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CONVERGENCE RATES FOR EMPIRICAL BAYES TWO-ACTION
PROBLEMS II. CONTINUOUS CASE!

By M. V. Jonns, JrR.2 AND J. VAN RYZIN?
Stanford University and University of Wisconsin

1. Introduction and summary. For a general discussion of empirical Bayes prob-
lems and motivation of the present paper see Section 1 of the previous paper
[1]. In that paper we studied the convergence to Bayes optimality and its rate
properties for empirical Bayes two-action problemsin certain discrete exponential
families. This paper continues that investigation for the continuous case. Under
appropriate conditions, Theorems 3 and 4 yield convergence rates to Bayes risk
of O(n~?) for 0 < B < 1, for the (n 4 1)st stage risk of the continuous case
empirical Bayes procedures of Section 2. These theorems provide, for the con-
tinuous case, convergence rate results for the empirical Bayes procedures of the
general type considered by Robbins [5] and Samuel [6] for two different para-
meterizations of a model. The rate results given here in the continuous case
involve upper bounds and are weaker than the discrete case results in [1] wherein
exact rates are reported. |

Specifically, in Section 2 we present the two cases to be considered and define
the appropriate empirical Bayes procedures for each. Section 3 gives some tech-
nical lemmas and Section 4 establishes the asymptotic optimality (the asymptotic
Bayes property) of the procedures introduced. The main results on rates, Theo-
rems 3 and 4, are given in Section 5. Section 6 examines in detail two specific
examples—the negative exponential and the normal distributions—and gives
corollaries to Theorems 3 and 4 which state convergence rates depending on
moment properties of the unknown prior distribution of the parameters. Section
7 gives an example with § arbitrarily close to 1 in the rate O(n~*).

The model we consider is the following. Let f,(x) be a family of Lebesgue
densities indexed by a parameter 2 in an interval of the real line. Asin[1], we
wish to test the hypothesis H,: 2 < cvs. H,: 2 > ¢ with the loss function being

L2 =0 if 2Z¢
= b2 — o) if 1>c¢
Ly(2) = b(c — 2) if 1Z¢
=0 if A>¢

where L;(2) indicates the loss when action i (deciding in favor of H;) is taken,
i =1,2and b is a positive constant.
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Let
o(x) = Pr{accepting H,|X = x}

be a randomized decision rule for the above two-action problem. If G = G(2)
is a prior distribution on 2, then the risk of the (randomized) decision procedure
o0 under prior distribution G is given as in [1] by,
(1) r3, G) = §§ {LUAf:(x)0(x) + LA (x)(1 — 3(x))} dx dG(2)

= b § a(x)d(x) dx + C,

where C; = { L,(2) dG(2) and

@) a(x) = § (%) dG(D) — of (%)
with )
3) 1) = § £u(%) dG(D) .

From (1) it is clear that a Bayes rule (the minimizer of (1) given G) is

4) dg(x) =1 if ax)<0
=0 if a(x) >0.

Hence, the minimal attainable risk knowing G (the Bayes risk) is
%) r*(G) = inf; r(0, G) = r(9;, G) .

2. The empirical Bayes approach where G is unknown. An empirical Bayes pro-
cedure for the (n 4 1)st decision problem based on a previously seen sequence
of independent, identically distributed random variables X;, - - -, X, each with
probability density f(x) is obtained by forming a function

a,(xX) = a,(Xy, -+, X3 X)
which estimates a(x) for each x and adopting the empirical Bayes procedure

(6) oM =1 if a@m=0
=0 if a,(x)>0.

Here a,,(x) and hence 4,(x) do not depend on the unknown prior distribution G.

Letting r, denote the risk of d,, we seek procedures (6) and conditions under
which lim r, = r*(G) and we investigate the speed of this convergence to Bayes
optimality. Note that

™) rn = E{r(3,, G)}
= bE{§ a(x)0,(x) dx} + C,

where E denotes expectation on X, - - -, X,.

The empirical Bayes approach for this problem has been previously treated in
the continuous case in two papers under two different cases or parameterizations
of a model for which a(x) may be estimated.
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Case I (Robbins [5]).
[2(x) = e~ *=B(2)h(x) for x> a, 4 in an interval
=0 otherwise ,
where a may be finite or infinite and A(x) > 0 for x > a.

For this model, under certain regularity conditions, (see Lemma 2)

§ Af2(%) dG() = — fD(x) + %}S‘) J)
where f"(x) and A" (x) are the first derivatives of f(x) and A(x). Then by (2)
we have :

(8) a(x) = (v(x) — )f(x) — f(x)
where

_ A
) v(x) = ) .

We shall estimate a(x) by estimating f(x) and f*(x). Let f,(x) = f,.(X,, - - -,
X,; x) be an estimate of f(x) given by (see Parzen [3])

or by " )
) 9= g B 6 (B + K ()

where {A,} is a sequence of positive numbers such that

(11) h, 10, nh,? — oo

and K,(u) by a real-valued measurable function on the real line such that
(12) K@u) =0 if u<0 or uz=zuy

(13) $or K\(u) du = 1

(14) sup, [K,(u)] < oo .

Denote by .22 = % (u,) the class of all real-valued measurable functions on
the real line satisfying (12), (13) and (14).
To estimate f(x), let £,V (x) = f,“(X,, - - -, X,; x) be given by
1 1 X;—x\ _ 1 (X, —x
9= s () ()
() £ = o By, U ) T w B U

n

where {h,} is the sequence of (11) and K,(u) be a real-valued measurable function
on the real line such that

(16) K,u) =0 if u<0 or uzu,
a7 Se2uKy(u) du = 1
(18) sup, |K;(u)| < oo .
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Denote by 5%, = .97,(u,) the class of all real-valued measurable functions on
the real line satisfying (16), (17) and (18).
As a motivation for (15), note that by the mean value theorem,

1 (1 o (X— 1 (X —
500 = B K () 1,5 ()

n n n

(19) = hl— $u2 Ky(u){ f(x + 2h,u) — f(x + h,u)}du

= Vo uK,u)f (x4 hyu + &,(x, ) du

where 0 < §,(x, u) < h,u, provided that f(x) has continuous first derivative for
x > a. Hence, we see that as n — oo
(20) Ef,(x) > fY(x) - forall x>a.

We note at this point that the kernel K, used in the density estimate in (10)
is not the usual symmetric kernel suggested by Parzen [4]. This asymmetry is
necessary since counter-examples to the rate Theorems 3 and 4 can be constructed
when symmetric kernels are used and the observations are bounded below.
However, for convergence alone (Theorems 1 and 2) either (10) or its sym-
metrized analog (10") will suffice.

Also, note that the estimate f,(x) given by (15) is not of the form originally
suggested by Robbins ([5] page 204, (76)). The more sophisticated version used
here is required in our proofs to achieve the rates of Theorems 3 and 4. For
convergence alone (Theorem 1), the estimate of Robbins would suffice. (Sub-
sequent to the submission of this paper, a detailed analysis of estimating f"(x)
appeared in Schuster [7]. Use of his estimates of f’(x) and appropriate modi-
fication thereof could also be used in developing the theorems below.)

For Case I, we define d,(x) by (6) with

(21) (%) = (V(x) — )fu(¥) = fu"(%)
where f,(x) and f,"(x) are given by (10) and (15) respectively.
Case 11 (Samuel [6]).
[a(x) = 27B(A)h(x) for x>a, A in a subinterval of (0, oo)
=0 otherwise ,

where @ may be finite or infinite and A(x) > 0 for x > a.

Note that
§ 4fi(%) dG(2) = w(x)f(x + 1)
where
I C))
(22) w(x) = 7(;*-—1) .

Then, by (2), we have
(23) a(x) = wx)f(x + 1) — ¢f(x) .
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To obtain the empirical Bayes rule d,(x) in (6) define
(24) (%) = w)fu(x + 1) — ¢fu(®)
where f,(x) is given by (10) or (10’) with {h,} satisfying (11) and K, € .5%7.

Next we shall develop some lemmas useful for later theorems on asymptotic
optimality and convergence rates for our empirical Bayes rules for Cases I and II.

3. Some useful lemmas. Before giving results on asymptotic optimality and
convergence rates, we give the following lemmas, the first of which is a restate-
ment of Lemma 1 of [1] for the continuous case.

Lemva 1. With r*(G) and r, given by (5) and (1), we have
(25) 0= r, —r¥G) £ b §|a(x)| Pr{|a,(x) — a(x)] = |a(x)]} dx .

LEMMA 2. In Case 1, if G is any prior on the natural parameter space and if h"(x)
exists and is continuous for all x > a, r a positive integer, then " (x) exists and is
continuous for all x > a. Furthermore, f"(x) = v(x)f(x) — § Af,(x) dG(R), v(x) =
AV (x)/h(x).

Proor. Observe that f(x) = A(x)§(x), where §(x) = § e~?*8(2) dG(4). But the
integral §(x) is infinitely differentiable with repeated differentiation under the
integral sign permissable by Theorem 2.9 in [2]. Hence, the differentiability of
rth order of f(x) follows from the differentiability of rth order of A(x).

For Case II, the following lemma is also easily verified.

LeMMA 3. In Case 11, if h(x) is continuous for all x > a, then f(x) is continuous
forallx > a. In Case 11, if h'"(x) exists and is continuous for all x > a, r a posi-
tive integer, then ") (x) exists and is continuous for all x > a.

4. Asymptotic optimality of J,. The following theorem generalizes the examples
and ideas incorporated in Section 5 of Robbins [5].

THEOREM 1. In Case 1, let d, be defined by (6), (10) or (10%), (15) and (21) with
K, e 55, K, e 5%, and {h,} satisfying (11). If E|A| < oo and h'"(x) exists and is
continuous for x > a, then lim, r, = r*(G), that is, the empirical Bayes rule d, is
asymptotically optimal (see Robbins [5] page 198).

ProoF. Let §,(x) = [a(x)]| Pr {|a,(x) — a(x)]  a(®)]}. Since §,(x) < |a(x)]
and |a(x)| is integrable by the assumption E|A| < oo, it suffices by Lemma 1 and
the bounded convergence theorem to show that lim, 8,(x) = 0 for all x > a.
Now, by the Markov inequality,

(26) Bu(x) = Ela,(x) — a(x)]
= [vx) = C|E|fu(®) — fO)] + E[f.7(x) — fP)] -

From Parzen [4], (Corollary 1A and Theorem 2 A) for K, € %% and {h,}
satisfying (11), the quadratic mean E|f,(x) — f(x)|" > 0 as n — co forallx > a
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(continuity points of f(x)). Hence
(27) lim, E|f,(x) — f(x)| =0 forall x>a.
Next, by computing Var {f,V(x)}, it is easy to show that
rh, Var {£,0(x)} — (§ V3 Kw) du — 2 §is Ky(uw)Ky(2) did) (%)

for all x > a. Also, since Lemma 2 implies f(x) exists and is continuous for all
x > a, we have by (20), |Ef,V(x) — f®(x)|* — 0 forall x > a. These two results
imply, for K, e .2, and {h,} satisfying (11), thatlim, E|f,*(x) — fY(x)[* =0
for all x > a and hence lim, E| £,V (x) — f®(x)| = 0 for all x > a. This fact
together with (27) and inequality (26) completes the proof of the desired result.

The following theorem for Case II is very similar to the results of Section 6
of Samuel [6] and is stated here without proof.

THEOREM 2. In Case 11, let o, be defined by (6), (10) or (10’) and (24) with
K, e ¢ and the sequence {h,} satisfying h, | 0 and nh, — co. If EA < co and h(x)
is continuous for all x > a, then lim, r, = r*(G), that is, the empirical Bayes rule
d,,, is asymptotically optimal.

Examples of Theorems 1 and 2 will be given in Section 6 along with examples
of the theorems proved in the next section.

5. Convergence rate theorems. The following two theorems give the main
results of this paper concerning rates of convergence of r, to the optimal Bayes
risk. These theorems furnish rate results for slightly generalized versions of
procedures first introduced by Robbins [5], Section 5 and Samuel [6], Section
6 for the two-action decision problem with continuous exponential families
given by Cases I and II respectively. The conditions under which the theorems
are stated are perhaps somewhat unintuitive and their content is more fully
explored in the examples of Section 6.

THEOREM 3. In Case 1, let 8, be defined by (6), (10), (15) and (21) with K, € %7,
K, e 2¢,. If E|A| < oo and h'"(x) exists and is continuous for some integer r = 2,
and if for some 6, 0 < 6 < 2 and some ¢ > 0,

3.1 Vla@@)['*{f* () dx < oo, where  f*(X) = SUPygyz. f(X + 1)
(3:2) § la@)P = [u)[{f*()}] dx < oo ,
(3.3)  Sla@[ g @) dx < oo, where ¢.7(x) = SUPy,g. [f7(x + 1)
(3:4) § la(x)['~*{|v(x)|g. (%)} dx < oo,

then, choosing h, = O(n~**V™") and K, e 5, such that §u+='K,(u) du = O for
j=1,--,r—1,i=1,2 yields

rn _ r*(G) — O(n—(r—1)5/(2r+1)) .

Proor. Let ¢ and § be given. Applying the Markov inequality in (25),



940 M. V. JOHNS, JR. AND J. VAN RYZIN

recalling (8) and (21), and using the c,-inequality (Loéve [2] page 155) with
r = 0, we have
(28) r, — r*(G) £ b § |a(x)['°E|a,(¥) — a(x)|’dx
<4,+B,+¢C,,
where
A4, = ¢;ble] § [a(®)°E| folx) — fX)) dx 5
B, = ¢ § [a(x) ' [0(x)PE| fu(x) — fX)I dx 5
C, = c;b§|a(x)|'E|f,(x) — fU(x)°dx.
We shall find bounds for 4,, B, and C,. First, note that
(29) E| f(x) — f®)° < [Var {f(1" + [Efu(x) — f° -
But, recalling (10)
Var {f.(%)} = (nh,?)" Var {Kl ( X = ")}

(30) < (nh,) ™ § KX(u)f(% + Znu) du
< (nh,) 7§ Ki'(u) du}f.(%) if hyu <

Also, by Lemma 2 since f"(x) exists and is continuous, a Taylor’s series
expansion of f(x + h,u) about x yields
|Efu(x) — f9)] = [§ {f(* + huu) — f)}Ki() du]
(1) < | {3 RO o)

o B 1§ o+ e )

where 0 < {(x, u) < h,u < h,u,. Hence if h,u, < ¢ our choice of K, making
{wK,u)du =0 forj=1, ..., r — 1, yields
h, o wr|Ky(u)| du

r.

(32) |Efu(x) — f(¥)| = 4.7(x) =

Thus, (30) and (32) substituted in (29) together with conditions (3.1) and (3.3)
imply
(33) A, = O((nh,)~") + O(h,")

= O(n—75/(2r+1))

where the second equality follows from our choice of 4,. Similarly, conditions
(3.2) and (3.4) together with (28)—(30) imply
(34) B, = O(n=r3/Gr+D)

To bound C,, observe that as in (29),

(35)  E|f.0(x) — fO@P < [Var (L0 + [ELV() — [P -
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Recalling (15) and the ¢,-inequality, we have

Var {£,9(x)} = (nh,?) Var { zlhn Kz(%;_x)_ 1 K2<X]; )

n

ELK2<X_ x)
h, 7

n

2

1 X —x
36 < 2(nh3)? {E‘ K<____
(36) = 2(nhy) 2h, '\ 2, >

= 2(nh,)7 § K@) f(x + 2h,u) + f(x + h,u)} du
< 3(nh,2)M§ KX(u) dulf,*(x) if 2hu <e.

Also, since f"(x) exists and is continuous, by our choice of K, we have as in (31),

_I_

EFL00) = £ = |- S K[ + 2hy) = fx + By} du — £

< h F D Gk @0+ G )

r!
+ [f7(x + §(%, w)|} du

where 0 < {,'(x, u) < 2h,u < 2h,u,and 0 < {,”(x, u) < h,u < h,u,. Therefore,
if 2h,u, < ¢ with @, = 2(r!)7'(2" + 1) § u"|K,(u)| du, we have

(37) E|f,0%) = [P = a,. b7 71¢. (%) -
Thus, from (35), (36), (37) and conditions (3.1) and (3.3) of the theorem we have
(38) Cn — O((nh”('!)—ﬁlz) + O(hn(r-—l)ﬁ) — O(n—ﬁ(r-—l)/(2r+1))

where again the choice of 4, furnishes the second equality.

From (33), (34) and (38) we see that C, is the dominating term of the bound
in (28) and since r, — r*(G) = 0, the proof of the theorem is complete.

By essentially the same arguments as were used for the 4, and B, terms of
Theorem 3, it can be shown with the aid of Lemma 3 that a similar result holds
for Case II for all r > 1. We state this result without proof.

THEOREM 4. In Case 11, let 0, be defined by (6), (10) and (24) with K, e 5%
If EA < co and h'™)(x) exists and is continuous for some integer r = 1, and if for
some 0, 0 < 0 < 2, and some ¢ > 0.

(4.1) Vla@ = {fr ()P dx < ooy fX(%) = sUPgis, (X + 1)

(4.2) §la@)Iw){f*(x + D] dx < eo
(4.3)  §le) g (Y dx < 0o ¢, 7(%) = SUPygug. | f7(x + )|
(4.4) § la@)=*{w(x)q. " (x + 1)} dx < oo

then, choosing h, = O(n=""*Y""y and K, € .5 such that { wiK(u)du =0,j=1,. ..,
r — 1 yields,
r, — r*(G) = O(n-orier+n)

6. Examples and moment condition corollaries when 6 < 1. In this section we
give two examples which illustrate quite clearly the meaning and usefulness of
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Theorems 3 and 4 when 6 < 1. For other examples to which our results could
be applied see the papers of Robbins [5] and Samuel [6]. For an example when
0 > 1 see Section 7.

ExaMpLE 1. (Negative Exponential). Consider the family of negative expo-
nential densities given in the Case I parameterization by

(39) fa(%) = 2e7* Ai>0, x>0
=0 otherwise ,

where (A1) = 2and A(x) = 1or0asx>0or x<0.
Observe the following facts about f(x) = § f;(x) dG(2) when f;(x) is given by (39).

(40) [ (%) = supeg, f(X + 1) = f(x) forall x and ¢>0.
(41) f™(x) exists forall x>0 by Lemma?2.

Furthermore, | /()] = § 4"+ exp{—2x} dG() and |g,(x)| = supozes |f "(* +
)| = |f"(x)| for all x and ¢ > 0.

(42) [fOx) < flx—1) for x> 1 since exp{—AJa-<r!.
Also, since v(x) = h"(x)/h(x) = 0, we have by (8) that a(x) = —cf(x) — fV(x)
and by (44) for x > 1
(43) la(x)] < ¢f(x) + flix — 1) < (¢ + Dfx - 1).
We now combine these facts to give the following consequence of Theorem 3.
COROLLARY 3.1. For the negative exponential family (39), Theorem 3 holds for
integerr = 2and 0 < 0 < 1if
(3.1.1) EA™ < o0
(3.1.2) EN-0+0010=0) & oo for some ¢>0.

Proor. Since v(x) = 0 Conditions (3.2) and (3.4) of Theorem 3 are trivially
satisfied. To verify Conditions (3.3) note that by (41), (42) and (43), we have

@4 Soala@ g @Y dx S rle + 1) §7 flx — Ddx = ri(c + 1)

But, since |a(x)| < ¢f(¥) + fP(¥) < cEA + EA* < oo and by (41), [¢.7(x)| =
| f"(x)| < EA™' < oo, the integrand in Condition (3.3) of Theorem 3 is bounded
for 0 < x < 1 and zero for x < 0. Thus, (44) completes the verification of (3.3).

Finally, to verify (3.1) of Theorem 3 it suffices by (40) and (43) and the fact
that the integrand of (3.1) is bounded by (cEA + EA?)'7°(EA)’?, for 0 < x < 2,
to show

(45) i {f(x)}~7dx < oo .
But with 7 = (1 + #)9/(2 — 0), the Holder inequality implies
7 (-1 dx < (55 %00 (e xf(x) dafi=or
— {Sr’ x—(1+t) dx}6/2{EA—yI‘(7] + 1)}1—5/2
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where I'(+) is the gamma function and the equality follows by Fubini’s theorem
applied to the second factor. Thus by (3.1.2), (45) is verified completing the
proof of the corollary.

Corollary 3.1 illustrates that the conditions of Theorem 3 correspond to
existence of certain moments on the prior distribution G(4). For example, if
G(2) is a prior distribution having a Lebesgue density for some ¢t > 0 and a > 0

£(R) = 2te~ig(A) A>0
=0 otherwise

where ¢(2) is bounded on (0, oo), then 6 = 1 and r may be taken arbitrarily large
in Corollary 3.1. Thus, the rate for this case may be made arbitrarily close
algebraically to O(n~%), that is, the rate O(n=#*#) is attainable for any g > 0 by
a suitable choice of K, and K,. For further analysis with > 1 for a prior in
the above class see Section 7.

By a quite similar analysis, here omitted, we give a corollary to Theorem 4
which is attainable for the negative exponential family under the Case II para-
meterization. Under Case II, (1) = —loga for 0 < 2 < 1 and A(x) = 1 for
x > 0, so that

(46) fi1(x) = 2%(—1log 2) 0<icl, x>0
=0 otherwise .
Under this representation, we have

COROLLARY 4.1. For the family (46), Theorem 4 holds with integer r = 1 and
0 < 0 £ 1 provided

(4.1.1) E(—log A)*' < oo, and
(4.1.2) E(—log A)=(#0818=0) & oo for some t > 0.

ExampLE 2. (Normal, Unknown Mean). We shall now apply Theorems 3
and 4 to the family of normal densities given by

(47) fo(X) = (2m)"te d==0" —o < x<L o0, —oLlLo.
Under Case I, with 2 = —6, (1) = (2r)~t exp{—14%}, h(x) = exp{—4x’}, we have
(48) [1(x) = e *=B()h(x) , —o LX< o0, —wliLoo.

Observe the following facts about f,(x) and f,*(x). If0 < ¢t < ¢, then fi(x +
1) < fi(%) + exp{3e?}fu(x + ¢). Therefore, if exp{4¢’} < 2, we see that

(49) Fux 4+ 1) = fi(%) + 2fx(x + o) if 0<r<e
and,
(50) [5(X) = supoge<. f(X + 2)

< f(9) + 2f(x + ¢) -
By Lemma 2, f(x) can be computed by repeated differentiation under the
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integral sign in f(x) = { f(x) dG(2) with the result that

(51) FO) = (1) § H(x + 4)fi(x) dG(2)
where H,(+) is the rth Hermite polynomial.
Another useful fact to note is that since v(x) = A" (x)/h(x) = — x, we have by
(8) and (51) that a(x) = —(x + ¢)f(x) — § (x + 4)f3(x) dG(2) and hence
(52) la()] < (le] + [*Df(x) + § [x + 2] fi(x) dG(2) -

We are now in a position to verify the following consequence of Theorem 3.

COROLLARY 3.2. For the normal family (47), Theorem 3 holds with integer r = 2,
and 0 < 0 < 1 provided

(3.2.1) EIA" < oo, . and
(3.2.2) E|A+36+012=0) & oo for some t>0.
ProoF. Since |[v(x)| = |x]|, the integrability conditions (3.1) and (3.3) are im-
plied by (3.2) and (3.4) respectively. To verify (3.2),let 0 < e < 1 and 6 >0
be given where exp {}¢’} < 2. Then by defining
y(x) = (¢ + [*)f(x) + § [x 4 2|fi(x) dG(2) + 2f(x + ¢)

with ¢/ = max {1, |¢|} and noting that f,*(x) < y(x) by (52) and |a(x)| < y(x) by
(54), we have (3.2) holding if § {y(x)}'~*"*|x|°dx < oo. Equivalently, (3.2) holds if

(33) $iatzn (PP dx < oo
To verify (53), note that by the Holder inequality,
(54) Sroiz (POOY 2111 dx < e*{§ p(x)]x]? =20

where 8 = B(f) = 03 + 1)/(2 — 8) and c* = c*(f) = §11x1 |X|~0* dx for some

t> 0.
Now let g, = (2r)% § |x|*exp{—4x’} dx for u > 0. Note that by the c,-

inequality with r = 8, 2 § |x|*f(x + ¢) dx = 2° { |x|°f(x) dx + (2¢)” and by Fubini’s
theorem we have .
§ y(0)|x17 dx < §§{(C + 29)[x]? + (%2 + [ + A [x]* + (26)°) fo(») dxdG(2)
(55) < 207+ 2°)(pp + EA) + 2(prp + EIAF)
+ 27 (g + EIA]) + (2¢)
where the second inequality is by the c,-inequality with r = and 1 4 3. From
this inequality we see that (3.2.2) implies § y(x)|x|’dx < co from which (54)
implies (53), thus verifying Condition (3.2) of Theorem 3 for this example.
Next, we need to verify (3.4) of Theorem 3. With a;" as the jth coefficient
of the rth Hermite polynomial, we have by (51) that

If 7+ O] < S H(x + 2+ 0)|fi(x + 1) dG(2)
(36) < Ti-olay| VX + 2+ 1fi(x + 1) dG(2)
< inola7 27§ [x + Aifu(x + 1) dG(2) + £f(x + 1)}
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where the last inequality is by the ¢,-inequality. Note that by (49) and (50) and
basic moment inequalities the right-hand side of (56) is bounded by a linear com-
bination of integrals of the form § |x + 2|°(fy(x) + 2fy(x +¢))dG j=0,---,r.
Therefore, to verify (3.4) with |v(x)| = |x| from (56) and the fact that |x + 2! <
|x 4+ 4"+ 1,j=0, ..., r, it suffices to show that

(57) § {a(x)f~?la*(x)’|¥ dx < oo

where a*(x) = §(|x + 4" 4+ 1)(fi(*) + 2fi(x + ¢)) dG(2). But noting that a*(x) <
y*(x) and |a(x)| < y*(x) where

y*E) = §{(el + 1+ [x + [ 4+ Afa() + 2(x + 4" + Dfy(x + )} dG(2)
we see that (57) holds if
(58) § [x[°p*(x) dx < oo .

By using Fubini’s theorem and the c,-inequality repeatedly in (58) one can bound,
as in (55), the integral in (58) by ¢, + ¢, E|A|® + ¢, E|A|'*?, where ¢, ¢, and ¢,
are certain finite constants depending on absolute central moments of the standard
normal density. Thus, (57) holds if E|A[**? < oo, which is always true under
(3-2.1). This completes verification of (57) and hence (3.4) of Theorem 3 for
this normal distribution example.

As in the previous example, a similar analysis yields the following corollary
to Theorem 4 which is attainable for the normal family under Case II. In Case
I in (47) let 2 = exp {0}, B(2) = (2=)~* exp(—log 2)*, h(x) = exp{—4$x"}. Then,

(39) fi(®) = 2p(Dh(x), 0<A< o0, —ooL<x< 00,
Under this representation, we have

COROLLARY 4.2. For the family (59), Theorem 4 holds with integer r = 1 and
0 < 0 £ 1 provided

4.2.1) EllogAl" < o0, EA< oo, and
4.2.2) E|log A[1+3@+013=0) & oo for some t>0.

7. Examples with rate algebraically close to O(n~"). We present now example
in the negative exponential case and the normal case in which the  of Theorem
3 satisfies 1 < 6 < 2 and can be arbitrarily close to 2 depending on the prior
involved while r in the theorem can also be taken arbitrarily large. This illus-
trates that the rate of convergence of the empirical Bayes procedures in some
continuous cases can be arbitrarily close (algebraically) to O(n™"), that is, can
be O(n~*+¢) for ¢ > 0 and arbitrarily small.

Specifically, let f,(x) be the negative exponential density given by (39) and
let G(2) be a prior distribution having a Lebesgue density,

. a,1+t,2te—a]

=7 | h t>0, 0
1"(1+t) where > a >

(60) £(2)
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and I'(+) is the gamma function. With this prior on 1 we obtain
(61) f(x) = a1 + £)(x + a)~@+ and

() = (ZD@TT(r +2 4 1)
f7) T(1 4 #)(x + a)+2+

From (61), it can be shown that
62 §la@I AP dx = a, §5 |ay — exPd(x + a)P-oeroni dx

where g, = [a®*(1 4 #)]'"** and a, = 2 + t — ca. By examining the behavior
of the integrand in (62) as x — a,/c and as x — oo, we see that (62) is finite if
0<2and if 6 —1—20+ 34t — (dt)/2> 1, or equivalently if 6 < 2(1 +
1)/(2 + t). A similar analysis using (41) and (61) reveals that (3.3) of Theorem 3
is true for this example if ¢ < 2. We summarize as follows.

CoROLLARY 3.3. For the negative exponential family (39) with prior distribution
(60) on (0, o), Theorem 3 holds for any integer r = 2and any 6 < 2(1 + t)/(2 + 1),
where t is the parameter of the conjugate gamma prior (60).

In the normal case with unknown mean, a similar detailed analysis (here
omitted) yields

CoROLLARY 3.4. For the normal family (47) and (48) with conjugate normal prior
distribution in 2 having Lebesgue density on (— oo, co) given by

§(A) = (2na)t exp{—(30,)(2 — 4)}
Theorem 3 holds for any integer r > and any 4, 0 < d < 2.

Corollaries 3.3 and 3.4 thus exhibit examples for which a rate algebraically
close to O(n') may be obtained by choosing K, and K, suitably for certain
specific priors.

8. Concluding remarks. This paper hasdemonstrated that the difference between
the actual (n 4 1)st stage risk of the empirical Bayes rule and the optimal Bayes
risk is O(n~?), where 8, 0 < 8 < 1, depends upon appropriate conditions in
Theorems 3 and 4, for certain continuous exponential distributions in certain
two-action decision problems. The true convergence rate depends on the nature
of the unknown prior distribution G(2). Section 6 illustrates by examples that
for rates up to 8 < 3, the conditions of the theorems reduce to the existence of
certain moments on the prior distribution. Section 7 gave examples where j3
could be arbitrarily close to 1. Other examples of this type can be easily con-
structed with other exponential families and various priors. However, since the
conditions of Theorems 3 and 4 with the factor |a(x)|'~* when d > 1 are hard to
verify, general corollaries as those in Section 6 are difficult to obtain for o > 1.

In this regard, we wish to stress that although the actual rate may depend on
G(2) the construction of the procedure given by (6), (10), (15) and (21) for Case
I'and (6), (10) and (24) for Case II only depend on choosing {#,} and the kernels
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K(u) and/or K (u). For the judicious choice of these dictated by Theorems 3 and
4 we need only know the differentiability properties of A(x), a specified known
function for a given exponential family, and the assumed moment properties
EA™ < oo (Theorem 3) or E|log A|" < co (Theorem 4). Hence, in general, de-
pending on what moment assumptions one is willing to make on the prior G(2),
Theorems 3 and 4 dictate the procedure to be chosen. It must be remarked
however that the actual convergence rate truly depends on the unknown prior.

Clearly the methods of this paper are easily extendable to give results for
two-tail testing problems and certain polynomial loss functions as examined by
Samuel in [6]. :

It is our hope that this and the previous paper [1] have shed light on the more
exact asymptotic behavior of certain empirical Bayes procedures in two-action
problems. Specifically, we have examined extensively the question of rate of
convergence to optimality raised by Robbins in [5].

Acknowledgment. The authors wish to thank the referee for the improved ver-
sions of Lemmas 2 and 3 which removed additional assumptions in an earlier
version.
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