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A BERNOULLI TWO-ARMED BANDIT"

By DoNALD A. BERRY
University of Minnesota

One of two independent Bernoulli processes (arms) with unknown ex-
pectations p and 2 is selected and observed at each of nstages. The selection
problem is sequential in that the process which is selected at a particular
stage is a function of the results of previous selections as well as of prior
information about p and 1. The variables p and 1 are assumed to be inde-
pendent under the (prior) probability distribution. The objective is to
maximize the expected number oftsuccesses from the # selections. Sufficient
conditions for the optimality of selecting one or the other of the arms are
given and illustrated for example distributions. The stay-on-a-winner rule
is proved.

1. Introduction and statement of the problem. Let < and & denote inde-
pendent Bernoulli processes with parameters—probabilities of success—p and
4 respectively. Call .Z2 the right arm and & the left arm. An observation on
either arm is called a pull. A right pull or a left pull is made at each of r stages
and the result of the pull at each stage is known before a right or left pull is
made at the next stage. The parameters p and 2 associated with <% and & are
not known precisely but are themselves random variables. The sequences of
successes and failures associated with the right and left arms are therefore not
sequences of independent Bernoulli trials, but are independent conditional on
the unknown quantities p and 4, so that pulls on the right and left arms are
exchangeable—see, for example, (Feller (1966) Section VII 4)—rather than
independent.

Let 7, denote the pattern of information present about % and &~ at stage
k + 1; that is, after k pulls. The pattern of information or accumulated data,
I,, can always be regarded as a probability distribution on the unknown pa-
rameters p and 4. [, or [ is the initial pattern of information and consists of
an initial probability distribution for each of the parameters p and 2. Throughout
this paper the parameters are assumed to be initially, and therefore also hence-
forth, statistically independent. The problem is to decide which arm to pull at
stage k + 1 conditional on the accumulated data I,; thus, the results of the first
k pulls as well as the initial distributions of p and 2 can affect the decision at
stage k + 1.

Let I = (R, L) denote a pair of arbitrary initial distributions; R = R(p) and
L = L(%). A success on the right arm changes R to a new distribution, say oR,
and a success on the left arm changes L to ¢L; a failure on the right arm changes
R to @R and on the left arm changes L to ¢L. Let E(o|R)and E(Z| L) represent
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the expected values of p and 4 with respect to R and L. When the notation
E(p) or E(2) is used, the distribution R or L will be understood. E(p) and E(2)
are then the probabilities of a success on the first pull on & and &, respec-
tively, conditional on 1.

The expected number of successes over the n stages is to be maximized. This
objective is a natural interpretation of a gambler’s desire to make as much money
as possible. It amounts to assuming that the utility of money (or, success) is
linear for the gambler. An arm should not be selected to be pulled only because
the expected probability of success on that arm is greater than it is on the other,
since a future success is worth as much as an immediate success and the other
arm may offer a reasonable chance of being better in the long run. Anarm can
be pulled at stage k 4 1 without waste and is called optimal if by pulling that
arm the maximum attainable expected number of successes in the remaining
n — k pulls is attained conditional on 7. Let W,7,(I,) and W;7,(I,) denote,
respectively, the worth of the pattern 7, with n — k pulls remaining when the
right and left arm is pulled at stage £ 4 1 and an optimal procedure followed
thereafter. Then by definition W,*(1,) = W,%(I,) = 0 for all patterns I,. Let
W, (I) = max {W,%(), W,“I)} for all'n and I; W,(I) is then the worth of I
when an optimal procedure is followed. The contribution to W,*(I) of the
initial pull is E(p). If a success obtains on pulling & then I, = (¢R, L) and if
a failure obtains then I, = (¢R, L). Since the former has probability E(p) and
the latter probability E(p) = 1 — E(p),

(1.1) W,”(I) = E(p) + E(p)W,(oR, L) + E(0)W,_,(¢R, L),
foralln > 1 and all I = (R, L). Symmetrically,

(1.2) W,2(I) = EQ3) + EQ)W,_(R, cL) + EQ)W,_(R, ¢L) .
The function

(1.3) A = w7 () — w,=(1),

is, therefore, the expected advantage of choosing .72 over & at the first stage.
Z is optimal if A, (/) = 0 and &~ is optimal if A, (/) < 0.

The problem treated in this paper is a two-armed bandit, a typical problem in
dynamic programming. For a particular value of » and a particular initial
pattern of information 7, a program can be devised to find W,*(I) and W,*(I)
using (1.1) and (1.2) recursively. Such a program is described and carried out
for the example n = 12 and R and L both uniform distributions in Berry (1971).
There are two main drawbacks to such an approach. Firstly, a large memory
is required; for fixed n the problem is 4-dimensional (though my program re-
quires on the order of r*/6 storage locations). Secondly, the values of W, (I)and
W, (I)are found only for one particular pattern /. (Actually, as Bradt, Johnson,
and Karlin (1956) point out, these values depend on 7 only through the first n
moments of R and L.)
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Two-armed bandit problems more general than the one treated here differ in
various ways: 22 and .#” may not be independent; the objective function can
be different, as when the utility of a success depends on the stage at which it
occurs (discounting the future, for example); or, the number of pulls can be
infinite, in which case the problem would be uninteresting unless the objective
specified is nonetheless finite.

The problem described here is set in discrete time. Chernoff (1968) considers
a continuous version where % and . are time-continuous processes in (par-
ticular, independent Wiener processes with unknown means and known vari-
ances). % or . is observed, payoff accumulates equal to the values of the
process, and information about that process accumulates continuously until a
switch is made and the other process is observed. Observation continues until
some fixed time has elapsed. A less than helpful characteristic of every optimal
selection procedure in this version is that almost every switch is accompanied
by an uncountable number of switches within every time interval of positive
duration which includes the switch.

Quisel (1965) touches on still another variant in which there is a time delay
between a pull and getting information from the pull.

A problem related to (but different from) the two-armed bandit treated here
is the two-armed bandit with finite memory. See Yakowitz (1969) for a descrip-
tion of this problem and for additional references.

For applications of two-armed bandit problems see Bradt ez al. (1956), Quisel
(1965), and Dubins and Savage (1965), Chapter 12.

Fabius and van Zwet (1970) deserves special reference here. They charac-
terize Bayes strategies and admissible strategies in the general case of dependent
arms. Their approach delivers many instances of some results of this paper
(notably, Theorems 6.4 and 6.5), but most of the present results are true only
for independent arms (notably, the stay-on-a-winner rule—Theorem 6.2). Their
approach, unlike the current one, uses no calculus and therefore their results
are only for integer numbers of successes and failures. The current approach
is not applicable for dependent arms, except where a devious argument can be
used to relate a problem with dependent arms to one with independent arms.
Such an argument is used in Section 8 to show that Theorem 8.3 is equivalent
to the result obtained by Feldman (1962), and later generalized by Fabius and
van Zwet (1970), for a problem with a special kind of dependency between
the arms.

2. The initial distributions. In this section the distributions R and L will be
written in a more convenient form and particular patterns of information will
be considered.

Consider an arm, say the right arm for definiteness. It will prove useful to
regard R as having arisen from a measure #_, and a number N, of pulls on the
right arm that yielded, say, r successes and ' = N, — r failures. The numbers
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rand r’ are allowed to be real and not just positive integers. Since the pulls
are exchangeable, only the numbers of successes and failures affect x_, and R
can be written 679" ¢, regardless of the order of the » successes and r’ failures.
If information about the right arm is regarded as having arisen in this manner,
then according to Bayes’ theorem,

(2.1) dR(p) = v (r, r'; po)o"(1 — )" dp ,(p) ,
where
2.2) wrs s pn) = S e7(1 — 0)" dp o (p) -

The distribution R can always be. written in the form (2.1), one (r, ¥'; z£.,)
that qualifies is (0, 0; R); obviously v(0,0; R) = 1. p_ can be any positive
measure and r and ' any real numbers for which v(r, #; p_,) is finite. The set
of (r, ') which satisfy this condition will be called the possibility region for p _,.
If (r, r') is in the possibility region for s, then any point (r + a, ¢ + b) is also
in the possibility region for ., for nonnegative a and b, provided p_, assigns
positive measure to the interior of the unit interval. Therefore, the possibility
region for any measure which assigns positive measure to the interior of the
unit interval is a quadrant of the (r, ') plane (which may be a half plane or the
whole plane) defined by (r, + a, r,” + b) for some (r,, r,’) and all positive a
and b. This quadrant may be open or closed depending on p_; either half-line,
r=r,forr >r/orr =rforr>r,, may beincluded, if the point (r,, r,’)
is included then both of these half-lines are included. Similarly for the left arm

(2.3) dL(d) = v (0, 5 )21 — A dpe (3) .

Points in the interior of the possibility region for p_, will play a special role
in Section 4. Such points (r, r’) are characterized by

(2.4) v(ir + or, ' +or'; p,,) < oo for some or,0r' < 0.

Since the distribution R is determined by r, ' and ¢, and the distribution L
is determined by /, I, and p ., the initial pattern of information I will sometimes
be written (r, ¥/, ¢ _,; L), or sometimes, (r, ¥, p: 1,/ p_). A success on F#
then yields the pattern I, = (¢R, L) = (r + 1, ', p£,; L) according to Bayes’
theorem. The expected values of p or 2 with respect to I will sometimes be
written E(p|r, r'; ¢ ) and E(4|], I'; ). In this notation, for example, E(p|oR)=
E(p|r+ 1,75 1)

Arbitrary patterns of information will be investigated. However, patterns
for which there exist r, #' [, and /' for some g, = ¢, are of particular interest.
Two special cases of this type of pattern will be introduced here and considered
again in Section 4 and again in Section 8.

In the first special case there exist positive r, #', I, I’ < oo for which p_, =
¢t = B, where

(2.5) df(x) = x (1 — x)~'dx.



A BERNOULLI TWO-ARMED BANDIT 875

If _, = B, then R and L are beta distributions, r, = r,” = 0, and the possibility
region for 8 does not include either of the axes r =0 or ' = 0. The conjugate
nature of the beta family of distributions is well known (Raiffa and Schlaifer
(1961))—if R is beta distribution then so are ¢R, ¢R, R, etc. The expected
value of p is particularly simple for this case:

(2.6) E(p|r,r;f)=—"— =T

In the second special case ¢, = ¢ . = r is a two-point measure, concentrat-
ing probability 4 on each of 7, and 7, r; < 7,, with not both 7, = 0 and 7, = 1.
(For convenience, it is assumed that  cannot be a one-point measure—in which
case 7, = 7,. Many results concerning ¢ apply as well to one-point measures,
but none are of interest if p , = ¢_.) If 7, > 0 and 7, < 1 then (r,,r,) =
(—o0, —oo) and all points in the (r, #') plane are in the possibility region for
7. If 7, =0and 7, < 1 then (r,, r,’) = (0, — o) and all points for which r > r,
are possible. If 7, > 0 and 7, = 1 then (r,, r,") = (— o0, 0) and all points for
which # > r,’ are possible. (If the pair -, = 0 and 7, = 1 were allowed, then
r, and r,” would both be zero and the possibility region for r would consist of
only the nonnegative axes.) The expected value of p is

.. o1 — )" 4 (1 — )"
2.7) Ep|r, ;)= 2 17 2
(1 — )" + 7,7 (1 — )"

If p_, = B then (2.4) holds for all points in the possibility region for p_,. If
¢ ., = t then (2.4) holds for all points in the possibility region for p, provided
7, >0and 7, < 1.

3. The function A,(I). In this section the function A,(I) will be defined re-
cursively and a few simple results given. From the definition of A,(I) for all
nonnegative n and for any I = (R, L),

(3.1) w,2(I) = w,I) + 4,~(1),
(3.2) w2 () = w,I) — A1),

where, in a slight departure from normal usage, A,~(/) = min{0, A,(/)} and
A,*(I) = max {0, A,()}. In view of (3.2), for n > 1 (1.1) becomes

(3.3) W, (1) = E(o) + E(o)[WZ(oR, L) + Aj_y(oR, L)]
+ E(o)[WZ(¢R, L) + A_y(¢R, L)] ,

and in view of (3.1), (1.2) becomes

(3.4) W2 (1) = EQ2) + EQIWZ (R, oL) — A7_y(R, oL)]
+ EQWZA(R, pL) — AL (R, ¢L)] -

For n = 2, the terms

(3.5) E(p) + E(0)WZ.(oR, L) + E(@)W (R, L),

-
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in (3.3) amount to the worth of the procedure: Pull &2 first and & second,
and use an optimal procedure thereafter. (Of course there can be no second
pull if n < 2.) Likewise,

(3.6) E(2) + EQ)WZ (R, oL) + EQ)WZ (R, L)

is the worth of the procedure: Pull & first and .2 second, and use an optimal
procedure thereafter. Since the pulls are exchangeable, according to this inter-
pretation the expressions (3.5) and (3.6) are equal for n > 2. Therefore, sub-
tracting (3.4) from (3.3) yields for n > 2,

(3.7) A(I) = E(0)A;_(oR, L) + E(0)A}_(¢R, L)
+ E(D)A; (R, oL) + E()A; (R, ¢L) .

(Compare (2.11) in Fabius and van Zwet (1970).) This is a promising expression
for A, (I) since, together with the evident initial condition

(3.8) A(T) = E(p) — E(2)

(3.7) defines A, (1) recursively.

It seems reasonable to expect that the vanishing of particular terms in (3.7)
implies the vanishing of other terms. In fact, it will be seen in Section 6 that
A, (6R, L) = A, _,(¢R, L), and symmetrically, A, (R, L) < A,_ (R, ¢L). Sev-
eral facts about the function A, are easy to verify. Three intuitive theorems
will now be given without proof.

Since A, is the expected advantage of choosing . over &7, clearly, — 1 <
A, < 1; in fact, more can be said.

THEOREM 3.1. For any pattern of information I = (R, L) and all n, —E(p) <
A1) = EQ).

If either of the distributions R or L is of a particular type, A,(I) may be easy
to calculate for all n. For example, if an arm yields success with probability
one, then it should be pulled, and the expected loss due to pulling the other
arm is the difference between 1 and the worth of that arm.

THEOREM 3.2. If R concentrates probability one at p = 1, then for all n and L,
A,(I) = E(R), which is nonnegative.

In general, the worth of pulling a particular arm consists in the net worth
with respect to expected immediate payoff and with respect to worth of informa-
tion, so that A, is seldom given by the difference in expected immediate payoff,

(3.9) E(p) — E(1) .

Of course, as seen in (3.8), (3.9) gives this difference when only one pull re-
mains, for then any information gained on the pull will not be used and therefore
has no value. For n > 2, A, is given by (3.9) when and only when the worth
of information is the same for both arms. This can happen when, for example,
(a) both arms are the same a priori, (b) pulling neither arm has information
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value, or (c) pulling either arm once will give complete information. The next
theorem treats these three special patterns of information.

THEOREM 3.3. If I is such that either

(@) R = L; that is, the arms are identical initially,

(b) R and L concentrate probability one on E(p) and E(2); that is, the probability
of success is known for both arms,

(c) R and L are two-point distributions, concentrating all the probability at 0 and
1, so that p = | and A = 1 with probabilities E(p) and E(2); that is, each arm will
yield either all successes or all failures and one pull on either arm determines the
quality of that arm, . then forn = 1, A (I) = E(p) — E(4).

Theorem 3.3 can be proved algebraically using (3.7), but each result holds
for an intuitive reason that can be made rigorous. The conclusion is obvious
in case (a) since E(p) = E(2) and W,* = W, when R = L. In case (b) the
quality of both arms is known, and any pull on the inferior arm costs the dif-
ference in the quality of the arms. In case (c), the better arm to pull (if indeed
one is better than the other) becomes known immediately after the first pull,
whichever arm is pulled first (and will yield either all successes, or all failures
if both p and 2 are 0), therefore the difference between pulling the right and
left arm is simply the difference in the expected immediate payoffs.

4. Fundamental inequalities. Thus far the possibility that r, r’, /, and I’ are real
numbers and not necessarily integers has not been exploited. This section ex-
ploits, and it largely based on, the continuity of A,() in (r, r') in the interior
of the possibility region for p .

Inequalities in I = (r, r', p,; L) for the function A,(/) are derived in this
section when (r, r') is an interior point of the possibility region for y . These
inequalities will be strengthened in Section 5 and extended to all points in the
possibility region. This separate treatment eliminates the need for considering
in this section distributions which would unnecessarily complicate the presenta-
tion of the basic theory. Results are stated and derived in terms of the right
arm; symmetric results hold for the left arm as applications of those for the
right arm, with names reversed. For the purposes of this section, write / =
(R,L)as (r, ', p,; L), where R is given by (2.1) and is a probability distribu-
tion for (r, ') in the possibility region for z_,.

As will be seen, some important properties of E(p|r, r'; pt,) are passed on to
A (r, ¥, ;L) for all n. This motivates studying the behavior of the function
v(r, r'; ¢ ), which is defined in (2.2) and which will sometimes be abbreviated
to v(r, r').

LeEMMA 4.1. For (r, ') in the interior of the possibility region for . ,, there exist
negative or and or' such that -

4.1) u(r+ or, ' + or')
= Dneus 1 (84 10g pY(log (1 — )'e"(1 = p)” di (OO (or''
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where the series is absolutely convergent. Also for all s, t = 0,

s+t

areor't

(4.2) Ur, ') = §h (log p)(log (1 — p))'p"(1 — ) dpeo(p) -

REemMARK. For many readers the asserted analyticity of v in the pair (r, r') will
be familiar, but it seems easier to give a demonstration than to provide an ex-
actly appropriate reference.

ProoF oF LEMMA 4.1. For all or, or',
4.3) prtir(1 — p)+"" = p7(1 — p)~ exp(dr log p) exp (or’ log (1 — p))
, 1 ’
=p"(1 — 0)" Xogse T (log p)*(log (1 — p))!(or)*(6r")*,

is absolutely convergent and the partial sums of the series in (4.3) are majorized
in absolute value by pm='%/(1 — p)~'~1""l. Since v(r — ¢, ¥’ — &) < o for suf-
ficiently small ¢, the Lebesgue dominated convergence theorem applies to (4.3)
to prove (4.1).

Repeated differentiation of the convergent power series (4.1) yields (4.2). [J

Lemma 4.2. Forallnand I = (r,r', p_; L), A,(I) is continuous in (r, r') in the
interior of the possibility region for 1 _,.

Proofr. According to(3.8)and the definition of v, A,(1) = v(r 4 1, r')/u(r, r) —
E(2), which is continuous in (r, ') in view of Lemma 4.1 for (r, r’) in the in-
terior of the possibility region for p ,. The lemma follows from (3.7) by
induction. []

Though continuous, A, () is not necessarily everywhere differentiable. While
A,(I) is regular in (r, r') except along certain curves, the regularity of A,([)
will not here be analyzed beyond the extent essential for later demonstrations.
The required regularity is provided by Lemma 4.4. For the proof of the next
result, see any advanced calculus text, for example, (Widder (1961), Theorem
9, page 40).

LEMMA 4.3. If both partial derivatives of a function g(x, x') exist and are con-
tinuous at a point then at that point the directional derivative of g along a vector (a, b)
is given by

0 0

(4.4) Dyg(x, x) = (a -+ b

0x 8x’>g(x’ X))

LeEMMA 4.4. Forallnand I = (r,r', p,; L), D, ,,A,(I) exists along every vector
(a, b) at every point (r, r') in the interior of the possibility region for y1 ,.

Proor. From (4.2),

v(r + dr, v’ + or'y = u(r, r') + aﬁ v(r, r')or + 56—, u(r, r'Yor’ + o(|or| 4 |or']) .
r r
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In view of (3.8),

D yA(I) = D E(p |1, 1’5 ptp) = Dy “rt1,r) 1: )
yr, r')
S RVEARESNO)
or ar’ v(r, ')
according to Lemmas 4.1 and 4.3, which proves the lemma for n = 1. The
lemma follows from (3.7) by induction. []

(It is clear from the proof of Lemma 4.4 that the directional derivative of
A,(I) can be expressed linearly in terms of its partial derivatives except possibly
at points where A,_,(1,) = 0 for some pattern of information 7, which can occur
after k pulls when starting from 1.)

Lemmas 4.2 and 4.4 will be used to prove Theorem 4.1, which will then be
extended by Theorems 5.1 and 5.2. It seems reasonable to expect that when r
is increased, the advantage of pulling .22 over . does not decrease, for then
7 promises to be at least as successful as before. Correspondingly, if r’ is
increased, the advantage of pulling &2 over .” ought not increase, for then
72 promises to be no more successful than before. The next theorem says this
and more when (r, r’) is an interior point of the possibility region for p_: if r
and r’ increase simultaneously, the advantage of pulling &2 over . does not
decrease if the rate of change of r compared with the rate of change of ' is
larger than a particular bound and does not increase if this ratio is smaller than
another (obviously, smaller) bound. These bounds are implied by the following
statements, which put propositions J(n) and K(n) of the theorem into words.
If the probability of a success on . conditional on having already observed
n — 1 successes in n — 1 pulls on .Z2 (this probability is given by the expected
value of p with respect to ¢""'R) does not decrease for a particular direction
from a particular point in the (r, r') plane, then A, at that point does not de-
crease for the same direction. If the probability of a failure on . condition-
ally on having already observed » — 1 failures in n — 1 pulls on .2 (given by
the expected value of 1 — p with respect to ¢"~*R) does not increase for a par-
ticular direction from a particular point in the (r, 7’) plane, then A, at that point
does not increase for the same direction.

THEOREM 4.1. Provided (2.4) holds, the following statements are true forn > 1,
orI = (r, v, p_,; L), and for a and b nonnegative and not both 0:
P 8!

J(n): Dy, )0, (I) = 0 if DgnEplr4+n—1,r;p,)=0,

K(n): Dy A1) 0 if DiyE(olrr +n—1;p,)<0.
For the proof of Theorem 4.1, which will be presented gradually, the behavior
of E(o|r,r'; pt,) in (r, r') will be needed. Though for n > 2 the partial de-

rivatives of A,(r, r', p£,; L) with respect to r and r’ do not always exist, the
partial derivatives of E(o|r+n—1,r; p_)and E(o|r, r' +n— 1; p_,) do exist
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and are continuous. In view of this fact and Lemma 4.3, for n > 1 the latter
directional derivative in J(n) and K(n) of Theorem 4.1 can be written as in (4.4),
making these hypotheses easier to manipulate: for z_, not a one-point measure,

Jn): Doy A1) =0 if % >Ar+n—1,rp,),
K(n): DA (1) <0 if % SAr +n—1ip,),
where
3 i
= s Eelrn i)
(4.5) A(r, v p,) =

S E(p|r v )
r

The function 4 would not be defined for one-point measures 2 _,. Where there
can be no confusion, A(r, r'; ) will be abbreviated to A(r, ¥').

Because they are simple, and therefore potentially helpful for following later
arguments, the versions of J(n) and K{(n) for two special cases considered earlier
will now be given. First, where S(p) is defined by (2.5),

(4.6) Ar,r; p) = = for r,” >0.

r’

If I = (r, 7, B; L), J(n) and K(n) of Theorem 4.1 become

Jy(n): Dy A (1) = 0 if % > r4n—1 ,

rl

Kn): D, ,A)=0 if < T |
s(n): D A1) = b =7 in_1

Second, where R is an interior two-point distribution (so that p , = r) J(n) and
K(n) together completely determine the gradient of A, (r, ', z; L) in (r, r’). If
7 concentrates mass $ on r; and f on 7, 0 < 7, < 7, < 1, then,

(4.7) A(r, 1’5 7) = A(r) = —log[(1 — 7)/(1 — zy)]/log [z)/m],

a constant in (r, r'). If I = (r, r’, z; L), J(n) and K(n) of Theorem 4.1 become

J.(n): Doy A1) =0  if % > A7),
K(m): Dupby(1) <0 if < A).

The proof of Theorem 4.1 will depend on the behavior of A(r, r’; ). Using
the notation: Cov (U, V) = E(UV) — E(U)E(V), for real U and V on [0, 1],
where unconditional expectation is as usual with respect to I = (R, L),

9 .
2 Blolr s p) =Coviplogp), 2 E(p|r,'; 1.,) = Cov(p, log (1 = p)),
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in view of (4.2). Therefore,

4.8)  A(r,r;p) = =SV (0. log (1 —p)) _ Cov(l —p,log(1 — p))
Cov (p, log p) Cov (p, log p)

The next lemma follows from a well-known principle: If R is not a one-
point distribution, the covariance with respect to R of a strictly increasing
function is positive, (Lehmann (1966)).

LemMA 4.5. Provided p , is not a one-point measure, A(r, r'; p ) is positive and
finite. In fact, both numerator and denominator of (4.8) are positive and finite.

LEMMA 4.6. Provided p , is not a ohe-point measure,
(4.9) A rip )20, 2 Arripl)<o0,
or or’

with equality if and only if p , is a two-point measure.

Proor. The first inequality in (4.9) holds whenever
(4.10)  Cov(p, log(l — p))aﬁcOv (0, log p)
r
— Cov(p, log ) 2 Cov (p, log(1 — p)) 2 0,
r

unless Cov (p, log p) = 0, which is excluded since R is not a one-point distribu-
tion. After the indicated differentiation, inequality (4.10) becomes:

Cov (o, log (1 — p))E([p — E(p)][log p — E(log p)] log p)
(4.11) — Cov (p, log p)E([p — E(p)][log (1 — p) — E(log (1 — p))]log p)
= E(H(p)[o — E(p)]logp) = 0,
where
H(p) = [log p — E(log p)] Cov (p, log (1 — p))
— [log (1 — p) — E(log (1 — p))] Cov (p, log o) .

Since E(H(p)[p — E(p)]) = 0 according to the definition of H, for any constant
C, (4.11) can be written

(.12) E(H(p)[p — E(o)][logp — C]) 2 0.

H is strictly convex since it is the sum of two strictly convex functions, and
the expected value of H is zero; therefore, since R is not a one-point distribu-
tion, H has exactly two zeros in (0, 1), call them p, and p, with p, < p,: H(p,) =
H(p,) = 0. According to Jensen’s inequality (Hardy, et al. (1934) Chapter III),

(4.13) p. > E(p) > p, .

The number
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Cov (H(p), log p) = E(H(p)[log o — C])
= Cov (log p, log p) Cov (p, log (1 — p))
— Cov (log p, log (1 — p)) Cov (p, log p) ,
may be of either sign; correspondingly, two cases will be considered.

Case 1. Cov (H(p), log p) = 0. In (4.12), let C = log p,, then

E(H(p)[o — E(p)][log p — log p.])
(4.14) = E(H(p)[p — p,][log p — log py])
+ [0: — E(0)1E(H(p)[log p — log p,]) -

The second term of the right side of (4.14) is nonnegative for this case in view
of (4.13). The first term is nonnegative since according to the following argu-
ment, H(p)[o — p,][log o — p,] = 0 for all p: for p < p,, H(p) 20, p — p, <O,
and log p — log p, < 0; for p, < p < p,, H(p) <0, p — p, <0, and logp —
logpl = 0; and for p, < p, H(p) 20,0 — p, =0, and lng - logpl = 0.

Case 2. Cov (H(p), log p) < 0. In (4.12), let C = log p,, then

E(H(p)[p — E(p)][log p — log p,])
(4.15) = E(H(p)[o — p,][log p — log p,])
+ o1 — E(p)]E(H(p)[log p — log p,]) ,

which is nonnegative according to an argument similar to the one in Case 1.

The symmetry of the form of 4 makes it clear that the second inequality in
(4.9) is an instance of the first.

In view of (4.7), the inequalities in (4.9) are equalities if p_, is a two-point
measure. If p_, is concentrated on more than two points then both terms on
the right side of (4.14) and (4.15) are positive, so that the inequalities in (4.9)
are strict. [J

ProoF oF THEOREM 4.1. Since, by definition, A,(f) = E(p) — E(2),
Dyl 1y g3 L) = Do Eo| 1, 15 1) 5

so that J(1) and K(1) both hold, and Theorem 4.1 determines the sign of the
derivatives of A, (I) for every direction in the (r, r’) plane from points in the
interior of the possibility region for s _,.

If £, is a one-point measure then the theorem is obvious since a one-point
measure is not affected by changes in r or r’; u£_, is assumed not to be a one-
point measure for the remainder of the proof. This assumption will frequently
be used implicitly since Lemmas 4.5 and 4.6 which depend on it will frequently
be used.

The proof will be accomplished inductively by differentiating in (3.7). The
signs of the last two terms of (3.7) do not materially affect the proof. A, ,(¢R, L)
can be = 0 or < 0, as can A,_,(¢R, L), so that there are four cases to be con-
sidered. However, one of these cases is vacuous, as will now be shown.
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In view of Lemma 4.5, a/b > A(r + n— 1,r') when b =0 and a/b <
A(r, ¥ + n — 1) when a = 0, for all n. Therefore, forn = 2, J(n — 1) implies
that A,_,(I) does not decrease as r increases and K(r — 1) implies that A,_,(I)
does not increase as r’ increases. In view of these two facts (for n > 2),

(4.16) A, r+ 1L, p s L)yZA, (r,r,p s L)y = A, (r,r + 1, ¢, L).
This relationship implies:
(4.17) A, \(6R,L) =, (¢R, L) .

Inequality (4.17) will be required in a critical point of the proof, for the present
it serves to show that the following three cases are exhaustive:

B, \(oR, L) < 0 (and A, (¢R, L) < 0);
A,_(6R,L) =0 and A, ,(¢R,L) < O0;
A,_(pR,L) =0 (and A, ,(¢R, L) = 0).
Differentiating both sides of (3.7),
D(a,b)An(I)
= E(p)D(a,b)A:L——l (r+1,r, 1y L)
(4.18) + E()Dnina(r ¥+ 1 pai L) + [Ai(r 4 11y 253 L)
— A+ L g DD B 1 1 )
+ EQ)D A5 a(ry 15 3 0L) + E()Dyq nAr_s(r, 15 103 0L) -

To show J(n) assume a/b = A(r +n—1,r). Since A(r+n—1,r)=
A(r + (n — 1) — 1, ") according to Lemma 4.6, J(n — 1) applies to show
Dy, .V, g3 0L) =0 and D, A, (r, ¥, g 9L) = 0. Therefore, the
last two terms in (4.18) are nonnegative since D, ,A, ,(I) = 0 whenever
DA, ()2 0.

Since A(r+n—1,r)=A((r + 1) + (n — 1) — 1, r’), J(n — 1) applies to show
that D, A, _(r+ 1,7, p ;L) =0. IfA,_(6R, L) >O0then A (r+ 1,7, 5 L)
in (4.18) can be replaced by A,_(r + 1,7, ¢ L); if A, (sR, L) < O then it
can be replaced by 0; and if A,_,(¢R, L) = 0 then it may be equal to either
A,_(oR, L) or 0, depending on (@, b). In each case the first term in (4.18) is
nonnegative.

Since Ar +n— 1L,y Z Ar+(n—1) =1L,z Ar+ (n—1)—1,r +1)
according to Lemma 4.6, J(n — 1) applies to show D, ;) A, _i(r, r" + 1, ¢ ,; L) = 0.
If A, ,(¢R, L) >0 then Aj_(r,r" + 1, ;L) in (4.18) can be replaced by
A, (r,? + 1, p; L); if A,_(¢R, L) < 0 then it can be replaced by 0; and if
A,_(¢R, L) = 0 then it may be equal to either A, _,(¢R, L) or 0. In each case
the second term in (4.18) is nonnegative.

J(n — 1) and K(n — 1) apply to show that the third term is nonnegative. The
factor in square brackets is nonnegative in view of (4.17) and D, b)E(p [r,r's 1)
is nonnegative according to J(1).



884 DONALD A. BERRY

Therefore J(n) of the theorem is proved. The proof of K(n) is similar by as-
suming a/b < A(r,r' +n — 1), K(1), K(n — 1) and J(n — 1), and arguing that
each term in (4.18) is nonpositive. []

5. Fundamental inequalities; extensions. Theorem 4.1, which deals with the
sign of the gradient of A, (r, r’, £_,; L) along curves in the interior of the pos-
sibility region for p_, is extended by the three main results on the present sec-
tion. Lemma 5.1 is a macroscopic version of Theorem 4.1. The contours of
Ep|r+n—1,r;p,) and E(o|r,r +n— 1; ) are shown to be lines of
nondecrease and nonincrease of A, (r, ¥, ¢ ,; L) in any direction of nondecreas-
ing r and r’ in the interior of the possibility region for x_. Theorem 5.1 ex-
tends Lemma 5.1 to include the edges’of the possibility region for z, (the region
may have no edges, one edge, or two edges). Finally, Theorem 5.2 shows that
for fixed g, L, and n, A (r, 7, pt,; L) is strictly increased or decreased if
Ep|r+n+ 1,7 p)or E(p|r,r + n— 1; u_,) is increased or decreased.

LEmMMA 5.1. Provided (2.4) holds, the following statements are true for n = 1,
forI = (r,v', pn,; L), and for all or, or' = O:
f(n): A(r +or,r" +or', p s L) = Ary ¥, p s L)
if EQp|r+or+n—1,r 4o p,)=Ep|lr+n—1,rp.);
Rny: Ay(r+ or, ¢ +0r, u_s L) S Ay(r, ¥y s L)
if E@|r+dr,r +0or +n—1;p) < Ep|rr+n—1p,).
Proor. The implicit function theorem (Widder (1961) Theorem 14, page 56)

applies to show that on expressing the contours of E(o|r, r'; ;) as (r(N ), r'(N )
in the parameter N_, = r + r’, each contour extends uninterrupted for all N ,;

the slope of the contours of E(o | r, r'; 1t ;) is A(r, r'; ¢t ), which is defined by (4.7).
For or' = 0, consider two points (r, r'; ¢,) and (r + h, r’ + 0r'; ) on a

contour of E(p|x +n — 1, x’; 1 ,); that is,

(5.1 Ep|lr+n—1,r;p,)=Ep|lr+h+n—1,r +0or u,).

According to J(n) of Theorem 4.1, A, (x, x’, ¢ ; L) is nondecreasing along such

a contour in the interior of the possibility region for x_, for any L, so that

(5.2) Ar+hr +or,p s Ly=A(r v, ps L).

Consider a third point (r + or, ' 4 or'; ¢t ,) satisfying the condition in J(n), so

that

(5.3) E(Q|r+or+n—1,r4or;p,)= Ep|lr+h+n—1,r +0r;p,)

according to (5.1). According to J(r) of Theorem 4.1 for b = 0,

(5.4) A(r+or,r +or,p s LYy=A(r+h, v +0r,p;L).

J(n) of the lemma follows from (5.2) and (5.4).
K(n) of the lemma is proved in a similar fashion by considering points on a
contour of E(o|x, x" + n — 1; ¢ ) and applying K(n) of Theorem 4.1. []
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Lemma 5.1 does not apply for any distribution R = (r, r’; p_,) which cor-
responds to a point on an edge of the possibility region for x . For such a
distribution, v(r + or, ¥’ + or'; 1) = oo for or < 0 if (r, r') is on the vertical
edge (r =r,), and for or’ < 0 if (r, 7') is on the horizontal edge (r' = r,’).
Lemma 5.1 will be extended to arbitrary distributions R = (r, r’; ¢_,) by show-
ing first that A, (R, L) can be approximated arbitrarily closely by replacing s,
with a measure which satisfies (2.4).

LEMMA 5.2. For each I = (ry, 1y, p; L) for which (r,, r)) is in the possibility
region of ¢, and for which ., is not confined to the two points {0, 1}, there exists
a family of measures m, such that for all “real r and v,

(5.5) v(r, r';m,) < oo

for each measure m, with ¢ > 0, and

(5.6) lim, (A, (r,r',m; L)y = A, (r, r, st 55 L)
for n > 1 and every r and v’ for whichr = ryand r' = r/.

REmARKs. The convergence in (5.6) is not necessarily uniform in (r, r') or
in n.

Any measure which satisfies (5.5) also satisfies (2.4), so that for ¢ > 0 Lemma
5.1 applies to I = (r, r', m,; L).

PrOOF OF LEMMA 5.2. To prove the lemma a family of measures m, which
depends on ¢, and for which each of the m, with ¢ > 0 satisfies (5.5) has to be
exhibited. For ¢ < }, m, will be constructed from ., in a completely explicit
and very simple way; the definition of m, for ¢ > } is of course almost imma-
terial, so for ¢ > 1 let m, concentrate measure 1 on the point . It is enough
to prove the lemma for r, = r/ = 0, because if d_,*(0) = p™o(1 — o)™ dp (),
then (r, ¥, s L)y = (r — r, ¥’ — 1y, p % L).

For r, = r/ =0, let m, (for ¢ < ) be the result of shrinking  , toward p = }
by the factor 1 — 2¢. For any set § C [0, 1] and 0 < ¢ < 4 define the set S, to
be ¢ + (1 — 2¢)S in the usual algebraic sense, so that for all p€[0, 1], p €S,
iff (o — ¢)/(1 — 2¢) € S. Define m(S) = p_,(S.) for any set S c [0, 1] such that
S is Borel measurable. Then m,([0, ¢)) = m,((1 — ¢, 1]) = 0, and (5.5) holds as
long as ¢ > 0.

To see that (5.6) holds at » = 1 for the family of measures m,, write

wr,r'sm) = §307(1 — p)" dm(o) = §i~* p7(1 — p)” d/‘@(f :21)
(5.7) =[x 4+ e(1 — 2201 — x — &(1 — 2x)]" dp (%)
= §ix7(1 — %) dp ,(x) + o(1),

for r,r = 0 according to the Lebesgue dominated convergence theorem.
Therefore,



886 DONALD A. BERRY

wr+1,r;m,) _ vir+ 1,15 1) + o(1)
v(r, r'; m,) v(r, '; 1) + o(1)
= Ep|r 1 pre) +o(l),
which proves (5.6) for n = 1.
For n = 2, in view of (3.7) and (5.7)
A (r,r',m; Ly = E(o|r, r'sm)A;_(r +1,r',m; L)
+ E(o|r, ¥y m)A_(r, ¥ + 1, m,; L)
+ EQQ)A;_(r, r',m; oL) + E(A)A;_(r, V', m,; pL)
(5.9) =EQp|r ' p)Ai(r+ 1,7, m; L)
+ E(p|r, r's p )0 (r,r' + 1, m; L)
+ E(A)A,_(r,r',m; aL) ‘
+ E(Q)A_y(r, ', m oL) + o(1) .
Assuming that (5.6) holds at n — 1 for r, ¥’ = 0 and for all L and, in view of
(5.9),

(5.8) E@p|r,r;m,) =

lim, A, (r, ¥',m; L) = E(o|r, r'; p )0 _(r + 1,7, p 3 L)
(5.10) + E(p|r, s po)Ai(r, 7 + 1, p g5 L)
+ E(AD)A,_(r, 7', p; 0L)
+ EMAL(r, 7, pros L) =By (r 7 3 L) [
Lemma 5.2 will be used to prove the next theorem, which extends Lemma

5.1 to include arbitrary measures. The proof of J(n) depends only on J(n) of
Lemma 5.1 and the proof of K(n) depends only on K(n) of Lemma 5.1.

THEOREM 5.1. J(n) and R(n) of Lemma 5.1 hold for n> 1, for all I =
(ry 7'y p s L) and for all or, or' = 0.

REMARK. It was noted in Section 2 that for all ér, 6r' = 0, (r + or, ' + ')
is in the possibility region for p_, whenever (r, r') is, unless z,((0, 1)) = 0, that
is, unless ¢ ,(0) 4+ ¢, (1) = 1. In the latter event the possibility region for sz,
consists at most of the nonnegative axes. For such measures Jf(n) and K(n) may
be meaningless, depending on ér and ér’. The convention is adopted here that
J(n) and K(n) have content only if (r + dr, ' + dr') is in the possibility region
for p_,. This convention does not exclude the extreme one-point or two-point
measures from consideration in the theorem, but it does eliminate consideration
of any direction out from the possibility region for x2 . These easy special cases
are not explicitly covered in the proof below.

PrRoOF OF THEOREM 5.1. Assume that L is a distribution for which J(n) is false.
Say for or, or' = O,

(5.11) E|r+or+n—1,r +or;p.)—Ep|lr+n—1,r;p)=0,

while
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(5.12) Ar+or,r +0or, p Ly —A(r, ", v, L)<O0.

Unless ¢, is a one-point measure, in which case the theorem is already known
to hold, or unless 2, ((0, 1)) = 0, which is a case not currently under discussion,
if (5.11) and (5.12) can hold at all, they hold with strict inequality in (5.11), as

will now be argued.

Either dr or dr' is positive. Say for definiteness that or > 0; the other pos-
sibility is similar. If or is replaced by a slightly large value (5.12) will not be
lost since A, (r + or, r' + or', p2_,; L) is continuous in or for ér > 0, according
to Lemma 4.2. But if or is increased, (5.11) will be rendered strict according

to Lemma 4.6. ¢
In view of (5.12) and Lemma 5.2 there is a measure m, which satisfies (2.4)

and which approximates x_, sufficiently well to guarantee that

(5.13) A(r+or, ¥ +dr,m; L)y — A (r,rm;L) <0

for sufficiently small ¢ and also, since (5.11) is now supposed to hold with strict
inequality,

(5.14) Ep|r+or+n—1,r 4+0or';m) — E@|r+n—1,r;m) >0.

This inequality contradicts J(n) of Lemma 5.1.

A similar argument delivers K(n). []

The next theorem strengthens Theorem 5.1 to show that a strict increase in
E(|r+n—1,r'; ) or astrict decrease in E(po |r, r' +n — 1; p ) guarantees
a strict increase or decrease in A (r, ', ¢ ,; L) for all L and n.

THEOREM 5.2. The following statements are true for n>1, forall I=(r,r', p ,; L),
and for all or, or' = 0:

JEmy: A (r +0r, ¥ + 0, p_s LYy > A (r, v, 15 L)

if Eplr+or+n—1,r40orp,)>Eplr+n—1,r5p,);
K*(n): A (r+0r, v +0r, p s L)y < A,(r, 7, ;L)

if E|r+or,r'+or'+n—1p )< E@|r,r+n—1;p.).

REMARKS. The theorem is true for all distributions R = (r, r'; ), but the
conditions in J*(n) and K*(n) clearly indicate that the theorem has no content
if 1, is a one-point measure, for in that case R is not affected by changes in r
or r. '

The proof of Theorem 5.2 can be viewed as a modification of the proof of
Theorem 4.1 (with differences playing the role of derivatives). The key to the
modification is the demonstration that under the condition in J*(n) or in K*(n)
the four terms in (3.7) cannot vanish simultaneously—they may all vanish if R
is a one-point distribution (but only when L is the same one-point distribution).

Like Theorem 5.1, Theorem 5.2 can easily be interpreted as true in case p_,
is confined to the two extreme points {0, 1}, but this possibility will not be at-
tended to in the following proof.
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Suppose dr and or’ are positive and equality holds in the second comparison
in J*(n) (or in K*(n)); can the first inequality nonetheless be concluded? No,
not if p, is carried by at most two points, as the attentive reader may perceive
(in view of Lemma 4.6), but otherwise it does, though this extension of the
theorem will not be carried out in the present paper.

PrOOF OF THEOREM 5.2. The theorem will be proved by induction, starting
at n = 1, where it is trivial.
In view of (3.7), for n = 2,
A(r+or,r +0r,p s Ly —D(r, 1, 15 L)
= E(o|r+0r, ¢ + oru )AL (r+or+ 1, ¢ +0r' p,; L)
+ E(o|r+ 0r, ¢ + o' p o)Ak (r + o, ' + 0 + 1, p 5 L)
(5.15) + EAA,_(r + 0or, v + 0r', p,; 0L)
+ EQ)A;_(r + or, ¥ + or', p,; oL)
— E(p|r, r's po)Aii(r + 1,1, p g L)
— E(p|r v p)Aia(r v + 1, i3 L)
— E(M)A;_(r, ¥, p; oL) — E(Q)A;_(r, ¥, 1 oL) .
After some algebra, the right side of (5.15) becomes
E|r s g )AF (r+0r+ 1,0 + 0, pos L) — Af_(r+ 1,7, p g3 L)]
+ E(o|r, v p)[Af(r+or,r +0r + 1, p s L)y — Af_(r,r + 1,43 L)]
(5.16) + (E(o|r + or,r' + or's ) — E(p |1, V3 1.1)
X [Af_(r 4+ or + 1, ¢ +dr', p s L)y — Af_((r+0r, 7' +0r + 1, .5 L)]
4+ EQ)[A,_(r + 0r, ¥ + 01, p; 0L) — A, _(r, ¥, ¢ 0L)]
+ E)[A;_(r + 0r, 1 + 0r', pt 5 L) — Dy y(r, ¥, g5 L))
For n > 2, J*(n — 1) and K*(n — 1) apply to show that
(5.17) B,i(oR, L) > A, (R, L) > A, \(¢R, L),
which is a strict inequality version of (4.16). (5.17) implies that at least one

term of the right side of (3.7) is nonzero. For, in view of (5.17), Theorem 5.1,
and the fact that A (R, L) = —A,(L, R),

(5.18) A, (6R,L)>A, (R, L)= —A, (L, R)= —A, (6L, R)=A, (R, oL).

Therefore, either A,_,(¢R, L) > 0 or A, (R, ¢L) < 0.

Assume E(p|r+dr+n—1,r +or';p) = EQe|lr+n—1,r;p,), then
J*(n — 1) implies that the bracketed portion of the first term of (5.16) is positive
when A,_(r + 1, ¢, p; L) > 0 and the bracketed portion of the fourth term
of (5.16) is positive when A, _,(r, r', ¢£,; 0L) < 0. Therefore, the first term of
(5.16) is positive when A, _,(r + 1, ¥/, p£,; L) > Osince E(o | r, r'; 12 ;) cannot then
be zero and the fourth term of (5.16) is positive when A, _,(r, ¥, ¢t ,; L) < O
since E(2) cannot then be zero. In either case the remaining terms of (5.16)
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are nonnegative in view of J(n — 1) of Theorem 5.1, so that J*(n — 1) implies
J*(n).

A similar argument uses K*(n — 1) of the theorem and K(n — 1) of Theorem
5.1 to deliver K*(n). [J

6. Results that hold for all #n. In this section, the inequalities derived in the
previous section will be used to examine parts of the domain space where the
sign of A, (/) is the same for all n; Theorem 6.3 is the only result in this section
which depends on #. The conclusions rest on the principal theorems, Theorems
5.1 and 5.2, but only for the special cases r’ = 0 in J(n) and J*(n) and 6r = 0
in K(n) and K*(n). These theorems will be used in their full generality in the
next section.

THEOREM 6.1. Forall I = (R, L) and n = 2,
(6.1) AR, L) < Af (oR, L),
with strict inequality if 0 < A, (R, L) and R is not a one-point distribution.
Proor: According to (3.7),
(6.2) A(R, L) < B(p)Af_(0R, L) + E(p)Af (¢R, L),
and the inequality is strict unless 0 < A, (R, ¢L). The right side of (6.2) is
(6:3)  Ajy(oR, L) — E(p)(Af (R, L) — A} (¢R, L)) < A} (oR, L),

in view of (4.17), which holds for all R according to Theorem 5.1. In view of
(5.17), the strict-inequality version of (4.17), inequality (6.3) is strict when R
is not a one-point distribution unless A,_,(¢R, L) < 0. But if R is not a one-
point distribution, A, ,(¢R, L) < 0 < A,_,(R, ¢L) cannot be satisfied in view
of (5.18); therefore, in this case either inequality (6.2) or inequality (6.3) is
strict. []

Bradt, Johnson, and Karlin (1956) prove the following result (which they
call the “stay-on-a-winner-rule”) for the one-armed bandit problem. (A two-
armed bandit is called a one-armed bandit if p or 2 is known with probability
one; that is, if R or L is a one-point distribution.) Quisel (1965) offers a proof
of this result for the two-armed bandit that is different from the present proof.
It is easy to see that the stay-on-a-winner-rule is not optimal if p and 2 are
dependent (Bradt ef al. (1956) or Fabius and van Zwet (1970)). Theorem 6.2
is an immediate corollary of Theorem 6.1; it means that if an arm is optimal
and pulled and yields a success, then it is optimal on the next pull as well.

THEOREM 6.2. For all patterns I = (R, L) for which R is not a one-point dis-
tribution and n = 2, A, (R, L) = 0 implies A,_,(oR, L) > 0. If R is a one-point
distribution then A,(R, L) = 0 implies A, ,(¢R, L) = 0 and A,(R, L) > 0 implies
A,_(6R,L) > 0.

Nothing can be said in general about the relationship between A, (R, L) and
A,_(¢R, L), either can be less than the other; in fact, either can be positive
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and the other negative. For example, suppose n = 2 and L is determined by
(A =pA) =21 —2)"tand /=0 =1. If Ris such that p_, = § and
r = r' = }, then using the notation N, =r +r'and N, =1+ /',

ror+1 I I+1 3 1 1

AR, L) = E(p*) — E(F*) = — —

while, according to (3.8),

_ E(po) — E(p0*) __r /
A(oR, L) = 2\P) — =0) _ E) = _
I(SD ) l—E(p) () Nﬁ+1 st
1 1 e 1
= — _ — — < A(R,L).
4 2 4<2()

If, however, r = 11 and ¥’ = 9, then

AR, L) = E(p) — E(2) — E(2) + E(p)E(3)

(6.4) _r 141 r b
_u_1_r2 11 1
20 2 23 202 120°
while,

r l 11 1
65  MeRL =g g-g=g-y
That A,(R, L) and A,_,(¢R, L) are not related in the way that A (R, L) and
A,_.(oR, L) are, is a manifestation of the asymmetry of the two-armed bandit
problem in successes and failures, an asymmetry not evinced by Theorems 5.1
and 5.2. Heuristically, a success on an optimal arm never decreases (and typi-
cally increases) the inclination to pull that arm again, while a failure on an
optimal arm (obviously could decrease, but also) can increase the inclination
to pull the arm again. The number of pulls remaining has been lessened by 1,
leaving less time to take advantage of anything learned.
The one-armed bandit can be instructive in this regard. Suppose that R is a
one-point distribution and that L is not a one-point distribution. In this case
¢R = ¢R = R and (6.1) yields

BJ(R, L) < A (¢R, L) = A} (R, L)

1
= - S A(R,L).
42>2()

It can easily happen that the left arm is worth pulling on the first of n pulls
remaining on the chance that it is really better than the right arm, and not
worth pulling on the first of n# — 1 pulls remaining. The latter example above
(with calculations in (6.4) and (6.5)) is much like this one-armed bandit since
N, is large relative to N ..

The next theorem, Theorem 6.3, is the only result in this section which de-
pends on n, but it is really a corollary of Theorem 6.1 which is true for all n.
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The intuitive notion of Theorem 6.3 is that an arm should be pulled at the last
stage (that is, when n = 1) if it was optimal at some previous stage and has
since yielded all successes. The theorem gives a crude but easily computable
sufficient condition on the distributions R and L for the optimality of &; and,
of course, there is a symmetric condition for the optimality of .ZZ.

THEOREM 6.3. Forallnand I = (r, v, p,; L), if

(6.6) EQ) = Eplr+n—1,r;p,),

then A, (I < 0, and A,(I) < 0 if R is not a one-point distribution.
ReMARK. In the special case z_, = ¢, = B, condition (6.6) becomes:

l - r+n—1

N_=N_+n—1"

_PRrROOF oF THEOREM 6.3. Assume A, (R, L) > 0. Applying Theorem 6.1 n— 1
times, A, ,(6R,L) >0, A, ,(o’R, L) >0, ---,A (6" 'R, L) = E(p|r +n — 1,
r's p) — E(2) > 0. Thus A, (R, L) < follows by contradiction. If R is not a
one-point distribution and #» > 2 then A (R, L) = 0 is similarly contradicted. []

Condition (6.6) is more easily satisfied for small nsince E(o|r +n— 1, r'; 1)
is nondecreasing (and typically increasing) in n. Moreover, if R associates
probability to all intervals (1 — ¢, 1], ¢ > 0, then

lim, , E(o|r+n—1,r;pn)=1;

and if R is such a distribution, (6.6) would be satisfied for very large n only if,
under L, 2 = 1 with probability one. For fixed n and E(2), (6.6) is more easily
satisfied for distributions R that concentrate probability near E(p). For example,
if R is a one-point distribution, E(po|r+n—1,r';pn_) = E(|r, ¥'; p,) and
the problem is a one-armed bandit, then Theorem 6.3 implies that & is optimal
for all n whenever E(2) = E(p). This application of Theorem 6.3 is intuitive
since a left arm which will yield at least as much immediate expected payoff
and at least as much information as the right arm would seem to be optimal.

In the remaining results of this section, R and L are assumed to be conjugate
with respect to each other; that is, given R and L there exist #_, and g such
that ¢, = p_. The next result means that whenever one of the two comparable
arms has a greater “effective number” of successes and a smaller “effective
number” of failures, it is optimal. Many instances of the next theorem follow
from Theorem 5 of Fabius and van Zwet (1970) which is a much more general
result, applying to possibly dependent arms.

THEOREM 6.4. Provided p_, =p . =y, if r=1land r' <, then A, (I) =2 0
for all n and I.

Proor: In view of the conditions, / and /' can be written r — ér and r’ + or’
for or, or' = 0. Applying first J(n) of Theorem 5.1 for ér' = 0, then K(n) of
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Theorem 5.1 for r = 0 then symmetry,
Ary ¥y s LYy Z A, (r — or, v, 5 L)
=A@F—or,r +or,y; Ly=A01V, s L)y=0. []

Theorem 6.4 will be discussed in the form of the following immediate corol-
laries; the first gives a sufficient condition for the optimality of <~ and the
second gives a sufficient condition for the optimality of .22, both under the ad-
ditional condition that N_, < N ..

CorOLLARY 1. If N, < N_andr' =1, then A, (I) < 0 for all n and 1, pro-
vided p_, = p, = p. .

CoROLLARY 2. If N, < N_andr =1, then A (I)\ = 0 for all n and I, pro-
vided pp_, = p = p.

If, in addition to the conditions of Theorem 6.4, n = 2 and p_, is not a one-
point measure, then Theorem 5.2 can be applied to strengthen 6.4. The next
theorem is given for completeness, its proof, which will not be given explicitly,
uses Theorem 5.2 in the same way that the proof of Theorem 6.4 uses Theorem
5.1. '

THEOREM 6.5. Provided p_, = p, = p is not a one-point measure, if r > | and
rr<lorr=landr <, then A, (I) > 0 forall n and I.

It seems intuitive that Corollary 1 of Theorem 6.4 cannot be improved; that
is, for given p=p_ = p, if N, < N_ then the only patterns I for which
A,(I) < 0 for all » have v’ = I'. Because for large n the effective numbers of
successes, r and /, would seem to matter less than they do for small n. If not
more is known about .22 than about & (which in a sense is expressed by
N_ < N_ whenever ¢, = p_) and n is large, then obtaining a success on the
current pull matters little compared to the possibility of learning something on
the current pull about &2 that will increase the number of future pulls on the
better arm, except that learning something about arm &2 if arm & must be
used eventually in any case (and it will if »” > /") can hardly be very worthwhile.
I conjecture that Corollary 1 barely holds in the limit as » — co; and more,
that for a large number of remaining pulls, the only criterion for optimality is
the difference between the effective numbers of failures on the two arms. That
is, Conjecture A: For any ¢ = p_, = p_. and all sufficiently large n, A, (1) has
the same sign as I’ — r’ independent of r and /.

On the other hand, Corollary 2 of Theorem 6.4 seems very weak compared
to what should be true for all n. For, whenever less is known about arm <#Z
(and therefore, more information is gained by pulling .Z2') and .Z# offers greater
expected immediate payoff, then .Z# should be optimal. This is supported by
many unsuccessful searches for counterexamples. Conjecture B: For all » and
Lifpy,=p,=p N, <N_, and E(p) = E(R), then A (I) = 0.

Conjecture B is implied by the notion that as more becomes known about
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arm %, say, and the expected immediate payoff on .2 remains the same
(= E(p| R)), the advantage of .ZZ over " does not increase. This notion can
be shown to be equivalent to the following, which is stated in a manner so as
to emphasize that it is stronger than K(n) of Theorem 5.1. Conjecture C: For
all n, for all I=(r, ', 1 ,; L), and for or, 6r' =0, A, (r +or, ' +or', p,; L) <
Ar, ' p s Lyif E(o|r + or, r' +or'; p) < E(o|r, r'; p.,)-

Conjecture C would also imply many instances of the following conjecture
in Chernoff (1968): Let Rand L be arbitrary distributions, and R* a degenerated
R, the one-point distribution that concentrates probability one on E(p); then
A,(R,L) = 0if A,(R*, L) = 0 for all n. This would mean that the solution of the
two-armed bandit problem is partially determined by the solution of a correspond-
ing one-armed bandit problem. For any point R in the possibility region of p ,
the corresponding R* is in the direction (a, b) defined by D, , E(o|r,r'; ) =0
(provided R* is in the possibility region for x_,; that is, provided R is such that
R(E(p) — ¢, E(p) + ¢) > 0 for all ¢ > 0), so that Conjecture C would imply
A, (R, L) = A,(R*, L).

Conjecture C would also imply that the solution of the two-armed bandit is
partially determined (in the other direction) by the solution of a particular two-
armed bandit, one in which one of the arms, say .7, produces either all suc-
cesses (with probability E(p)) or all failures (with probability E(p)), and one
pull on &2 will, with probability one, reveal which. Let R be an arbitrary
distribution with expected value E(p), and R, the distribution which concen-
trates probabilities E(p) and E(p) at p = 1 and p = 0, respectively, then the
direction (a, b) in the (r, r’) plane from R, to R (provided R, is in the possibility
region for y ) is defined by D, ,,E(o|r, r'; £,) = 0, and Conjecture C would
imply A, (R,, L) = A,(R, L). (R, is in the possibility region for y_, provided R
is such that R[0, ¢) > 0 and R(1 — ¢, 1] > O; if ¢, is not such a measure, then
this inequality would follow from Conjecture C, but for an R, different from
the one defined here.)

7. Results that depend on n. In the previous section, J(n) and J*(n) of Theo-
rems 5.1 and 5.2 are applied for o~ = 0 and K(n) and K*(n) for ér = 0, par-
ticularly when ¢, = p_. In the present section, Theorems 5.1 and 5.2 are
applied in their full generality when p_, = p_. Theorem 6.4 determines the
sign of A,(I) when r =/ and r' < I’ (and, of course, when r < /and ' = I');
each of the theorems in this section determines the sign of A,(I) when r </
and ' < I’ under an additional condition, which depends on n. Theorem 7.1
uses J(n) of Theorem 5.1 to determine a sufficient condition for the optimality
of & and the very closely parallel Theorem 7.2 uses K(n) of Theorem 5.1 to
determine sufficient conditions for the optimality of .Z2.

THEOREM 7.1. For all nand I = (r,r', pu; LU, p), if r<1land v <, and
E(p|lr+n—1,r;p) < EQ|l+n—1,1"; p) then A (I) £ 0.

Proor. In view of the first two conditions of the theorem, / and I can be
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written r 4+ or and v’ + or’ for dr, 0r' = 0. The third condition of the theorem
then becomes the condition in J(n) of Theorem 5.1; therefore,
0=A,00V, ;s Ly=A7A,(r +0r,r +or, p; Ly = A (r, ¥, s L) . [

THEOREM 7.2. For all n and I = (r, v, p; L, U, p), if r<land r' <! and
Ep|r,t' +n— 1) = EQA|LY +n— 1; ), then A (I) = 0.

The proof of the latter theorem is strictly parallel to that of Theorem 7.1
with K(n) of Theorem 5.1 playing the role of J(n).

When 4 is not a one-point measure and » > 2, Theorems 7.1 and 7.2 can be
strengthened just as Theorem 6.4 is strengthened by Theorem 6.5. The next
two theorems accomplish this. Their proofs will not be given explicitly; they
can be proved by applying Theorem 5.2 in the sam¢ way that the proofs of
Theorems 7.1 and 7.2 apply Theorem 5.1.

THEOREM 7.3.  Provided p is not a one-point measure and n =2, if I=
(', w LU, ), r<landr <lorr<landr <U,and E(p|r+n—1,r;p) <
EQA|l +n— 1,1 p) then A, (I) < 0.

THEOREM 7.4.  Provided p is not a one-point measure and n =2, if I =
LU, p), r<landr <lorr<landr' <U,and E(o|r,r' +n—1; ) =
EQ|LI +n— 1; p) then A (T) > 0.

Theorem 7.1 and 7.2 will be applied to two previously discussed example
two-armed bandit problems in the next section: # = § in the first example and
¢ = t in the second.

8. Two important applications. If » = § as defined by (2.5), the application
of Theorems 7.1 and 7.2 is particularly simple. If R = (r, r’; B) and #n — 1 suc-
cesses are subsequently observed in n — 1 pulls on .ZZ, the probability of success
on the next pull is

u(r, r's B) §o o™ (1 — p)" dB(p)
u(r, r's B) S o7 (1 — p)" dB(p)
_ Sopr (1 — p)"tdp

§o0m (1 — p)" ' dp

r+n—1 _ r+n—1
r+r+n—1 N_+n—1"

Ep|r+n—1,1r;p8) =

for this formula, see the topic of beta integrals in any advanced calculus text,
(for example, Widder (1961) Section 11.2). Similarly, if R = (r, r’; f) and
n — 1 failures are observed in » — 1 pulls on &2, the probability of a failure
on the next pull (equals one minus the probability of a success) is

r’—|—n—1_1 r

S ey S s
K4 K74

Theorems 8.1 and 8.2 apply Theorems 7.1 and 7.2 in a way that complements
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Theorem 6.4. As in the corollaries of Theorem 6.4, it is assumed for definiteness
that the effective number of pulls on .~ is not smaller than the effective number
on .Z. Strict inequality versions of these theorems follow from Theorems 6.5,
7.3, and 7.4.

THEOREM 8.1. For all n and 1, provided p_, = p,. = B, if N, < N_ and
r+n—1)/N,+n—-—1)<(I+n—-1))(N_ +n—1), then A,(I) < 0.

Proor. First, assume r’ = I'. In this case, r + r' < I + I’ implies r < / and,
therefore, A, (/) < 0 according to Theorem 6.4.

Now, assume r’ < /. Inthiscase, (r +n—1)/(N, +rn— 1)< (I +n—1)
(N + n— 1) implies r < / and, therefore, A,(/) < 0 according of Theorem
7.1. O .

THEOREM 8.2. For all n and I, provided p_, =p_, =8, if N, < N_ and
r(IN,+n—1)=Il/(N_ +n—1), then A (I) = 0.

The proof of the latter theorem is strictly parallel to that of Theorem 8.1 with
Theorem 7.2 playing the role of Theorem 7.1

For a second application assume p_, = £ = r, then Theorem 5.1 completely
resolves the question of which is the better arm to pull. There is an intuitive
reason why this problem is so readily solvable. Ordinarily, (r, r’; ) is a two-
parameter family of distributions. If x_, is not a one-point or two-point measure,
then the distribution (r,, r,/; ¢_,) is different from the distribution (r,, r,’; ¢2.,),
unless r, = r,, r,/ = r,/. But in case R = (r, t'; 7),

(81) .R('L'l) _ <—T_1>"<1 _ T])r'z <i>r—r’A(r),
R(z,) T2 1 — 1 3}
where A(z) is given by (4.7).

In view of (8.1), the whole family of distributions R depends only on the
parameter 7 = r — r'A(z). Therefore, for all n, A (r, r', r; L) depends on (r, r’)
through 7 alone and has straight parallel contours in (r, r’). The slope of these
contours is A(r), the proportion of successes to failures on % which does not
change A,; for example, if 7, = 1 — 7, then 4(z) = 1 and the contours of A, in
(r, ') are all parallel to the line r = r’.

As previously noted, Theorem 5.1 provides a complete specification of the
gradient of A (r, ¥, z; L) in (r, r'). Therefore, the sign of A,(I) is completely
determined when #_, and g, are the same two-point measure. If the same two
numbers 7, and 7, are the only possible probabilities of success on either arm,
then it seems clear that that arm should be pulled which is more likely to be the
one associated with z,, the larger of the two probabilities; that is, the one which
is more likely to be successful on the first pull. The next theorem says that this
is the case.

THEOREM 8.3. For all n and I, provided y, = p =, A, (I) has the same sign
as E(p) — E(2).
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REMARK. Theorems 6.4, 7.1, and 7.2 can be cited as in the proofs of Theo-
rems 8.1 and 8.2 to prove Theorem 8.3. However, the fact that A(r, r'; 7) does
not depend on r and r’ can be employed more simply to prove the theorem by
appealing directly to Theorem 5.1. The algebra is straightforward though cum-
bersome and is omitted.

Feldman (1962) solved a closed related problem and obtained a similar solu-
tion; see also, (Degroot (1970) Section 14.7). In Feldman’s problem there are
two possible probabilities of success, but the larger is associated with one of
the arms and the smaller with the other; which is the better arm is not known.
This dependence between the arms is very strong; nevertheless, it will be seen
that the solution of Feldman’s probfem and the solution of the independent
two-armed bandit considered in this section can be used to obtain each other.
Fabius and van Zwet (1970) obtain a generalization of Feldman’s solution to
arbitrary joint prior distributions on (p, 2).

If 4, = p, =t then it is possible that p = 2 = 7, (the appropriate prob-
ability is R(r,)L(r,) since p and 4 are independent) or that o = 1 = 7, (the prob-
ability is R(r,)L(z,)). If it is known a priori that the arms are identical (that
is, either p = A =7, or p = 2 = 7,), then neither arm would be strictly pre-
ferred. The only possibilities that influence the size of A,, which determines
the preference between the right and left arms, have p =+ 2 (that is, either
p=r1,A=1,0rp=r1,4=r). Therefore, A, > 0 when and only when it is
a priori more likely that p = 7,, 2 = 7, than that p = 7,, A = 7,.

If it is known a priori that either p = 7, A = r, 0r p = 7,, 4 = 7, the problem
is identical with the one considered by Feldman (1962). Therefore, Feldman’s
result implies and is implied by Theorem 8.3.
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the conjecture correct. )



