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THE EFFICIENT CONSTRUCTION OF AN UNBIASED
RANDOM SEQUENCE!

By PETER ELIAS
Massachusetts Institute of Technology

We consider procedures for converting input sequences of symbols
generated by a stationary random process into sequences of independent,
equiprobable output symbols, measuring the efficiency of such a procedure
when the input sequence is finite by the expected value of the ratio of out-
put symbols to input symbols. For a large class of processes and a large
class of procedures we give an obyious information-theoretic upper bound
to efficiency. We also construct procedures which attain this bound in the
limit of long input sequences without making use of the process parameters,
for two classes of processes. In the independent case we generalize a 1951
result of von Neumann and 1970 results of Hoeffding and Simons for
independent but biased binary input, gaining a factor of 3 or 4 in efficiency.
In the finite-state case we generalize a 1968 result of Samuelson for two-
state binary Markov input, gaining a larger factor in efficiency.

1. Introduction. In 1951, von Neumann [5] described a procedure for gener-
ating an output sequence z,z, - - - z,, --- of statistically independent and equi-
probable binary digits from an input sequence x, x, - - - x, - - - generated by a
process X,(p) which chooses x, from {0, 1} with independence and with uniform
bias: for all n, x, = 1 with probability p, x, = 0 with probability g =1 — p, p
unknown but fixed, 0 < p < 1. von Neumann used on each of the pairs
X, X, X, X,, - - - the mapping
1)) 00— A, 01 -0, 101, 11 - A

where A represents no output digit. He defined the efficiency of this procedure
as the expected number of output digits per input digit. For each input pair the
probability of generating a non-null output digit z is 2pg, so the efficiency is
just 2pq/2 = pq, which is } at p = ¢ = } and less elsewhere. The map (1) is
independent of the value of p, the output 0’s and 1’s are statistically independent
and equiprobable for any p in (0, 1), but the efficiency depends on p.

Hoeffding and Simons [2] for the same process X,(p) investigate the mean
delay or waiting time—i.e., the mean number or x’s needed to generate the first
non-null z. The von Neumann algorithm has expected delay 4: they find 3 as a
lower bound for the class of strategies they consider and find a strategy of mean
delay 3.10 at p = ¢ = }. Their strategies also produce independent and equi-
probable z,, for all p in (0,1).

Samuelson [3] starts with x, x, - - - x, - - . which are generated by a stationary
two-state Markov process X,(p,, p;), in which Pr{x, = 1|x,_, = 0} = p, and
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Pr{x, = 1|x,_, = 1} = p, are distinct but independent of n. He gives several
mappings, of which the most efficient, credited to John W. Pratt, is
(2) 00 — A, 0l - A, 100, 11 >1.

This mapping produces output 0’s and 1’s which are all generated in the 1-state
of the process, and therefore all have the fixed probability p, that the output
digit isa 1. The output digits of (2) can be used as inputs for the von Neumann
mapping (1) to produce independent and equiprobable output digits. The effici-
ency of (2) is < &, but > } if the more probable conditioning state is selected;
applying first (2) and then (1) gives an efficiency < §.

We concentrate on maximum efficiency rather than on minimum delay. For
any stationary discrete-valued input random process X which meets a finiteness
condition, and for any nonrandom mapping procedure which maps the output
of X into independent equiprobable 0’s and 1’s we give the obvious informa-
tional upper bound to efficiency. For the independent but biased binary input
process X,(p) of von Neumann and the binary Markov input process X,(p,, p,)
of Samuelson, we construct procedures which approach the upper bound with
increasing length of input sequence, and do so for any value of the process
parameters (p in the independent case, p, and p, in the Markov case). In both
cases, as p, p, and p, approach 1, the efficiency approaches 1. Extension to non-
binary independent or Markov processes and to a more general class of finite-
state input processes and to equiprobable and independent but nonbinary output
symbols is immediate.

Definitions and bounds on efficiency. A random process X = {x,, n = 1} is
acceptable if it is stationary, takes values from an enumerable set 4, and has
marginal probabilities 0, = Pr {x, = a} with finite entropy

3 H(X') = —Xloe4 0108, 0, < 0.

Let x¥ = (x,, x,, - -+, Xy). Let Z be the collection of sequence (z,, z,, - - ),
where z;e€{0, 1, A} and if z; = A then z,,, = A. Let B, be a function on the
range of x,, taking values in Z and (with some notational abuse) let B,(xy) =

z= (2,2, ). Letz" =(z,2, ---,z,). By is randomizing for X iff for each
m and each z™*
4) 0<Pr{z,=1|z"""} =Pr{z, =0[z""} < §.

Therefore in that subset of z™ = {z} which has no \’s, all z; take values 0 and 1
with equal probability and statistical independence.

For z e Z, let #(z) be the number of coordinates z, = A. The efficiency 7, of a
randomizing B, is defined as

(%) 7n = (1/N)E(H(By(x"))) -
A randomizing procedure B is a sequence of randomizing functions {By }
defined for an increasing sequence of integers N, N,, - - - and its efficiency 7 is

the limit of 7, for N — co. An example is C, the von Neumann procedure.
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C, is the mapping (1) followed by A’s. C,; is the application of C, to j successive
input pairs and the concatenation of the resulting non-null output digits. C is
randomizing for any X,(p), p in (0, 1). Another is D, the Samuelson-Pratt pro-
cedure. D,; maps j pairs of x by the mapping (2), and maps the resulting output
pairs by C,. D is randomizing for any X,(p,, p), po, P, in (0, 1).

THEOREM 1. If X is an acceptable random process and B is a randomizing pro-
cedure for X, then the efficiencies 1y of B, and 1 of B are bounded above:

H(XY) H(X™)
s .

(6) Ny < n < limy_,

ProoF. We make use of standard information theory notation: for any two

sets S and T with joint probabilities defined,
(7) H(S)= —Y,.sPr{s}log,Pr{s} = 0
H(SI T) = - Zses,teT Pr {S, t} 10g2 Pr {S' t} =>0.
Then
H(X") > H(X") — H(X"|Z)

(8) = H(Z) — H(Z| X7)

= H(Z)

= D H(Z™ | Zm7) .

The first line of (8) follows from the positivity of conditional entropy, the
second from the equality of the average logarithm of the two factorings of a
bivariate distribution into a univariate times a conditional, the third from the
deterministic character of B, which makes the conditional entropy of Z given
X7V vanish, and the fourth from averaging the logarithm of the chain rule fac-
toring of the joint distribution of z,, z,, - - - z,, - - - into a product of conditionals:
See e.g., Gallager [1], Chapter 2, for more detail.

Using (7) in the last line of (8),

9) H(Z™|Z"7) = — Xam-1eam—1 22 co,a) PT {27} log, Pr{z,, [z}
= Pr{z, =0} + Pr{z, = 1} = Pr{z, + A},
since for all z"~', log, Pr{z,, = A|z"'} < 0 and by (4) log, Pr{z, = 0|z} =
log, Pr{z, = 1|z"'} < —1. Substituting (9) in (8), and using the definition of
t(z) and (5),
H(X") = $i2_,Pr{z, # A)
(10) = Xm=1 Prit(z) = m}
= E(t(By(x"))) = N1y .

The existence of the limit in (6) is in e.g., Gallager, op. cit. []

The function E,. We next construct a function E,, for each integer N > 2,

with E, = C,, the von Neumann mapping (1). E, is randomizing for X,(p) and
has efficiency near the bound of Theorem 1 for large N.
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Given N, divide the set of 2 possible input sequences into the N 4 1 com-
position classes S,, 0 < k < N, S, containing the (¥) sequences of length N which
have k ones and N — k zeros.

Let
(11) m, = Llog, (¥)J ,
(¥) = a,2" + a, 2" 4 -+ 4 a2
where | y] is the largest integer < y, so that @, «,_, - - - a, is the binary expan-

sion of the integer (}), witha, =1, @; =0or1l,n> j> 0. (Wesetn, =nfor
typographical convenience.)

For each non-vanishing «;, 0 < j < n, assign the 27 possible output binary
sequences of length j to 27 distinct members of S, which have not already been
assigned. One member of S, will be assigned to A if @, = 1 so that S, is odd.
S,and S, have only one member each, which is therefore assigned to A. Making
such assignments in, say, binary number order for all §,, 0 < k < N, completes
the definition of E, .

To compute the efficiency 7,(p) of E,, we first compute 7,, the average number
of output digits per input digit given that the input sequence is in S,. Since all
of the input sequences in S, have the same probability for any fixed input p, 7,
is just the weighted count
a,2'n + a,_ 2" (n — 1) + .- - 4+ a,2%(n — n)

a, 2" + a,_ 2" 7' 4 .o+ ay2°
@1 2" ' + 20, 2" - 4 nay2°

2" 4 a, 2" a2

The denominator of the fraction in the second line of (12) is bounded below
by 2", and the numerator is bounded above by
(13) 2n—1+2.2n—2_|_.“_l_n’20<2n—1<111>2:2n+1.

2

(12) h=n, =

=n, —

Thus from the definition of r, in (11), and (12) we have
(14) log,(Y)=zm =n =n —2=log,(})— 3.

The efficiency 7,(p) of the mapping E, is the average of the ratios #,/N, aver-
aged with respect to the binomial probabilities of choosing an input sequence in
S,. It is therefore bounded by

N 1 v N v
1) mi(V)pre 280 2 () 2 i (V) g B 2

Using the Stirling bounds on factorials gives, for fixed p = k/N,
. 1 N
(16) lim,.. - log, (Np> — Hyp)

where H, is the binary entropy function:
17) Hyp) = —plog,p — (1 — p)log, (1 — p).
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By the weak law for the binomial distribution, given any ¢ > 0 and d > 0
there is an N, such that for N > N,, all but at most ¢ of the probability in the
binomial occurs in terms for which |[(k/N) — p| < ¢. This, together with the
inequalities (15) and the fact that log, (}) < Nfor0 < k < N gives, for N > N,,

. 3
(18)  max, g Hyp + @) + 6= 1y(p) = (1 — ) minyy o Hy(p + @) — <.

And (18), together with the continuity of H,, proves that

(19) limy_, WN(p) = Hyp).

For any N, E, is randomizing for X ,(p), pin (0, 1), and may be used to define
a randomizing procedure as C is defined via C,. The sequence x, x, - - - is divided
into N-tuples each of which is mapped by E, and the non-null results concate-
nated. A more efficient admissible procedure E maps the first two input digits
by E,, the next four by E,, the next six by E, ... the next 2jby E,, ..., and
concatenates their outputs. It proves

THEOREM 2. For the von Neumann ensemble X( p), there is a randomizing procedure
E which is independent of p, pe(0, 1), whose limiting efficiency 7(p) realizes the bound
of Theorem 1.

(After this paper was accepted for publication the author was informed that
a result equivalent to Theorem 2 was independently obtained by J. A. Lechner
at about the same time and by a similar method. J. Gill also informed the author
at about the same time of similar results.)

The finite-state case. We next consider Samuelson’s binary Markov process
X,(py p;) with p,=Pr{x, =1|x,_, =0} and p, = Pr{x, = 1|x,_, = 1} fixed
but arbitrary, both in (0, 1). The equilibrium equation for the two state prob-
abilities P = Pr{x, = 1} and Q = 1 — P gives

(20) P = Qp, + Pp, = (1 — P)p, + Pp,,
P = ___.;DO_.__‘
1 + DPo— P
Given a sequence x, X, - - - generated by X(p,, p,), we use x, only to determine
the state of the process when x, is generated, and decompose x, x, - - - into two

sequences. S, consists of all x,, for which x,,_, = 0, concatenated in increasing
index order, produced by the mapping

(21) x, — X, if x,,=0; x, — A otherwise

and S, consists of all x,, for which x,,_, = 1, similarly concatenated.

S, and S, are processes which generate independent binary symbols, of the
type X,(p) of Theorem 2, with parameters p = p, and p = p, respectively. The
process X,(p,, p,) is ergodic, so there exists an ¢, which — 0 with increasing M
such that when X,(p,, p,) generates M symbols, with probability > 1 — ¢, S,
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generates > M(Q — ¢,) symbols and S, generates > M(P — ¢,) symbols. Apply-
ing procedure E independently to S, and to §,, and concatenating the output
sequences, the expected number of total output symbols for an input M-tuple
from X(p,, p,) is bounded below by

(22) (1 — ) M(Q — eM)WM(Q—eM)(po) + (1 — e )M(P — 5M)’7M(Q—5M>(P1) .

Dividing by M, taking the limit as M — oo, using Theorem 2 and noting that
(see e.g., Gallager, op. cit. or Shannon [4])

(23) H(X,Y) = Hy(P) + (N — 1)[QH,(p,) + PH,(p,)]
proves .

THEOREM 3. Given an acceptable two-state Markov source X ,(p,, p,), there is a
randomizing procedure which is independent of p, and p, and has a limiting efficiency
7(Po» P1) Which attains the bound of Theorem 1.

Extensions. The results all extend trivially to the mapping of an independent
or Markov input process X with finite alphabet of @ > 2 letters onto an independ-
ent equiprobable b- letter output process Z with z,e {0, 1, ---, b — 1, A}. log,
replaces log, in all entropy calculations. E, is constructed using b-ary enumera-
tion of the integral parts of the log, of multinomial coefficients in (11)—(16) to
prove Theorem 2. The Markov process has a states and decomposes into a pro-
cesses to prove Theorem 3. A kth order Markov process whose state is deter-
mined by k preceding letters can also be decomposed (into a* processes), as can
one of Shannon’s finite-state sources with state known to the receiver ([1], [4]),
and Theorem 3 holds.
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