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1. Introduction. A standard version of the subjective expected-utility formu-
lation includes a set C of consequences, a set S of states of the world, and a set
of “acts” which are functions on S to C or on S to a set that includes C. With
X denoting the set of elements into which the states are mapped by the acts, and
letting f, g denote acts, an individual’s preference relation > on the acts is
assumed to have certain properties that imply the existence of a real-valued
function u on X and a finitely-additive probability measure P on an algebra .5
of subsets of S such that, for certain pairs of acts,

(1) S > giff §u(f(s)) dP(s) > § u(g(s)) dP(s) .

In Savage’s theory [5, 7] X = C, the acts are all functions on S to C, & is
the set of all subsets of S, and (1) holds for all pairs of acts with # bounded and
P such that if 4 € Sand 0 < a < 1 then P(B) = aP(4) for some B < A.

To avoid such a strong property for P, Fishburn [4] uses “extraneous” prob-
abilities to form the set & of simple probability measures on C and takes X = 2.
& is the set of all subsets of S, and the axioms in [4] imply (1) for all pairs of
acts with u(x) = ¥, u(c)x(c) when x e . No special properties arise for P, and
u may or may not be bounded, depending in part on the nature of P.

This paper generalizes the approach of [4] in several ways. First, & is re-
placed by an arbitrary mixture set X as defined by Herstein and Milnor [6].
Second, we shall carry out the analysis with an arbitrary Boolean algebra & of
subsets of S. This change requires special considerations for acts (functions on
§ to X) and special properties, including measurability as defined in Section 6,
must be considered in connection with (1). A third change from [4] is that the
final axiom used there is considerably weakened here without affecting the con-
clusions of the theory. In terms that are clarified later, our main conclusions
from the axioms are that (1) holds for all pairs of acts in the convex closure of
the set of “measurable” acts, and that every such act is “bounded.” In addition
to our main axioms we shall comment on a preference axiom that implies that
P in (1) is countably additive.

Perhaps the best introduction to our use of an arbitrary Boolean algebra .&
rather than the set of all subsets of S is pages 8-10 in Dubins and Savage [1].
As they note, the use of the largest algebra avoids problems of measurability
and integrability that arise in our discussion. However, they recognize the dif-
ficulty an individual may have in trying to visualize certain sets in this algebra.
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918 PETER C. FISHBURN

The use of a judiciously chosen .&” can alleviate this difficulty. With this in
mind we proceed to our formulation.

2. Mixture sets and formulation. A mixture set [6] is a nonempty set M and a
function that assigns an element af + (1 — a)g in M to each a ¢ [0, 1] and
(f>9)e M X M such that, for all f, ge M and «, [0, 1]:

M1. 1f 4+ 0g = f,

M2. af + (1 — a)g = (1 — a)g + af,

M3. afff + (1 = B9l + (1 — a)g = aBf + (1 — af)y,

M4. af + (1 — a)f = f.
M4 is implied by M1, M2 and M 3. 'Any nonempty interval of real numbers
is a mixture set when af + (1 — a)g is interpreted in the usual way. If Misa set
of probability measures on a fixed algebra of subsets of some nonempty set and
if M is closed under direct convex combinations of measures then M is a mix-
ture set.

An Archimedean weak ordered mixture set is a mixture set M and a binary rela-
tion > on M that satisfies the following three axioms for all f, g, he M:

Al. > on M is a weak order: that is, > is asymmetric, and f > g = f > h or
h>g.

A2, f>gand0 < a<l=af+ (1 —a)h>ag+ (1 —a)h

A3. f>gandg > h= af + (1 — a)h > g for somea c (0, 1),and g > Bf +
(1 — B)h for some B € (0, 1).

A real-valued function w on M is linear iff w(af + (1 — a)g) = aw(f) +
(I — a)w(g) for all (a, £, g) € [0, 1] x M*. The following theorem, a complete
proof of which is given in [5] (pages 110-115), is similar to the von Neumann-
Morgenstern expected-utility theorem [9].

THEOREM 1. Suppose that (M, >) is an Archimedean weak ordered mixture set.
Then there is a linear real-valued function w on M such that

f>g iffw(f)>wlg)  forall f,geM.

Moreover, a linear real-valued function w' on M satisfies this in place of w iff there are
numbers a > 0 and b such that w'(f) = aw(f) + b for all fe M.

The final sentence in this theorem is often abbreviated by saying that w (linear
and order-preserving) is unique up to a positive linear transformation.

We now turn to the formulation that will be used throughout the paper. First,
X, with elements x, y, - - -, will denote a mixture set associated directly with the
consequences. In [4], X was taken as the set of simple probability measures on
the consequences. In the case where the consequences constitute an interval of
real numbers (such as when the consequences are dollar amounts) X could be
this interval with ax + (1 — a)y interpreted in the usual way. Under this inter-
pretation our axioms imply that the utility of x is directly proportional to x.
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Although this is often unrealistic it is frequently used in decision-theoretic
studies (such as [1]) to simplify the analysis.

Second, with S the set of states of the world [7], % will denote a Boolean
algebra of subsets of S. The actual choice of .>“in a particular situation may
depend on the ability of the individual to visualize various subsets of S and on
certain considerations of preference. Elementsin.&” will be denotedas 4, B, - - ..
A° is the complement of A.

We shall call .97 an .Spartition iff %7 is a set of mutually disjoint subsets of
S each of whichisin &, and J, 4 = S.

The largest class of “acts” that we shall consider is

F = {f: fisa function on S to X and there is an .>Zpartition
on each element of which the function is constant}.

If % contains every unit subset of S then F is the set of all functions on S to X.
Otherwise there may be non-measurable functions on S to X that are not in F,
but these would apparently be of no real interest. (If they were then .&” could
be enlarged to account for them.)

With af 4 (1 — a)g the function that assigns af{(s) + (1 — a)g(s) in X to state
s, it follows that F is a mixture set. In later sections we shall discuss several
subsets of F that are also mixture sets.

For f,geF, f =g on Aiff f(s) = g(s) for allse 4. For fe Fandxe X, f =
x on A iff f(s) = x for all se 4. % is the “act” in F for which X(s) = x on S.
That is, x is a constant “act.”

The preference relation > will be applied to For a subset of F. Indifference ~
is defined by f ~ g iff not f > g and not g > f. We shall let _#" denote the
“null” events in .&*, defined as follows:

N ={A: Ae Fand f ~ g whenever f,ge Fand f = g on 47} .

The preference relation > will be used with elements in X" as well as F under
the following definitions: x > f iff ¥ > f, x > y iff X > y and so forth.

3. Simple acts. With F” & F suppose that F’ is a mixture set. Then (F’, >)
is regular if and only if the following hold throughout F":

Ad. x > y for some x, y € X,
AS5. (AeS— vV andf=xonAdandg=yonAand f =g on A) = (f >
g iff x > y).
These are similar to A4 and A5 in [4] and to P5 and P 3 in [7].
Let F, be the simple acts in F so that
F,={f: feFand f is constant on each element in some finite
Spartition} .

THEOREM 2. Suppose that Fy & F' = F and that (F', > ) is a regular Archimedean
weak ordered mixture set. Then there is a linear real-valued function u on X and a
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finitely-additive probability measure P on & such that, for all f, g€ F,and Ae &,

) f>g it §u(f(s)) dP(s) > § u(g(s)) dP(s) ,

3) P(A) =0 iffde. 1.

Moreover, u' (linear) on X and P' on & satisfy (2) in place of u and P iff P = P
and v’ = au + b witha > 0.

Proor. Much of this proof is essentially the same as the proofs indicated for
Theorems 2 and 3 in [4]. However, the early part of the derivation of (2)
requires some comment.

Let {B,, - --, B,} be a finite .S~partition and let F, be the subset of F, of func-
tions constant on each element of this partition. (F,, >) is easily seen to be an
Archimedean weak ordered mixture set. Hence, by Theorem 1 there is a linear
real-valued function w on F, such that

4) f>g iffw(f) > w(g) forall f,gefF,.
We represent f e F, by the n-tuple (f(B,), - - -, f(B,)). Fix ye X, define w,(y)
fori=1, ..., nso that 37, w,(y) = w(J), and define w, on X by

wi(x:) = W(ps s s X s s Y) — Dgei Wi(D) -

Summation gives 3 w;(x;) = 2 wi(y, -, ¥ X Y, -+, Y) — (n— 1)w(P).
Using M2 and M 4 on the mixture set X (for each component i < n), (x,, - - -,

xi’ya ° "y) + %(y’ t "ya Xit1s ya o "y) = %(xl’ ey Xy Xigns ya ° e ',y) + %}7-

Since the two sides of this are equal, they are indifferent, and hence have the

same w value from (4). Linearity of w then gives w(x,, ---, x;, y, -+, y) +
W(Pse o s Vs Xy, Yoo s Y)Y = W(Xy ey Xiiys Vy0 - <5 ¥) + w(P). Summing this from
1 to n — 1 and cancelling gives w(x,, -+, x,) = 2 W(y, - -+, P, X;, Vs ==+, Y) —

(n — I)w(p). Comparing this with the result of the preceding paragraph we
see that

(5 w(xy, « -0, X,) = 2o wi(x) forall (x,, ---,x,)eFy.
Suppose that B, €.~ — .4~ Then by AS, (4) and (5),
x>y iffwi(x) > wi(y), forall x,yeX.
By linearity and (5)
w(a(y, ==y Xy ) H(L=a)(p ey 2y, 05 y)
= aw(%) + (1 — a)wi(2) + 20 w,(p) -

Using (5), w(a(y,- -+, p, %, 3,0, ) £ (L= a)(ps- -5 5 2,90+, ) = wilax +
(I —a)z2) + X, wi(ay + (1 — @)y). Sincey = ay + (1 — a)y by M4, w(ax +
(1 — @)z) = aw,(x) + (1 — a)w,(z) and therefore w; is linear.

Thus, it follows from Theorem 1 (applied to X) that if B;, B, € & — ./ then
w; is a positive linear transformation of w;. By methods indicated previously
[3, 4] there is a linear real-valued function u, on X and nonnegative numbers



SUBJECTIVE EXPECTED UTILITY 921

P4(B;) that sum to one such that, for all f, g € F,

f>9 iff 55 Pu(Buy(f(B)) > Liss Pu(Buy(9(By)) »

with Py(B;) = 0 iff B;e _#"
The rest of the proof is similar to the proof of Theorem 3 in [4].

4. Countable additivity. Before examining the extension of (2) to more general
acts we note a preference axiom that implies that P in (2) is countably additive.
Since .&”is usually assumed to be a g-algebra when countable additivity is con-
sidered, we shall follow this tradition.

ACA (Axiom for countable additivityj. Suppose that each A; is in &, that A, =
A, S .-, that A = U, A; and Be &7, that x > y and that

fo=x on A, fo=y on Ar°, for n=1,2, ...
fa=x on A, fi=y on A,
fs=x on B, fs=y on B°.

Then if f, > fp there is some n such that f, > fp.

Within the setting of Theorem 2, each f, and each of £, and f,;is in F,. Sup-
pose that 4,, 4,, - - - is an increasing .>sequence with limit 4 € .57 (by s-algebra)
and that Be & and P(4) > P(B). Then, since x > y for some x, y € X by pre-
vious assumption (A 4), we can structure f,, f, and f, asin ACA. Since P(4) >
P(B) iff f, > fy and P(4,) > P(B) iff f, > f; by (2), it follows from ACA that
P(A,) > P(B) for some n. It then follows from Theorems 1 (page 1789) and 2
(page 1794) in Villegas [8] that P is countably additive.

Axiom ACA is not devoid of intuitive appeal. To paraphrase Feller ([2]
page 106), when 4, & 4, & - - - and 4 = | 4,, one could argue for sufficiently
large n that 4, is practically indistinguishable from 4. If (x, y) = (win $1000,
win nothing) and the individual would rather bet on the occurrence of 4 than
on B for the $1000, then ACA requires that, for some sufficiently large n, he
would rather bet on 4, than on B for the $1000.

A somewhat gloomy and admittedly porous example for the failure of ACA
runs as follows. A4, = “man will be extinct by day n”’, 4 = “man will someday
be extinct”, and B = “one flip of this penny will yield ‘heads up’”. It seems
conceivable that a person could consider 4 more probable than B and yet find
B more probable than A, for each n.

On balance, Savage ([7] page 43) seems to have a reasonable attitude toward
an axiom such as ACA. He feels that it ought not to be adopted outright for
all situations, although there may be special situations where it is applicable
and in which its implications can be put to good use in decision analysis.

5. A bounding lemma. Throughout the rest of this paper # on X and P on.&”
are assumed to have the properties specified in Theorem 2. We shall assume in
this section that (F, >) is a regular Archimedean weak ordered mixture set.
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Then, along with (2) for F;, we know from Theorem 1 that there is a linear real-
valued function v on F such that

(6) f>g iffv(f) > v(g) forall f,geF.

The restriction of v on F, is also linear and satisfies f > g iffv(f) > v(g), for
f> g € F,. Definingu(f) = § u( f(s)) dP(s) using (2) for f ¢ F,, u also is linear and
satisfies f > g iffu(f) > u(g), for f, g e F,. Since F, is an Archimedean weak
ordered mixture set, it follows from Theorem 1 that v on F; is a positive linear
transformation of u on F,. Therefore, with no loss in generality we can specify
that

(7) v(f) = Su(f(s))dP(s)  forall feF,
along with (2) for F, and (6). :

The question then is whether v(f) = § u(f(s)) dP(s) for fe F — F,. To ap-
proach this question we shall use one more axiom, namely

A6. If f(s) > x forall sc S then not x > f. If x > f(s) for all s S then not
f>x

This says that if the person prefers every conceivable element in X under f'to a
given element x € X then he does not prefer x to f. The second half has a dual
interpretation. We note that A 6 is weaker (assumes less) than the final axiom
in [4], which says that if f(s) > g for all se S then not g > f (and its dual).
Because of this we require a new proof of the following lemma which is used
in extending (2) [or (7)] to acts not in F,.

LeEMMA 1. Suppose that (F, >) is a regular Archimedean weak ordered mixture
set that satisfies A6. If Ac.%”, P(A) = 1, and if c and d are finite when ¢ =
inf {u(f(s)): s€ A} and d = sup {u(f(s)) : s € A}, then
(8) c<u(f)=d.

Proor. Under the hypotheses of the lemma let g = fon 4 and ¢ < u(g(s)) = d
on A°. With fe Fand 4 ¢ .%“itiseasilyseen that g ¢ F. Since P(4) =1,4°e .4~
by (3) and therefore g ~ f. Hence v(g) = v(f) by (6). Thus it will suffice to
show that ¢ < v(g) < d. We show that v(g) < d. The proof for ¢ < v(g) is
similar. Two cases are considered as follows.

Case 1. ¢ < d. Let x;, x,, - - -, in X satisfy u(x,) < u(x,) < - - - with u(x,) —d.
(This is guaranteed by the linearity of # and ¢ < d.) Fix ye X with u(y) < d.
Then, since d = u(g(s)) for all s,

u(x,) > au(g(s)) + (1 — a)u(y) for all se S

whenever a < [u(x,) — u(y)]/[d — u(y)]. Using A6, (6) and (7) we get d =

u(x,) = v(ag + (1 — @)F) = av(g) + (1 — a)u(y), or d = av(g) + (1 — @)u(y).
Since a can approach 1 as n — oo [u(x,) — d], it follows that d = v(g).

Case 2. ¢ =d. The case 1 proof applies if u(y) < d for some y e X. Hence-
forth assume that u(x) = d for allx ¢ X. Contrary to the desired result, suppose
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that v(g) > d. Then, since x > y for some x, y (by A4), there is a ze X such
that v(g) > v(z) > d. But z > g(s) for all s and therefore v(z) = v(g) by A6
and (6), a contradiction. Hence v(g) < d.

6. Measurable acts. Evenunder A6 it should be clear that v( f) = § u( f(s)) dP(s)
need not be true for all fe F. For a simple example that is suggested by Exam-
ple 1 (page 13) in Dubins and Savage [1], let S be the positive integers, take
&= |{A: A is finite or contains all but a finite number of elements in S}, and
suppose that P is diffuse with P(4) = 0 if 4 is finite and P(4) = 1 otherwise and
that u(x) = x forall xe X = [0, 1]. Now let f be such that f(even integer) = 0
and f(odd integer) = 1. Clearly f e Fbut fis notin F,. The integral §u( f(s)) dP(s)
is not well defined, and there are extensions of P to algebras that include .%”and
that contain {2, 4, 6, - - -} such that { u( f(s)) dP’(s) can take on any value in [0, 1]
depending on the extension P’.

Because § u(f(s)) dP(s) need not be well-defined for every f e F we shall con-
cern ourselves with those f for which § u( f(s)) dP(s) is well-defined. Some special
definitions will be used in this. Because we are working with Boolean algebras
and a probability measure that is not necessarily countably additive, our defini-
tion of a measurable act is tailored to this context. u and P are as given in
Theorem 2.

DEFINITION 1. f'e F is measurable iff {s: u(f(s)) € I} ¢ & for every interval /
of real numbers.

DEFINITION 2. f € F is bounded iff there is an 4 € & and real numbers a and
b such that 4 S {s: a < u(f(s)) < b} and P(4) = 1.

Clearly, f is measurable iff {s: u(f(s)) < a} € & and {s: u(f(s)) > a} € & for
every real number a. Because u(X) is an interval of real numbers (by linearity) it
follows easily that f is measurable iff {s: f(s) > x} ¢ &“and {s: x > f(s)} € & for
every xe X. If fe Fis of real interest to the individual then it seems sensible
that the events {f(s) > x} and {x > f(s)} be in & If they are not in .5 then
one may wish to extend >“to include them. This is why we said earlier that
the actual choice of .%“may depend on considerations of preference.

Let F*, which includes F, be the set of all f ¢ F that are measurable. Then
F* is not necessarily a mixture set. Using our former example, suppose that
S={1,2,.-+}, ¥ ={A4: A < Sand 4 or 4°is finite}, u(x) = x for all x [0, 1],
and that

f(s) = s/(1 + 3) for all s,
g(s) = 1/(1 + ) for even s
=(s+2)/[(s+ 1)(s+3)] forodd s.
Then £ is strictly increasing in s and g is strictly decreasing in s so that fand g
are measurable. However, §f + }g is not measurable since

{s: u(Gf(s) + 39(9)) < 3} = {51 u(f(s)) + u9(s) <1} = {1, 3,5, -},
which is not in .&”. (We consider this further in Section 7.)
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That this result depends critically on S not being a g-algebra is shown by the
following lemma.

LEMMA 2. F* is a mixture set if & is a o-algebra.

Proor. We need to show that f, g e F* and 0 < a < 1 imply that af + (1 —
a)g € F*. Tt will suffice, for a fixed a and a, to show that 4 = {s: au(f(s)) +
(1 — a@)u(g(s)) > a} € <. Let Ra be the set of rational numbers. If s 4 then
there are b, ¢ € Rasuch that b 4+ ¢ > aand au(f(s)) > b and (1 — a)u(g(s)) > c.
For b, ce Rasuch thatb + ¢ > alet B(b, c) = {s: u(f(s)) > b/a} N {s: u(g(s)) >
¢/(1 — a)}. Clearly B(b, c) < A and 4 is the union of all such B(b, c¢). Since f
and g are measurable, B(b, c) € &~ and therefore 4 ¢ .5 since &is a o-algebra

and the number of B(b, c) is countable.
Along with Definition 2 we shall say that f is bounded below iff there is an

A e .&”and a real number a such that 4 = {s: a < u(f(s))} and P(4) = 1. Simi-
larly, f is bounded above iff there is an 4e . and a real number b such that
A S {s: u(f(s)) < b} and P(4) = 1. We omit the simple proof of the next
lemma.

LEMMA 3. fe F is bounded iff f is bounded below and above.

With » and P as given by Theorem 2 and v on F satisfying (6) and (7) we now
state our main theorem.

THEOREM 3. Suppose that (F, >) satisfies A1 through A6: that is, (F, >) is a
regular Archimedean weak ordered mixture set that satisfies A6. Then every measur-
able f is bounded and v(f) = § u(f(s)) dP(s) for every measurable f.

The proof of Theorem 3 is carried by the following lemmas, in which A1—
A6 hold for (F, >).

LeEMMA 4. v(f) = §u(f(s)) dP(s) if f is measurable and bounded.

LEMMA 5. If there is a denumerable S partition with P(A) > O for every A in
the partition then u on X is bounded.

LEMMA 6. If f is measurable then it is bounded.

ProoF oF LEMMA 4. Assume that f is measurable and bounded with 4¢.%
P(4A) = 1and 4 S {s: a < u(f(s)) < b} with a and b finite.

Let g = fon 4 and g = y on 4° where a < u(y) < b. g is measurable since
{s:u(g(s))el} = [{s: u(f(s))el} N A] U C where C = @ ifu(y)¢ Iand C = A°
ifu(y)el. Sinch 4°e 7] f ~ g and thus v(f) = v(g) by (6). Moreover, since
P(4) =1 and both f and g are bounded and measurable, § u(f(s)) dP(s) =
§ u(g(s)) dP(s). It suffices therefore to show that v(g) = §u(g(s)) dP(s). This is
immediate from Lemma 1 if @ = b.

Henceforth suppose that @ < b and take a = 0 and b = 1 for notational con-
venience. For a positive integer n let

4, = {s: 0 < u(g(s)) < 1/n)
A, ={s: (i — Dn < u(g(s)) < ifn} i=2,..-,n.
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S = U 4,, and each 4, is in % since g is measurable. Take x; e X for i =
1, ..., nand define measurable f;, g, and A, thus:

fi=9 on A4, fi=x, on Af for 1,...,n

g; =%, on i, 4;, g; =x; on Ui 4; for i=1,...,n—1

h,=g9 on Uit 4;, h; =%, on Ui, 4; for i=1,....,.n—1.
Note that g = h,_,. As is easily verified, {f, + §f, = 39, + 3h, and 1h,_, +
$firi =309, + b fori=2,...,n— 1. By linearity for v and (6), v(p) + v(q) =
v(r) 4+ v(t) when 4p + 3q = 4r + }¢. Using this and summing and cancelling
we find that

(9) v(g9) = D v(fi) — D5 v(9.) -

Since the x; € X are arbitrary, we can choose them so that (i — 1)/n < u(x;) <
ilnfori=1,...,n. Then, using Lemma 1, (i — 1)/n < v(f;) < i/n. Therefore

n—12 = Zv(f) =@+ D2,
Since linearity permits us to choose u(x;) arbitrarily close to (i — 1)/n, and since
V(g;) = Xha1 P(Ap)u(Xi11) + X3iv P(A;)u(x;) by (7) since g, € F, it follows that
for an appropriate choice of the x; we obtain w(g;) < X%, P(4,)(i/n) +
2teir P(4;)(i — 1)/n + 1/n*, then
T 0(g) < (1 — 1)/2 — Dy P(AYG — Dn + 1n.

Using (9), this gives o(g) = (n — 1)/2 — [(n — 1)/2 — £, P(A)(i — 1)fn + 1/n] =

»_,P(4;)(i — 1)/n — 1/n. By picking u(x;) close to i/n we obtain the other half
of the following bounds on v(g):

w P(A)(E — Dfn — 1jn < v(g) < Xiey P(AYin + 1n.

Since }3; P(4;)(i — 1)/n < §u(g(s)) dP(s) = X1; P(4,)i/n, it follows by letting
n— oo that v(g) = §u(g(s)) dP(s).

Proor oF LEMMA 5. This proof is essentially the same as the proof of Theo-
rem 5 in [4].

ProoF oF LEMMA 6. Let f be measurable. Contrary to the lemma, suppose
that f'is unbounded. Using Lemma 3 assume for definiteness that fis unbounded
above. We can suppose (after a linear transformation on u if necessary) that
[0, ) < u(X). Modify fe F as follows. For each element in an .>Zpartition
that verifies that f e F where u( f(s)) < 0, replace f(s) by y with u(y) = 0. The
modified f is in F, it is unbounded above and has u( f(s)) = O for all s, and it is
easily seen to be measurable. We work with f thus modified.

Let 4, ={s:n—1=Zu(f(s))y <n} for n=1,2,.... §=|J 4, and each
A, € &since f is measurable. Let C, = |Ji., 4;- Since f is unbounded above,
P(C,) < 1 foralln, and thus P(C,°) = P{u(f(s)) = n} > 0 for all n. We consider
two cases, according to whether P(C,°) — 0.
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Case 1. P(C,’) —»0asn— oco. Then thereare denumerably many 4, for which
P(A,) > 0. Letthesebe 4, , 4,,, - - - and let B, = Y 4,,, B, = Uz241 4,, - - - 8O
that {B,, B,, - - -} is denumerable .>~partition with P(B;) > 0 for every i. But
then Lemma S implies that # on X is bounded, and this contradicts the supposi-
tion that f is unbounded.

Case2. P(C,) > a > 0asn— co. Letx, have u(x,) = n. Let

gn = f on Cn ’ gn = xn on C'nc
h,=x, on C,, h,=f on C,r.

All g, and h, are measurable. Since g, is bounded also, Lemma 4 and P(C,°) = «
give v(g,) = na. Since h,(s) > x,_, for all se S, A6 and (6) give v(h,) = n — 1.
Since 1%, + 1f = 49, + 3k, 7+ v(f) = v(g,) + v(h,) and therefore v(f) =
na — 1 for all n. But with a > 0 this contradicts the finiteness of v( f).

Thus f must be bounded above, and a symmetric proof shows that f must be
bounded below. Therefore f is bounded.

7. Integrable acts. In concluding this study we note that v(f) = § u(f(s)) dP(s)
for every f in the convex closure F’ of F*. By Lemma 2, F/ = F* if &is a o-
algebra. Therefore what we say here extends our previous results only if .&is
not a g-algebra. Since an act in F’ need not be measurable, we need to make
clear the meaning of § u(f(s)) dP(s) in this case.

DEFINITION 3. fe F is integrable iff § u( f(s)) dP'(s) exists for every extension
P’ on the set of all subsets of S of P on .5 and takes the same value (—co and
+ oo being admitted) for every P’. This common value is written as § u( f(s)) dP(s).

The convex closure F’ of the set F* of measurable acts can be defined as fol-
lows. Let F, = {f: f = ag + (1 — a)h for some a € [0, 1] and g, he F*}. For
n>1letF, ={f: f=ag+ (1 — a)hforsome @ e [0, 1]and g, he F,_,}. Then
we define F’ = lim F, = 7., F,. Clearly F’ is a mixture set with F* S F' & F
and it is the minimal such mixture set. That is, F’ is the intersection of all
mixture sets in F that include F*.

THEOREM 4. Suppose that the hypotheses of Theorem 3 hold. Then every fe F'
is bounded and v(f) = § u(f(s)) dP(s) for evey fe F'.

Proor. First, let f = ag + (1 — a)h with g, he F*. By Theorem 3, g and A
are bounded. Take 4, Be &, P(4) = P(B) =1, A S {s: a < u(g(s)) < b} and
BS {s:cZu(h(s)) =d}. Then ANBeS, PANB)=1, and 4N B
{s: inf{a, ¢} < au(g(s)) + (1 — a)u(h(s)) < sup {b, d}}, so that f is bounded.
Using Theorem 3 and linearity, v(f) = av(g) + (1 — a)v(h) = § au(g(s)) dP(s) +
§ (1 — @yu(h(s)) dP(s) = § [au(g(s)) + (1 — @yu(h(s))] dP(s) = § u(ag(s) + (1 —
a)h(s)) dP(s). The only step in this chain that may need further comment is
the third equality. For this we use the definitions and results of Section 10.3 in
[5]. For any flet f'(s) = u(f(s)). Then, with g and 4 measurable and bounded,
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there are sequences r, r,, --- and t,, t,, - - - of simple real-valued measurable
functions on S that converge uniformly from below to g’ and 4’ respectively.
It follows that ar, 4+ (1 — a)t;, ar, + (1 — a)t,, is a sequence of simple real-
valued measurable functions on S that converges uniformly from below to ag’ +
(I — a)l/ = f’. It follows that f is integrable and that, for any extension P’ of
P, Sag'(s)dP(s) + § (1 — a)l'(s) dP(s) = § ag’(s)dP'(s) + § (1 — a)l (s)dP'(s) =
§[ag’(s) + (1 — @)H(5)]dP'(s) = § f'(s) dP(s).

Therefore if f € F, then f is bounded and there is a sequence of simple real-
valued measurable functions on S that converges uniformly from below to f”.
From the proof just given the same thing must be true for every fe F,. Induc-
tion then yields the desired result.

REFERENCES

[1] Dusins, L. E. and SAVAGE, L. J. (1965). How to Gamble if You Must: Inequalities for Stochas-
tic Processes. McGraw-Hill, New York.

[2] FELLER, W. (1966). An Introduction to Probability Theory and Its Applications, 2. Wiley, New
York.

[3] FisHBURN, P. C. (1967). Preference-based definitions of subjective probability. Anrn. Math.
Statist. 38 1605-1617.

[4] FisHBURN, P. C. (1969). A general theory of subjective probabilities and expected utilities.
Ann. Math. Statist. 40 1419-1429.

[5] FisuBurN, P. C. (1970). Utility Theory for Decision Making. Wiley, New York.

[6] HersTEIN, I. N. and MILNOR, J. (1953). An axiomatic approach to measurable utility.
Econometrica 21 291-297.

[7] SAVAGE, L. J. (1954). The Foundations of Statistics. Wiley, New York.

[8] VILLEGAs, C. (1964). On qualitative probability o-algebras. Ann. Math. Statist. 35 1787-1796.

[9]1 voN NEUMANN, J. and MORGENSTERN, O. (1947). Theory of Games and Economic Behavior,
(2nd ed.). Princeton Univ. Press.



