o0
implies E[|X|"] < oo for all r > 0 and so the proof of Result 1 is complete.

The unbounded part of Result 2 is proved by noting that Lemma 2 and
Lemma 3 imply for some number C

E[N_2(1 + d)nlnn)] = C Yo, m ' P[m~1S,| = (2a(l + 0) In [am])] .
But this and (***) show there is a constant C’ for which
E[N2(1 + d)nlnn)}] = C' 3o, mfim0+9
and so the result follows.

2. On ruled sums. Let () be a rule (refer back to the end of the Introduction)
and let N, (b(n), (n)) = number of times |S,,| = b(n) for n<m, m=1,2,3,

-+, ). The rule (n) = {1, 2,3, ..., n} will be denoted by n, and {(n) will
denote a rule for which (n) N (m) = @ if n + m (i.e., {S,,,} is a sequence of
independent random variables).

It is clear that E[N_(b(n))] = E[N.(b(n), (n))] for all rules ( ). However,
higher moments can behave quite differently. For instance by Result 1 we see
the existence of higher moments of N_(b(n)) depends on how many moments
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X, has, but this is not the case for (). To see this, note that by (**) and by
the independence between the sums,

E[N_}b(n), {np)] = lim,, ., 317, E[N(b(n), (n))]P[|S;| = b(n)]
< E’[N.(b(n), {(n))]
and, continuing by induction, one sees that

LemMA 4. If E[N(b(n))] < oo, then E[N_f(b(n), {n))] < oo for all BelI*.

The dichotomy in behavior between the rules nand (.) illustrated by Lemma
4 and Result 1, combined with the fact that S, unlike S,, has “no memory
of previous sums,” gives credence to the following notion:

N..(b(n)) is more likely to be determined by the number of consecutive times
S, is large as opposed to the number of “new” times S, becomes large.

Reconsidering the proof used in the “only if”” part of Result 1, one sees that
it holds for all rules ( ). By Lemma 4 though, we see the converse certainly
does not hold for all rules. So we will close this section by showing that if X,
has at least two moments and a > 0, then for each relation R (not outlawed
by the above observation) between the moments of X, and the moments of
N(en®, (m)), there is a rule ( ) so that R holds. More precisely we will show

ResuLt 3. If Bel*,2 < r < a”'(B + 1), and X, is symmetric, then there is
a rule () so that
E|X|" < oo iff E[N*(0n*, (n))] < oo forall 6>0.
For convenience of exposition, we will indicate the construction of ( ) for
a = 1 and 8 = 2; however, the other cases are either just a matter of taking
moments of this ( ) or constructing a rule in an analogous fashion to the way
() is constructed. So let 2 <r<3,/=r—1, {r}, be the portion of It
given by =, = {jeI": [#*] < j < [¢#'*']}, and let ( ) be any rule for which the
following properties hold:

PrROPERTY a. (B) N (m) = @ ifnen,, men,,and t + ¢

PROPERTY b. (n) — (r — 1) is a singleton set if n, n — 1 € =, for some ¢ € I'*.
For convenience of notation we let v(t) = [¢#'], d(f) = v(t + 1) — v(¢t), A(t) =
v(t) + 27'd(t), and K = sup, v(t + 1)/v(f) < oo.

We will show that for such a rule there are constants a, d, and f such that if
m = [l(t,)] for some ¢, € I*, then
(+)  aZi 7 PlS,| 2 Kj] = Clm) = E[N,(en, (n))]

=dTJTPIS z ]+ f

Once these inequalities are established, then one only need let ¢, — co, and
refer once again to Theorem 3 of Katz [1] in order to prove our result. To
show the above set of inequalities hold, we

(i) note by the mean value theorem that /(t + 1)'~' = d(¢) and A(f) = It
and thus for jew,: d(f) < I2'j'~* and h(t) = 1271
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(ii) define D(m) by
Clm) = X, 2520 2l PUIS;I =z o1 0 [1S4] = ek] + D(m)
and, by noting that D(m)1 and D(m) < E(N,*(en, {(n))), see that Lemma 4
gives D(m),, — f, where f is some number < co.
Combining (i) and (ii), we easily see that the righthand inequality of (4)
holds with d =/ . 2!,
To establish the lefthand inequality of (+) we first note that (ii) and (*)
imply
Cm) = 3ii: 1l 47 MO PLIS;| = el(t + 1)] -
Second we note by (i) and the definition of K
i HOPL|S;| 2 el(t + 1)] =2 T3, (2707 PIIS;| = (K)j]
and
it Mt 4 DP[IS;] = el(t + 2)] = T35, (2 PLIS,| = (K*e)j] -

J=1l(t+1)

Thus the lefthand inequality of (+) holds with 2 = /8-121-¢,
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