A NOTE ON THE ZERO-ONE LAW¹

BY JULIUS R. BLUM AND PRAMOD K. PATHAK

University of New Mexico

Let $\mathscr{M} = \{\mu_n \colon n \geq 1\}$ be a sequence of probability measures defined on the measurable space $(\mathscr{D}_n, \mathscr{D}_n)$ and suppose that the measures $\{\mu_n \colon n \geq 1\}$ satisfy the following condition $(B) \colon \forall \varepsilon > 0, k \geq 1$ and $m \geq 1$, there exists an $n \geq m$ such that $\|\mu_k - \mu_n\| < \varepsilon$. We show that if $A \in \mathsf{X}_1^\infty \mathscr{D}_n$ and if A is permutation invariant then $\mu(A) = 0$ or 1. The zero-one laws of Hewitt and Savage [Trans. Amer. Math. Soc. 80 (1955) 470-501] and Horn and Schach [Ann. Math. Statist. 41 (1970) 2130-2131] follow as special cases of our result.

- 1. Let $\mathscr{M} = \{\mu_n : n \geq 1\}$ be a sequence of probability measures defined on the measurable space $(\mathscr{R}_n, \mathscr{R}_n)$. Consider the product space $\{\mathsf{X}_1^\infty \mathscr{R}_n, \mathsf{X}_1^\infty \mathscr{R}_n, \mu = \mathsf{X}^\infty \mu_n\}$ and suppose that the measures $\{\mu_n : n \geq 1\}$ satisfy the following condition.
- (B) For each $\varepsilon > 0$, $k \ge 1$, and $m \ge 1$, there exists an $n \ge m$ such that $||\mu_k \mu_n|| < \varepsilon$.

The main object of this note is to establish the following zero-one law.

(1.1) THEOREM. Consider the probability space $\{\mathsf{x}_1^\infty \mathscr{R}_n, \mathsf{x}_1^\infty \mathscr{B}_n, \mu = \mathsf{x}_1^\infty \mu_n\}$ and suppose that the probability measures $\{\mu_n \colon n \geq 1\}$ satisfy condition (B). Let $A \in \mathsf{x}_1^\infty \mathscr{B}_n$ and suppose that A is invariant under all permutations of finitely many coordinates. Then $\mu(A) = 0$ or 1.

This theorem is an extension of the zero-one laws in Hewitt-Savage [2] and Horn and Schach [3]. The substitution $\mu_1 = \mu_2 = \cdots$ in the above theorem yields the Hewitt-Savage zero-one law while the assumption that $\forall k \geq 1$ and $m \geq 1$ there is an $n \geq m$ such that $\mu_k = \mu_m$ yields the zero-one law due to Horn-Schach [3].

To prove the theorem we need the following preliminary results.

(1.2) LEMMA. Let $(\Omega, \mathscr{A}, \mu)$ be a probability space and let $\{\mathscr{A}_n : n \geq 1\}$ be a decreasing sequence of sub- σ -algebras of \mathscr{A} . Let $A \in \mathscr{A}$. Suppose that $\forall \varepsilon > 0$ and $n \geq 1$ there exists a $B_n \in \mathscr{A}_n$ such that $\mu(A \triangle B_n) < \varepsilon$. Then there is a set $B \in \mathscr{A}_{\infty} = \cap \mathscr{A}_n$ such that $\mu(A \triangle B) = 0$.

PROOF. For each $n \ge 1$ choose a $B_n \in \mathcal{M}_n$ such that $\mu(A \triangle B_n) < 1/2^n$. Now let $B = \limsup B_n$.

We say that a set $A \in \mathscr{N}_1$ is "tail-approximable" if $\forall \varepsilon > 0$ and $\forall n \ge 1$ there exists a B_n such that $\mu(A \triangle B_n) < \varepsilon$. The preceding lemma shows that if \mathscr{N}_{∞} is trivial (i.e. $\mu(B) = 0$ or $1 \forall B \in \mathscr{N}_{\infty}$) then every "tail-approximable" set is also

Received June 3, 1971; revised October 27, 1971.

¹ Research supported by the NSF Grant GP-25736.

trivial. This result is stronger than some of the well-known zero-one laws and enables us to prove a somewhat stronger version of the zero-one law given above in Theorem 1.1.

(1.3) Lemma. Let $\{\mu_k : k \ge 1\}$ and $\{\nu_k : k \ge 1\}$ be probability measures and suppose for some $\varepsilon > 0$ that $||\mu_k - \nu_k|| < \varepsilon$. Then $||\mathbf{x}_1^n \mu_k - \mathbf{x}_1^n \nu_k|| < n\varepsilon$.

PROOF. This is based on induction and the observation that if μ is a probability measure and ν a signed measure with $||\nu|| < \varepsilon$ then $||\mu \times \nu|| < \varepsilon$.

(1.4) PROOF OF THEOREM 1.1. Let $\mathscr{B}^n = \underset{n+1}{\times} \mathscr{B}_k$. Then $\mathscr{B}^1 \supset \mathscr{B}^2 \supset \cdots$ is a decreasing sequence of σ -algebras. From the classical zero-one law it follows that $\mathscr{B}^\infty = \lim \mathscr{B}^n$ is a trivial σ -algebra. Consequently it suffices to show that every permutation invariant set (i.e. invariant under all permutations of finitely many coordinates) is tail-approximable. Now let A be permutation invariant. Let $\varepsilon > 0$ and $n \ge 1$. Let A_m be a cylinder set based on $\mathscr{B}_1 \times \mathscr{B}_2 \times \cdots \times \mathscr{B}_m$ such that $\mu(A \triangle A_m) < \varepsilon/2m$. For each k, $1 \le k \le m$, choose $k(m) \ge \max{\{m+1, n\}}$ such that $||\mu_k - \mu_{k(m)}|| < \varepsilon/2m$ and such that 1(m), 2(m), \cdots , m(m) are all different. For each $(x_1, x_2, \cdots) \in X_1^\infty \mathscr{B}_k$ define the permutation, T, which interchanges every x_k , $1 \le k \le m$, with $x_{k(m)}$. It is easily seen, as a consequence of Lemma 1.3, that $||\mu - \mu T^{-1}|| < \varepsilon/2$. So

$$\mu(A \triangle T(A_m)) \leq \mu T^{-1}(A \triangle T(A_m)) + ||\mu - \mu T^{-1}|| < \varepsilon/2 + \mu T^{-1}(A \triangle T(A_m)).$$

Since A is permutation invariant,

$$\mu(A \triangle T(A_m)) < (\varepsilon/2) + \mu(A \triangle A_m) < \varepsilon$$
.

Since $T(A_m)$ is a \mathscr{B}^n -measurable cylinder set, it follows that A is tail-approximable. Therefore $\mu(A) = 0$ or 1.

REFERENCES

- [1] Blum, J.R. and Hanson, D.L. (1962). On a problem in Hilbert space with applications. J. Math. Mech. 11 497-499.
- [2] HEWITT, E. AND SAVAGE, L.J. (1955). Symmetric measures on Cartesian products. Trans. Amer. Math. Soc. 80 470-501.
- [3] HORN, S. AND SCHACH, S. (1970). An extension of the Hewitt-Savage zero-one law. Ann. Math. Statist. 41 2130-2131.