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SUMS OF INDEPENDENT RANDOM VARIABLES—WITHOUT
MOMENT CONDITIONS!

By HARRY KESTEN
Cornell University

Analogues of classical limit laws for sums of independent random
variables (central limit theorem, laws of large numbers and law of the
iterated logarithm) are discussed. We stress results which go through
without moment or smoothness assumptions on the underlying distribu-
tions. These include (i) estimates for the spread of the distribution of S, =
>1"X; in terms of concentration functions (Lévy-Rogozin inequality), (ii)
comparison of the distribution of S. on different intervals (ratio limit
theorems and Spitzer’s theorem for the existence of the potential kernel
for recurrent random walk), (iii) study of the set of accumulation points of
Salr(n) for suitable y(n) 1 co. Only the following parallel to the law of the
iterated logarithm is new: If X1, Xz, - - - are independent random variables
all with distribution F, S» = Y1”X1, m» = med (S.), then there exists a
sequence {r(n)} such that y(n) — o and —oo < liminf(S» — ma)/r(n) <
lim sup (S» — ma)/r(n) < co w.p. 1, if and only if F belongs to the domain
of partial attraction of the normal law.

1. Introduction. The classical limit laws for sums of independent random
variables are the laws of large numbers, the central limit theorem and the more
refined law of the iterated logarithm. Typically the hypotheses of these theorems
include a moment assumption, such as the existence of the mean for the strong
law of large numbers or the existence of the variance for the central limit
theorem and the law of the iterated logarithm. Analogues of the central limit
theorem which imply convergence to a stable law other than the normal law
require regularity of the tail of the underlying distributions instead of the exist-
ence of the 2nd moment. Our purpose here is to survey some reasonable gener-
alizations or analogues of the classical limit theorems which do not make a
priori moment or smoothness assumptions on the underlying distributions, e.g.
results which hold for any random walk. We shall, however, always assume
that the random variables which we add are independent, and in most cases we
shall even assume them identically distributed. We shall also restrict ourselves
to one dimensional real random variables, although most problems and some
results carry over to vector (or even group) valued random variables. To put
it in nonprobabilistic terms, we investigate general inequalities and smoothness
properties of convolutions of probability distributions on the real line R. The
abstract above states more specifically what kind of results are discussed. All
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results are already in the literature, with the exception of Theorem 2c¢ and the
necessary and sufficient condition for the existence of {y(n)} satisfying

(1.1 — oo < liminf Se =™ < Jimsup S = M < oo

r(n) r(n)
mentioned in the abstract. The latter condition appears in Theorem 6 and is
proved in the Appendix.

Of course the choice of topics here was largely dictated by personal tastes and,
what is perhaps the same thing, a desire to draw attention to several open prob-
lems and conjectures which are stated in Section 3 and 4.

Throughout X;, X,, - - - will denote a sequence of independent real random
variables and S, = >;» X,;. The distribution function of X; will be denoted by
F,, and just by Fif the X; are identically distributed, X,, X, - - - will be another
sequence of independent random variables, independent of {X},.,, and with the
same distribution as {X;},,,. We put X;* = X; — X, = “the symmetrization” of
X;, and of course

S, =x1X, Sr=s8-5,.
The distribution function F;* of X;® is given by
(1.2) Fy(x) = § F(y 4 x) dF(y) -
For any distribution function F, F* denotes F x F x - .. x F, its k-fold convolu-
tion, med (S,) = median of §,, i.e., any number m for which P{S, = m} = {
and P{S, < m} = . I(A) is the indicator function of the event 4.

2. The spread of a convolution. One of the most elegant chapters of early
probability theory deals with the convergence of series of independent random
variables. Kolmogorov [38] gave necessary and sufficient conditions for S, to
converge w.p. 1 in his celebrated three series criterion. Lévy, [41] Theorem 44,
proved that S, converges w.p. 1, if and only if it converges in probability and
Doob [11], Corollary 2 to Theorem III. 2.7, showed that convergence w.p. 1 of
S, is even equivalent to convergence in distribution (for a good account of these
results see [11], Chapter III. 2 with references in the appendix, page 626; different
proofs can be found in [41], Section 42-46). In these investigations it proved use-
ful to ask whether S, — ¢, converges w.p. 1 for suitable c,, even when S, itself
diverges w.p. 1. Such “centering constants” c, exist if and only if S,* converges
w.p. 1 (see [11], middle of page 120). If S, — ¢, diverges w.p. 1 for every choice
of c,, or equivalently, if S,* diverges w.p. 1 then the sequence of partial sums
is called essentially divergent. It turns out that this occurs exactly when the
distribution of S, gets “spread out” more and more over the whole real line.
More precisely, S, is essentially divergent if and only if

oS, Ly =sup, Pla< S, <a+ L} -0 (n — )

for each L > 0. (See [41], Section 42, 43, [11], Theorem III. 2.9.) The proof
of these results as well as the final result itself raises the question to give a quan-
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titative estimate of the spread of the distribution of S,. A common measure for
the spread is the variance, but this may of course be infinite. Lévy circumvented
this difficulty by introducing the concentration function Q(Y; L) and its inverse
D(Y; q) for an arbitrary random variable Y. These functions are defined by*

(2.1 O(Y;L)y=sup, Pla< Y<a+ L},

(22)  D(Y;g)=inf{L: Q(Y; L) = g}
=inf{L:3a suchthat Pla <Y <a+ L} = q}.

In (2.2) 0 < g < 1and theinfover the empty set is taken as co. Doeblin and Lévy
[10], (see also[9]and [41], Section 48) were the first to give a quantitative estimate
for the spread of the distribution of S, in terms of a lower bound for D(S,; ¢).
Their result shows more or less that the spread is smallest in the cases where
the central limit theorem applies; under some uniformity conditions D(S,; )
grows at least like nt. Specifically they prove the following result: If 0 < ¢,
g, < 1 then there exist constants 0 < C = C(q,, ¢;), N = N(q,, ¢,) < oo such
that for any L > 0 and independent random variables X, - - -, X, which satisfy
n = N and

2.3) D(X;; q,) > 2L, or equivalently, Q(X;;2L) < ¢,,
one has
(2.4 D(S,; ;) > CLnt .

This result is a rather crude analogue of the global central limit theorem; it
tells us something about the probability mass of intervals with length of the
order nt. The Doeblin-Lévy inequality (2.4) has been modified and improved
by Kolmogorov [39], Rogozin [50], [S1], LeCam [40], Esséen [13], [14] and
Kesten [32]. The best version at present is an analogue of the local central limit
theorem in that it deals with the probability mass of intervals of fixed length.
It looks as follows:

THEOREM 1 ([32]). There exists a universal constant C < co such that for any n
and arbitrary, 0 < 2,, - - -, A, < 2L and independent random variables X,, - - -, X,
max,., 0(X,; L)
(20 Siisa, VHAFS(p) + A7P{1X| > 411
c L .
[2r 21 — O(X;; 22,)}]

To give a feeling for the inequality (2.5) we write out two special cases:

(2.5) 0(S,; L) < CL

IA

(i) X, X,, ---, X, identically distributed and 0 < 2, =41 < 2L, 1 i< n.

2 The notation in (2.1) and (2.2) is convenient, but not very logical because Q and D depend
only on the distribution function, G say, of Y rather than on Yitself. Sometimes we shall there-
fore write Q(G; L) and D(G; q) instead of Q(Y; L), respectively D(Y; g).
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(2.5) now gives

O(S,; L) = max, Pla < S, < a + L}

CLO(X,; L)
27§y, y1AE (y) + P{IX| > A
< CL .

T Ani[l — O(Xy; 22)]
In analogy with the local central limit theorem, the probability mass of any
interval of fixed length is at most O(r~%). (In the identically distributed case
with infinite variance, Q(S,; L) is actually o(n~*); see [14], Theorem 4.1.)
(i) X, X,, - -+, X, identically distributed and integer valued, 4, = L =1,

l<i<n Let )

(2.6)

IA

p = max, P{Xl = k} .
(2.5) now gives
Cp
2.7 S;1)=m PS, =k}l 1L .
( ) Q( n 4) axk { } = n%(l —P)*
The maximal probability of any integer for S, is at most C[r(1 — p)]~* times
the maximal probability for any integer for X;.

REMARK 1. Even though several analogues of Theorem 1 in higher dimensions
have been given (see Sazonov [53] and Esséen [13], [14]) they are not quite satis-
factory. The constants in [53] are not universal, but depend on the underlying
distributions, whereas Esséen [13] has to make symmetry assumptions or (Theo-
rem 6.1 in [14]) has to be content with a weak estimate. The difficulty is due,
in part, to the existence of distributions in R¢, which are concentrated on
subspaces of dimension less than d. For instance if X;, -- -, X, are identically
distributed in R* with a distribution function F concentrated on a line and with
finite second moment, then
(2.8) sup, P(S, ca + U} = _C(f;; v)
for any rectangle U, where C(F, U) > 0. On the other hand, if F is not con-
centrated on a line, then the left-hand side of (2.8) is O(n~*) (see Theorem 6.2
of [14]) so that it is hard to see what should replace the denominator in the
second or third member of (2.5). Compare also Section 3 of [13] and Section
6 of [14].

REMARK 2. It seems worth pointing out that we do not have a purely analy-
tic proof of (2.5)—(2.7). Esséen [13]and [14] hasa very neat analytic proof for
(29) (S, L) = CLI X Sinisy, V' A (p) + 7P X > A,
but one needs an additional combinatorial argument to obtain (2.5). In the
special case (ii) (2.9) gives only

max, P{S, =k} < —_©

(1 —p)t
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One would expect (2.7) to be provable by methods of Fourier series only, and
even (2.5) should be provable analytically.

RemMARK 3. Even though it is only marginally related to our present subject,
we point out the usefulness of the dispersion function in the formulation of
certain limit theorems. The function D(S,; ¢) often provides us automatically
with the right norming constants. For example, if G, is any sequence of distribu-
tion functions and 7, > 0, d, constants such that G,(7,x + 9,) converges weakly
toa function G(x), then? G,(D(G,; ¢)x + 9,) also converges weakly to G(D(G; ¢)x),
whenever ¢ < 1 and ¢ is a continuity point of D(G; +) and D(G; g) > 0. Thus
in many cases we can take norming constants to be of the form D(G,; g). Also,
if {G,} is a family of distribution functions, then there exist constants y(a) > 0,
d(a), such that any sequence G, (y(a,)x + d(a,)) has a subsequence which con-
verges weakly to a nondegenerate limit, if and only if there exists a ¢, < 1 such
that D(G,; q,) > 0 for all @ and

D(G,;
SuP"D—EG‘%< ) forall ¢,<¢,¢4<1.

In that case we can take 7(a) = D(G,; 9,) and d(e) = median of G,.

3. Smoothness of convolutions powers. In this section we shall always assume
that X,, X,, - - - are independent identically distributed random variables. Their
common distribution function and characteristic function will be denoted by F,
respectively ¢. We use the following terminology: F is called arithmetic if its
support is contained in an arithmetic sequence {nh: n =0, +1, +£2, ...} for
some £ > 0. In all other cases we call it non-arithmetic. For simplicity we
formulate results for the arithmetic case only for the integer valued case, i.e.
when & = 1.

In the last section we discussed upper bounds for

(3.1) P{S,ca + I}
for intervals I. Without further assumptions on F one cannot hope to find the
exact asymptotic behavior of F. Nevertheless one can prove remarkable smooth-
ness properties of (3.1) as a function of @, with practically no assumptions on F.
The first result in this direction is probably Doeblin’s ratio theorem for a Markov
chain{Z,},.,withadiscretestate space (see[8]or[5], Corollary 2to Theorem1.9.4):
(3.2) lim, ., Yia P2 =JjlZ, = i}

YL PZ,=m|Z, =1}
exists and is positive and finite if 7, j, /, mall lie in one class (see [5], Section 1. 3
for definition of “class”). For an integer valued random walk S,, this becomes

(3.3) lim,_ 2k= P{S, =i}
Zlycb=1 P {Sk =] }
exists and is positive and finite, whenever

3.4) P{S, = a forsome n} >0 for a=1ij,j—1ii—].
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For a persistent random walk the limit in (3.3) equals one (see [5], Theorem
I. 5.3 and 6, [55], Proposition 1.5). A considerably stronger result was proved
by Chung and Erdds ([6], Theorem 3.1 and 4). Their result was improved by
Kemeny [26], Doob, Snell and Williamson [12] and Neveu [42] to the following

THEOREM 2a. If S, is an integer valued random walk, then

P{Sn+m: in +]} =1

(3.5) lim,_,,, PS. = 1] ,
whenever

(3.6) lim, ., [PS, = i,}]" = 1,
and for some integers k = 0, a,

3.7 P[S, = a}P{S,,, =a+j} >0.

Notice that m < 0 is permitted in (3.5) and (3.6) as long as kK + m > 0 in
(3.6). Actually none of the papers [6], [26], [12] or [42] states the theorem in
this generality, but their proofs easily yield the general result; indeed it is ap-
parent from those works as well as those of Ornstein [45] and Stone [56] that the
heart of the Chung-Erdds proof is an inequality of the following form: If (3.7)
holds, then for every ¢ > 0 there exists a 6 > 0 such that sufficiently large n

(3.8) P(S, = i} < (1 4 P,y = iy + j} + €
and
(3.9) PSS, n=06+J} (1 +&P[S, =i} + e,

These inequalities are implicit in the proofs of Theorems 3.1 and 4 of [6], and
of course they imply (3.5) when (3.6) holds. It proved quite difficult to gener-
alize the “individual ratio limit theorem” to the non-arithmetic case. This was
done by Ornstein [45] and Stone [56], [57], essentially by generalizing (3.8) and
(3.9). [56] even proves such inequalities for a random walk on a locally com-
pact Abelian group. For real valued X; with a distribution F, which is not a
lattice distribution, i.e., which satisfies

(3.10) Support of F does not lie in a set of the form
{(k+nh:n=0, +1, ...},
Ornstein [45] and Stone [56], [57] derive
THEOREM 2b. For any finite intervals I, J with lengths 1|, |J| > 0 and satisfying
(3.11) lim, . [P{S,ex, + /" =1,
and any integer m, one has

P{Sn+mexn+y+']} :ﬂ,
P{S,ex, + I} |

3.12) lim, .,

uniformly for y in a compact set.
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We observe that for symmetric random walk with infinite variance one can
even compare intervals whose distance increases like n?. Specifically, it is pos-
sible to prove the following theorem (however by methods somewhat different
from those used for Theorems 2a and 2 b):

THEOREM 2c. Let F be symmetric, with
(3.13) § x*dF(x) = oo .
If F is concentrated on the integers and for each j there exists an n(j) such that
(3.14) P{S,=j} >0  for nzn(j),
then for all A < oo and |i,|, |j,| < Ant'

P[S, = i} _
. P{Sn = Jn}

If F is symmetric, satisfies (3.13), but F is non-arithmetic, then for all A < oo and
|%,s | Va] £ Ant and fixed intervals 1, J,

(3.16) lim, , PlS.€% + 1} _ 11|
P{S, ey, +J} VI
REMARK 4. We have not written down a ratio theorem for lattice distributions
F, which are non-arithmetic, i.e., distributions F whose support lies in {k 4
nmh:n=0,+1, ...} for some k, h which are independent over the rationals.
This case is, however, covered by Theorem 4 in [57]. Note also that the defini-
tive paper [56] of Stone goes considerably further than Theorem 2b. It proves
a ratio theorem for more general sets than intervals I and J and even has a ratio
theorem for densities. In [26], [12], [56], [57] the authors have also evaluated
limits of the left-hand sides of (3.5) and (3.12) in cases where the limits in (3.6)
resp. (3.11) are less than one. Orey [43] and Kingman and Orey [36], have
given simple and rather weak conditions for the validity of the individual ratio
limit theorem for general countable Markov chains.

(3.15) lim

REMARK 5. We do not discuss here almost-everywhere convergence analogues
of (3.3), or the more general problem of convergence with probability one of
the random variables

Zi=1f(Sk)
2k=19(Sy)

for suitable functions f and g. Several authors investigated special cases of this
problem, but a general attack on it for general Markov chains was made by
Harris and Robbins [19] (via Hopf’s ergodic theorem) and for countable Markov
chains by Chung [4] (using “Doeblin’s trick”; see also [5], Chapter I. 15 for an
account of these results for countable Markov chains). Both [19] (Theorem 4
and Corollary) and [4] (Corollary 2 to Theorem I. 15.1) explicitly specialize
their result regarding (3.17) to a random walk S,. The closest correspondence

(3.17)
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with Theorem 2 is found when f and g are indicator functions. If we write

(3.18) N(A) = 20, 1(S,) =% of ke[l,n] with S,e4d,
then for a persistent random walk one obtains

N,(9)
(3.19) 7 51 wp.l

N.(J)

if S, is integer valued and P{S, =i} > 0, P(S, = j} > 0 for some k,, k,; if F is
non-arithmetic (3.19) has to be replaced by
(3.20) Nol) _, 1L w.p.1
N(J) VI
for fixed intervals I and J. .

We also remark that [19] and [4] require that the functions f and g are
integrable w.r.t. a certain measure, which in the case of a random walk on the
integers is the counting measure, and in the case of a non-arithmetic random
walk is Lebesgue measure on R. This adds interest to a paper of Robbins [49]
which proves convergence w.p. 1 of

1 n
— 2= f(S)

for a random walk S, and an almost periodic function f. Such functions are
not integrable w.r.t. counting measure on the integers or Lebesgue measure on R.

Theorem 2 shows that under mild assumptions convolutions are quite smooth
as long as we do not go out ““too far in the tails.” (3.6), respectively (3.11), usually
holds unless ¢ = EX exists and |i, — np|, respectively |x, — ny|, grows too fast
with n; ((3.7), (3.10) and (3.14) are merely aperiodicity assumptions). However,
Theorem 2 only tells us something about the probabilities of intervals of fixed
length. Can we compare probabilities of intervals whose length grows with n?
Specifically we have in mind the following

ProBLeEM 1. Find sufficient conditions for

2ik=1 P{S, € [ak?, bE*]}
Lz P{Sp e [(a + o)kt (b + o)kt]
for all a < b and ¢ for which the denominator in (3.21) is eventually positive.
For any F for which (3.21) holds Conjecture 3 in Section 4 is valid, and this
fact is our main motivation for the problem. There do exist distribution functions
F for which (3.21) fails for suitable a, b, ¢. So far these examples do not disprove
Conjecture 3, though, since what we need for Conjecture 3 is less than (3.21).°

(3.21) lim sup,,_,.. < oo

3 From Theorem 3 in [34] it follows that in order to establish Conjecture 3 we should probe

w=1 P{Sn€[ant, bnd} [17) P{ISi] < ni}}? = oo
if and only if
I PiSnel@+ ond, (b + b [Z15 PUISI < b}t =0 .

Partial summation shows that this equivalence is implied by (3.21).
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On the other hand, if

§{ xdF(x) =0, § x*dF(x) < oo,
then (3.21) follows from the central limit theorem. If

§ xdF(x) + 0, § x*dF(x) < oo,

then both numerator and denominator of (3.21) converge by virtue of Theorem
1in [25]. Finally if § ¥’ dF(x) = oo, then we know from the inequality (2.6) or
Theorem 4.1 in [14] that for each k& > 0

O(S,; knt)y =sup, Pla < S, < a + knt} - 0 (n— o0).
Thus the distribution of S, will be sprLead out over regions large w.r.t. n! and
(3.21) asks for a certain smoothnéss of the distributions of S, over distances

which are small w.r.t. their spread. If { x*dF(x) = oo and F is symmetric, then
Theorem 2 ¢ implies immediately

P{S, e [ant, bnt]} -1
"7 P(S, € [(a + c)nt, (b + c)nt]}
for all @ < b and ¢, which is much stronger than (3.21).

So far we have concentrated on ratios of probabilities. Another measure for
the smoothness of the distribution of S, is the behavior of

(3.22) lim

(3.23) W,(x, B) = P{S, e B} — P{S,ex + B}
and
(3'24) Vn(x) = SupB Borel set I Wn(x9 B)I .

It is comparatively easy to prove the following theorem (see [21], [29], [46],
Theorem 7, [44]):

THEOREM 3. If Fis concentrated on the sequence {k + nh: n =0, +1, ...} then
for each fixed integer i with P{S, — lk = ih} > O for some |

(3:25) Vi) = § 2; |P(S, — nk = jh} — P{S, — nk = (i + j)h}]

= O(1/n}) (n— ).
If F* has an absolutely continuous component for some k, then for all x
(3.26) V.(x) = O(1/nt) (n— o).
If F is not a lattice distribution, i.e., satisfies (3.10), then
(3.27)  lim, . §|W,(x,y + B)|dy

= lim, . § |P{S, ¢y + B} — P{S,ex + y + B}|dy = 0

for any x and bounded Borel set B; moreover
(3.28) lim, .. [§ f()P{S, e dy} — § fix + y)P(S, e dy}f =0,

for any x and bounded uniformly continuous function f. For fixed x and F the rate
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of convergence in (3.28) depends only on the upper bound of | f| and the modules of
continuity of f.

Orey [44] even proves a generalization of (3.25) for countable persistent
Markov chains which improves Kolmogorov’s ergodic theorem for countable

Markov chains.
Much deeper than Theorem 3 are the results of Spitzer and several other authors

which state that for suitable choices of x and B
2in Wa(x, B) converges.

The precise statement is as follows:

THEOREM 4. If S, is an integer valued random walk and P{S, = i} > 0 for some
k, then for any j
(3.29)  UGh,j) = Su Walhs (J) = Tu[P(S, = Jj} — PIS, = i + j}]
converges. If F is non-arithmetic, then
(3.30) Uf(y) = S 1 (% + »)P(S, e dx)
converges for any x and any continuous function f which satisfies
(3.31) § x| f(x)|dx < co  and  f(0) = § €’ f(x)dx has compact support
and
(3.32) § f(x)dx =0.

If F* has an absolutely continuous component for some k, then the series in (3.30)
converges for every bounded Borel function f with compact support which satisfies
(3.32). In particular, in the last case

converges for any x and interval I.

Theorem 4 is trivial for a transient random walk. The special case where S, is
integer valued and F satisfies

(3.34) {xdF(x) =0, §x*dF(x)< oo

or F is symmetric is still rather simple. (3.29) for this case was proved by
Hoeffding [24] (Theorem 4.5) and independently also by Kemeny and Snell [28]
(Theorem 1 there implies (3.29) by Theorem III. 14 in [27] or Proposition 28.2
and the comment at the bottom of page 351 in [55]). The general case of (3.29)
is much more delicate and was proved by Spitzer [54] (see also Section 28 of
[55]). To go from the arithmetic case to the non-arithmetic case is highly non-
trivial. Special cases were proven by Herz [22] and Bretagnolle and Dacunha-
Castelle [3]. The convergence of (3.30) and (3.33) if f satisfies (3.32) and F*
has an absolutely continuous component is due to Ornstein [46]. A rather
different proof for the convergence of (3.30) if f satisfies (3.31) and (3.32) was
given by Port and Stone [48] and Stone [58] (especially Theorem 5 in [58]). The
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above papers go on to study the asymptotic behavior of U(i, j) as j — + oo,
respectively of Uf(y) and U(x, I + y) as y— +oo. For transient random walk
‘this asymptotic behavior of U is precisely the content of the classical renewal
theorem and these delicate asymptotic studies therefore form analogues of the
renewal theorem for persistent random walk.

Even though none of the proofs of Theorem 4 go so far, it is tempting to
conjecture that the series for U actually converge absolutely, under some obvi-
ously necessary aperiodicity assumption. For simplicity we only state this in
the integer valued case.

CoONJECTURE 1. If S, is an integer valued random walk such that for each integer i
(3.35) P{S, =i} >0, for k= k(i) _say,
then
(3.36) ZalWu(t, JPl = ZalP{Sy =J} — P{S, =i+ j}l < o0 .

In support of this conjecture we point out that it holds if Fis symmetric (see
(5.3)), or under not too stringent regularity assumptions as spelled out in Pro-
position 1 below. A similar propositon is indicated in part IV-c of [3].

ProrosITION 1. Let!

CH(m) = 3l kism K*P{X;* = k} .
Then (3.36) holds whenever (3.35) holds for all i as well as one of the two conditions
(i) or (ii):

(1) 2=, (MC*(m))™* < oo for some m, (e.g. if C*(m) = (logm)'** for some
e > 0 and large m).

(il) C*(2m) < (2t — €)C*(m) for some ¢ > 0 and large m.

In particular, (3.36) holds whenever Fis in the domain of (not necessarily normal)
attraction of a stable law L (if L is the normal law then C*(+) is slowly varying
so that (ii) holds; if L is not normal then (i) holds (see [16], Theorem 17. 5.1)).

We postpone the proof of this proposition till the appendix, but it relies on

rather coarse estimates only.

REMARK 6. The random variable analogue of the ratio theorems was (3.19).

Clearly
L= Wi, () = E{N.()) — Nu(i + )}
so that random variable analogue of the study of W would be the study of the
distribution of N,(j) — N,(i + j). Without assumptions on F not much can be
said about possible limits of this distribution. Itis, however, an easy consequence
of Theorem 2 in [31] that if S, is persistent and P{S, = i} > 0, P{S,, =/} >0
for some k,, k, then the distribution of
N.(j) = NG+ )
(M)

4 The proof shows that C*(m) may be replaced by C(m) = X k1 sm k2P{X1 = k}.
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converges to a normal distribution with mean zero and some finite, strictly
positive variance.

We close this section with a slightly more esoteric, but fascinating conjecture.
The fascination lies in its generality and the very explicit and simple answer it
proposes for the limit of a certain ratio. Again we restrict ourselves to the integer
valued case; [47] and Section 5 of [48] form indications of what one should con-
sider in the non-arithmetic case. In [35] and [30] (3.29) and further results of
Spitzer [54] were used to prove ratio theorems for the taboo probabilities

Qi j)=Pli+ S, =), i+ S,e¢Q for 1 <k<n-—1}.

It was shown that if S, persistent and satifies (3.35) for all iand EX;*> = o, then
there exist for every finite set Q constants ¢, = ¢,(RQ) such that for all m, i, j

Qo™ (0, J)

n

= gg(i)g—u(_j) .

The functions § are certain potential theoretical functions defined in[30]. Dr. B.
Belkin (private communication) showed that the assumption EX,> = co can be
dropped. We were, however, unable in general to compare the Qg(-, «) for
different Q. That is, we do not know if for Q — Q’, Q,*(i, j) and Qp.(i, j) are of
the same order, or if their ratio has a limit. Such comparisons all hinge on the
following

CONJECTURE 2. Let S, be an integer valued random walk, and put
fa\"' = P{rth return to the origin occurs at time n}
= P{S, =0 and S, =0 for exactly (r — 1) values of ke[l,n— 1]}.
If S, is persistent and

(3.37) P(S, = 0} > 0 eventually,
then
(3.38) lim, .. ;i”’ —

We proved in [30] that the conjecture holds if F belongs to the domain of
normal attraction of a symmetric stable law, and later, in [33], for every sym-
metric F. More generally (3.38) holds when

(3.39) ‘ Im o(0) = O(|6%) , 0—0.
With no conditions but persistence and (3.37) (see 11.20 and following lines of
[30], for r = 2)

(r)
lim inf, /o =r
n=e T ’
n

and (3.38) holds in the following “Abelian sense”

o n £ (r)
limtTl glﬂnt";n(l) =r, DMy nfnm = .
n=1 nt n
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REMARK 7. We draw the reader’s attention to the fact that Problem 1 as well
as Conjectures 1, 2 and 3 (to be formulated in Section 4) have been settled if F
is symmetric. The great simplification in that case is that then Im ¢(8) = 0.
The major stumbling block in the general case is that we do not know very well
how Im ¢(f) can behave as ¢ — 0. Many estimates would probably become easy
if we could find explicit information about the relation between Im ¢(¢) and
1 — Re ¢(0) as § — O for a general characteristic function ¢.

4. Limit points of normalized random walk. With the exception of Remarks 5
and 6 the comments so far have dealt with the distribution of S,, rather than
the actual random variables S, themselves. Here we want to discuss strong laws
for S,/y(n) for suitable sequences y(n). We are interested here in the set of
accumulation points of S, /y(n), i.e. in the set

S”—: nz= m} .

rm

The bar in the right-hand side of (4.1) denotes closure in the extended real line
R=RuU {— o0, + oo} with its usual topology. Thus we allow 4 co or —oo as
accumulation points. In this section X, X,, - - - will again always be identically
distributed with distribution function F and characteristic function ¢, and the
topology and closure will always be that of R.

As the notation indicates A(S,, {r,}) is a random set which depends on the
sample sequence {S,},.,. It is not hard to show though, that 4 is w.p. 1 inde-
pendent of the sample sequence. More precisely (Theorem 1 of [34]), there exists
a closed set B = B(F; {r,}) R such that

(4.2) A(Sys {ra}) = B(F; {ra}) w.p. 1.7

Several classical results can be reformulated in terms of B. The oldest one
perhaps is Kolomogorov’s strong law of large numbers in which one takes
r(n) =n: If

(4.1) AGS,., (rm}) = N5- {

4.3) © = § x dF(x)
is well defined (4 oo or — oo allowed as possible values), then
(4.4) B(F; {n}) = {¢},

i.e., in view of (4.2),
. S
lim = = w.p. 1.
now S = M p
(See for instance Theorem 3.30 in [2]). Next, one has the law of the iterated

logarithm, which takes y(n) = (2nloglog n)}. The Hartman and Wintner [20]
result, when specialized to identically distributed variables, can be formulated

5 In Theorem 1 of [34] we made the assumption y(n) — oo, but this is not used at all in the
proof and therefore superfluous.
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as follows: If
§xdF(x) =0 and o' = { X*dF(x) < o0
then

4.5) {—o0, +0} C B(F; {(2nloglogn)}}) C [—o, 4]

(the first member in (4.5) denotes the set consisting of the two points +¢ and
—o: the last member the closed interval from —o to + o). Strassen[60]and [61]
proved a more detailed theorem, which in particular implies

(4.6) B(F; {(2nlog log n)t}) = [—o, +0]

and if ¢®> = oo then at least one of :the points + oo and —oo belongs to
B(F; {(2nloglog n)t}). Another statement about B, perhaps the first which makes
no a priori moment assumptions, is the celebrated Chung-Fuchs criterion for
persistence or transience of a random walk (Theorem 3 in [7]); we give here the
improved version of Spitzer [55], Theorem 8.2, Ornstein [46], Section 4 and
Stone [58], Theorem 2. Here one takes y(n) = 1:

4.7) B(F; {1}) C {—oo0, + o0}

if and only if
1

I — ¢(6)
(By (4.2) (4.7) is equivalent to lim,_, |S,| = co w.p. 1, i.e., transience of S,.)

We largely owe our interest in B(F; {y(n)}) to questions and conjectures of
K. C. Binmore and M. Katz (private communication). They were interested
in the structure of B(F; {n}). In [1] they gave a necessary and sufficient con-
dition for B(F; {n}) = {+oo}; i.e., for S, — oo w.p. 1, and in a letter to the
author they gave a sufficient condition for a point b to belong to B(F; {n}). The
set B(F; {n}) can be viewed as a sort of generalized mean of F. For, if the mean
(4.3) is well defined, then by (4.4) B consists only of one point, the mean of F.
For the same reason one can view the determination of the structure of B(F; {n})
as a generalization of the strong law of large numbers without moment condi-
tions. Whatare the possibilities for B, other than one point sets which can always
be obtained by virtue of (4.4)? Simple examples (see [34], Section 5) show that
B = {—o00, + oo} is possible. But what if B contains a finite point b plus at least
one other point? The answer to this question came as a surprise to us (see [34],
Section 4 and 5):

{72 Re df < o forsome a>0.

THEOREM 5. If B(F; {n}) contains at least two points, then B(F; {n}) has to contain
+ o0 and —oo. Any closed set B of R which contains + co and — oo is the B(F; {n})
for some F.

Thus for closed sets B of R of more than one point, the only restriction is

that 4+ co ¢ B and —oo € B; it is for instance possible to construct a random
walk such that w.p. 1 the accumulation points of S,/n are exactly —oco, 0 and



SUMS OF INDEPENDENT RANDOM VARIABLES 715

+ 00 or —oo, + oo and all integers (but nothing else). It is, however, not pos-
sible to find a random walk with limit points 0 and + co only for S, /.

The case y(r) = n may well be special because we can translate B(F; {n}) by
a constant a by replacing F(x) by F(x — a). Probably another special case is
r(n) = n}, because the concentration function inequalities of Theorem 1 tell us
that the distribution of S, is spread out at least over a distance of nt. An indi-
cation of this effect is provided by Stone’s result [59]:

If P {lim SUP, 0 %,, = —oo} <1, then P {lim Sup,, e %"
n n

We believe that a stronger result holc{s which we state as
CoNJECTURE 3. If B(F; {n}) contains any finite point, then B(F; {n'}) = R.

Good indications for the truth of this conjecture are given in [34]: If @ <
and B(F; {n°}) contains any finite point, then B(F; {n*}) = R. If B(F; {nt}) con-
tains the finite point b, then it contains [b, co] or [— oo, b]. The conjecture is
true for any persistent random walk S, as well as when F is symmetric, or
more generally

[Im ¢(0)] = O(1 — Re ¢(0)), -0
(see Section 3 of [34]). Lastly, the conjecture is true for any F for which (3.21)
holds (see the comments following Problem 1).

Apart from the stated results we do not know much about B(F; {n*}). Thus

there is the natural

ProBLEM 2. Find the possible structures of B(F; {n°}) for @ > %, a = 1.

Several related problems have been stated in [34]. We restricted ourselves there
to sequences y(n) = n*, but one may of course consider more general sequences,
and, as we shall see, there are good reasons to allow for a sequence of transla-
tion parameters d(n). This leads to the more general, but vaguer

ProsLEM 3. Find the structure of the set of accumulation points of

S, — 9(n)
r(n)
for suitable sequences {y(n)}, {d(n)}.

This is not just an idle generalization, but it is closely related to the law of
the iterated logarithm. Recently Feller [17], Rogozin [52], Heyde [23] (also a
question of P. Révész in a conversation with the author) dealt with the following
version of Problem 3: When is the set of accumulation points of (S, — o(n))/r(n)
bounded, and if so, what are lim sup and lim inf of (S, — d(n))/r(n)? Actually,
this is not quite their formulation and more precision is clearly needed to make
the problem interesting. For one can always take y(n) so large that

S, — o(n)

—)0 w. .1.
7(n) P
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Thus it is more reasonable to require

4.8) —oo < liminf,_ 52 =% < jimgup, S =0 o 4o
r(n) r(n)

Even then the question is unreasonable, for if y(n) is so large that S, /y(n) —
0 w.p, 1, then the accumulation points of (S, — d(n))/r(n) are precisely those of
—d(n)/y(n). If d(n) is unrestricted we can therefore still obtain anything for the
accumulation points of (S, — d(n))/y(n). However, we are interested in the
fluctuations of S,, not of d(r), and in order to catch these we take d(n) “well in
the support” of the distribution of S,, i.e., we add the requirement

4.9) P{S,=zdm}=~x and P{S, S dn)} ==
for some fixed 0 < = < 1. The simplest choice would be
d(n) = median S, ,

corresponding to # = }. This choice is strongly suggested by [52] and [23]. The
problem now becomes: When do there exist sequences {y(r)} and {3(n)} satisfying

(4.8) and (4.9) for some fixed 0 < = < 1? This is completely answered by

THEOREM 6. If X, X,, - - - are independent random variables with common distri-
bution function F and if o(n) is a sequence of numbers satisfying (4.9), then there exists
a strictly positive sequence {y(n)} for which (4.8) holds if and only if F belongs to the
domain of partial attraction of the normal law. If such a {y(n)} exists, it can be
chosen such that n=}*¢y(n) is increasing, for any fixed ¢ > 0; also if {0'(n)} is another
sequence satisfying (4.9) (possibly with a 0 < =" < x) then y(n)~'|d(n) — d'(n)| — 0
so that (4.8) also holds with 0 replaced by &' and

m inf S, —d(n) _ lim inf S, — d'(n) .

SUP r(n) SUP ()

The necessity of the condition was proved by Heyde [23] and Rogozin [52]
and the sufficiency is proved in the Appendix.

As we pointed out, there is no point in admitting arbitrary d(rn), but it still
seems worthwhile to single out the case d(r) = 0. Thus we have

(4.10) li

ProBLEM 4. Find necessary and sufficient conditions for the existence of {y(n)}
satisfying

(4.11) —oo < liminf,_ Sa < limsup, .., Sa < oo w.p.l.
7(n) 7(n)

There may well be unexpected aspects in this problem, for one can construct
an F with mean zero and y(n) such that

r(n) r(n)

lim sup S~ oo w.p.1.
r(n)

but
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Thus even though the mean may be zero, zero is not necessarily a good centering
constant. We list two more problems which suggest themselves immediately.

ProBLEM 5. If (4.8) and (4.9) hold, find the set of all accumulation points of
(S, — d(n))/7(n), or more generally the set of accumulation points in a suitable
function space of the random functions 7, defined on [0, 1] by

7.(t) = r(m)~H(k + 1 — n)(S, — o(k)) + (0t — k)(Sps — 0(k + 1))}
on [k/n, (k + 1)/n], 0 < k < n.

The problem is, of course, suggested by Strassen’s work [60]. The results of [60]
(see also (4.6)) suggest that the set of accumulation points of (S, — d(r))/r(n) is
exactly the closed interval from lim inf (S, — d(n))/y(n)to lim sup (S, — d(n))/y(n).

Much of the work on generalizations of the law of the iterated logarithm
deals with conditions under which (4.8) holds for specific sequences 7(n) defined
in terms of F (see for instance Feller [17], Tomkins [62] and several references
cited there). Perhaps one should first discuss

ProBLEM 6. What sequences {y(n)} can satisfy (4.8) for any Fand d(n) satisfy-
ing (4.9)?

As stated in Theorem 6, we may assume n~#*<y(n) 1 and if F is not concen-
trated on one point, then we prove in Section 5, Lemma 4 (proof of (4.16)) that
necessarily

(4.12) ny(n) —» oo .
On the other hand Rogozin [52], Theorem 4, proved that if y(n) satisfies
(4.13) rmt  and 3, (r(K)7* = Cn(y(n)~

for some C < oo, then y(n) cannot satisfy (4.8). Thus y(n) = nt*<L(n) withe > 0
and L slowly varying is not a possible choice in (4.8) for any F. We see from
(4.12) and (4.13) that if we restrict ourselves to “nice” sequences {y(n)}, then
they must be large w.r.t. n* but still “close to nt.” The most explicit information
about nice sequences is summarized in the following theorem which is essentially
due to Feller [17]. It is a slight modification of Theorems 1 and 3 of [17] and
essentially proved in the same way. We shall therefore be content with only a
remark on the proof in the Appendix. Fristedt [18] has proved an analogous
theorem for processes with stationary independent increments. Notice that the
restriction to symmetric F' is for convenience only, for as we shall show in the
proof of Theorem 6, (4.8) is under condition (4.9) equivalent to

S’ < 0 < limsup,, ., S’
7(n) 7(n)

THEOREM 7. Let X, X,, - - - be independent random variables, all with the sym-
metric distribution function F, not concentrated on {0}. Put

H(x) = §y15: V' dF(y) -

(4.14) —oo < liminf,_, < 4o w.p.l.
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If y(n) is any sequence of positive numbers such that

. S
limsup —"— < oo
7(n)

then
(4.15) lim, ., nP{|X,| > nr(n)} =0 forall 7 >0,
and
(4.16) lim, . ") —
nH(y(n))

If y(n) satisfies
4.17)  r(m 1 and  inf,_,_, ren (%gl)“l >0 forsome &> 0

ne
and
(4.18) 2 P{x| > r(n)} = oo,
then
. S
(4.19) lim su "= w.p.l.
P

Let

e = 1 if there is some y(n)e (271, 2¥]

=0 otherwise ,

and’

p = inf{2: N, 7ok~ < oo} .
If y(n) satisfies (4.17) and
(4.20) 2 P{IX) > r(m} < oo
and p > 0 and
(4.21)  nH(y(n)[log log nH(y(m))]" < (r(m))* = o{nH(r(n))[log log nH(y(n))]}
for some 0 < t < 1 then (4.19) holds again. If y(n) ! and

(r(m)* _ A<
nH(y(w)[log log nH(;(n))]

(4.22) 0 < lim,

and (4.20) holds, then

. S 20\}
lim sup,, ., —*— = <__> w.p. 1.
rm) A

Finally, if y(n) satisfies (4.17) and (4.20) and

(4.23) lim,_., ()’ =
nH(y(n))[log log nH(;(n))]

then |

(4.24) lim sup, .. r%;) —0 wp.l.

6 If y(n) does not have too large gaps p = 1.
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If any reader wants more work we only need to point out that almost all the
results and problems of this section are meaningful for non-identically distributed
X and that very little has been done in this generality (even though [23] and [52]
allow the X; to have different distributions).

5. Appendix. We give here the proofs of Proposition 1 and Theorem 6.
PROOF OF PROPOSITION 1.
Wk, {j}) = P{S, = j} — P{S, = k + j}
(5.1) = 5 ST (e — e () do

= —kyrom @ a0 + L gz 000y as,

27 2
where 6-20(6%) remains bounded as # — 0. Now |¢(6)|* is the characteristic func-
tion of X;* and
(5.2) 1 — |p@)) = Xtz (1 — cos k0)P{X;* = k}

= Tz (1 = cos k)P = K = Z ¢ (| 7).
It is well known that (3.35) for all i implies |¢(6)| = 1 for 0 < |0] < = ([55],
Proposition 7.8) so that it follows from (5.2) that
Za §50le(0)]"df < oo

and (3.36) will therefore follow from
(5.3) 2 {25210 [Im (p(0))"] db < oo .

(Of course this shows that (3.36) holds whenever F is symmetric.) We can esti-
mate trivially the left-hand side of (5.3) by

2ia §221019(0)[" 46

— (+r [0] +”"~L = 2 ~L od
R T T R e T B
<20 By Sl lﬂcd( y + o) = 20 Do, Cf(m) ol

so that (3.36) indeed holds, if (i) in Proposition 1 is fulfilled. Slightly more
tricky is the proof under condition (ii). First observe that (ii) implies

(5.4) C:(m) = O(mt) m— oo .
Thus, a simple summation by parts shows that
E(|X?} = Nnam 7 [C(m) — C(m — 1)] < oo
Since, when 4 is so large that P{|X,| < 4} = 4,
(5.5)  3P{X| = m+ 4} < P X = m + AJP{X|| < 4} < P{|Xy| = m}
it follows that also E|X)| < oo.
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Also, if we put

Cm) = Ziuism KPX, = k} = E{XI[|X,| = m]}
then

C(m) = E{(X, — X)I[|X, — X,| < m}
(5.6) > E{(X? + X2 — 2EX, X)I[|X,| £ im, |X)| < im]}
— 2E(XA[|X,| < $mP{X) < $m) — 2E(XI]1X,] < gm]}.
If § x*dF(x) < oo, then C(m) is bounded and for suitable m, and D < oo (use
Assumption (ii) again)
C([3m]) < DC*(m) < 4DC*([3m]) mz=m,
and consequently .
(5.7 C(m) < 4DC*(m) , m<m.
If, on the other hand, § x*dF(x) = co, then for any B
E(| XX = 3m]} < B+ $pcioistym [¥] dF (%)
S B A [iaisym (X[ dF(x) §1012 5 dF ()] -
Thus, if § xX*dF(x) = o
(5.8) E(XI[|X,| < 3m] = 0(§1z154m X" dF(x)) = 0(C(3m))
as m — oo, and it follows easily from (5.6) and (5.8) that (5.7) again holds.
We now use the trick of Lemma 3.2 of [24].

1 , .
Im o(O) = == [¢"(0) — ¢"(=0)] = Im ¢(6) 235 ' (O)¢" 7 (—0)
so that the left-hand side of (5.3) is bounded by

2 N2 |0 [Im o () |n](0)|"~" db

_ + O1Im o(0)] 49 < 27t {rmo! Mm@ 40 + o1
e 5 Gz T OW

< 21" $5, (CH(m)) ™ Yty 1 0-(Im o (8)] 6 + O(1) .
We proceed to estimate [Im ¢(d)| on [rx(m + 1)7', zm~']. We already know

E|X\| < . If EX, # 0, then S, is transient and (3.36) is trivial, so that we
may assume EX, = 0. Then, if we write p, = P{X, = k} we have for f¢

[x(m + 1)~} 7m~]
Hm ¢ (0)]

Lo [sinkb — k6] |p, — p_i|

2 KBP(p + pow) + 2 D KO(pe + poi) -

In view of (5.7) it therefore suffices to prove for m, so large that C(m,) > 0:
(5.9) Dim=mg (MC(M)}™* T (P + pop) < 0,

and

(3-10) Dm=m (C (M)} i k(pr + pop) < 0.

=
<
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But,
L=y (MCm)}™ X, k(P + p-i)
= 21 K Py + P_i) Ziwz max imguy {MC(mM)}?
= 0()) + Zem (CEY (P + Pot) Dimzi M

<o() + z;:,,,(,kz({mTﬂ;)f;—»

which is finite, because
Ck) = X5-1J%(p; + P-))

(see Abel-Dini’s theorem, [37], Section 39). Thus (5.9) always holds. As for
(5.10), after interchange of the order of summation we obtain at most

Zl?:mo k(Pk + p—k) Z:o=0 22_"_1k<m§2—"‘k,m;m0 {Cs(m)}—2
< Sim k(P + P_D)[C(R)) Toe 277K(28 — o (condition (ii))

= 0(Zim, ——kz(fg(;fj—") )< oo,

again by the Abel-Dini theorem.

REMARK 8. There exist integer valued random walks with mean zero for
which (5.3) fails. One therefore needs more delicate procedures to establish
(3.36) than the ones used here.

Proor oF THEOREM 6. This proof is broken down into short lemmas.

Lemma 1. If (4.9) holds, then (4.8) is equivalent to

(5.11)  —oo < liminf, _ 52 < 0 < limsup, . 5"

r(n) r()

Proor. By the Hewitt-Savage 0-1 law ([2], Section 3.9) liminf and lim sup

of (S, — d(n))/y(n) are constants w.p. 1, and hence equal to lim inf respectively
lim sup of (S, — d(n))/y(n) w.p. 1. Therefore, if we write

< 400 w.p. 1.

lim inf S, —d(n) _ p_

SUp T y(my ey
then
; S,° . s — 8
(5-12) limsup =*_ = lim sup == n
r(m) r(n)
< lim sup S, —o(n) _ lim inf S».— 9(®)
() r(n)

= oy — p- W.p. 1
and similarly
S,

5.13 lim inf
( ) im in o

=p_ —p, wWp.1.
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We now prove that on the other hand

(5.14)  liminf 3 <o and w.p. 1.
7

Indeed, let e > 0, 7, = 0 and

Tk+1=inf{n>Tk S, _(f(”)gp s}.

By definition of p,, T}, < oo for all k w.p. 1, and’
o) — (o) )

P {lim sup —"— S — lim sup (Sx
r(n)

r(m)
— o(T,) .
(5.15) = P.T, < o forallkand —t__ "~ <0 i.o.
{ T(Tk) }
. S, — T
=1 SPITTE M <0 > 0
= lim sup, { T = } =T >

since T, is defined in terms of {S,},,, which is independent of {S,},.,. Again
by the Hewitt-Savage 0-1 law, (5.15) implies

(5.16) P{ i

(5.16) holds for any ¢ > 0 so that the second statement in (5.14) follows and
the first statement is proved in the same way. The equivalence of (4.8) and
(5.11) is immediate from the inequalities (5.12)—(5.14) and the simple conse-
quence of symmetry of S,° and the Hewitt-Savage 0-1 law

S, gp+—e}:l.
n)

Sy = — lim sup S’

(5.17) lim inf
7(m) 7(n

w.p. 1

Next we derive a necessary and sufficient condition for (5.11) in terms of
convergence of a certain series when y(n) 1 .

LeEMMA 2. If for all n > 1 and some a > 0

(5.18) P{S, =20} =« and  P{S, <0} = «a,
and 0 < y(n) T oo, then
S,
(5.19) limsup =2 > p w.p.1
| r(n)

implies
(5.20) 2 P{Syr = (30 — )7(2")} = o forall ¢>0,
and, in turn, (5.20) implies
(5.21) lim sup S, =10 wop. 1

r(n)

T “Api.0.” stands for ‘‘the event Ay occurs infinitely often, i.e., for infinitely many &.”
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Proor. First observe that w.p. 1

So — lim sup X+ 28X iy sup DR G sup Sacs ,
r(n) () rn ()
and (5.22) remains valid if n is restricted to an arbitrary increasing subsequence
of the positive integers. Now, let

(5.22) limsup

(5.23) limsup S*_ = L w.p. 1.
r(n)
Clearly
. S.
(5.24) limsup =22 <L w.p.1,
r(2m) .

But we actually must have equality in (5.24). Firstly we must have limsup S, >0
for any subsequence n; — co by the Hewitt-Savage 0-1 law and

P{S,, = 01i.0.} = lim sup P(S,, z0}=za>0.
Thus L > 0. Secondly, if

: S.
(5.25) limsup—22»_ < L
r(2n)
then by 0 < y(n) 1 and (5.22) also
. S. . S, . S,
5.26) limsup_ “2»—t  _— | w2z < limsup——2=2___ < L,
(20 Himsup o,y = msup o, Ty Shimeep oy <

and of course (5.25) and (5.26) together contradict (5.23). Thus

. S, : 2 X 2t X
5.27 L = limsup—2»_ — lim su +
20 P P(Sm =)

< 2limsup f" w.p. 1,
7

2n)
so that for all ¢ > 0 w.p. I infinitely many of the events
A4, ={S, = (L — ¢)y(2") for some 2! < n < 27}
occur. But
P{S, 2 (3L — )r(2') and 4,)
Z Yor-igacr P{S, 2 GL — 9)7(27), §; < GL — 9)r(27)
for 2! < j < n}P{S,, — S, = 0}
Z & Yrigucr P{S0 2 GL — 9)7(27), S; < GL — o)7(27)
for 2r=* < j < n}
= aP{A4,}
so that by the extended Borel-Cantelli lemma (see Problem 5.6.9 in [2]) also
(5.28) {Syr = AL — ¢)r(2") i.0.} a.e.on {4,i.0.}.
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Since we already proved that (5.23) implies
P{4,i.0} =1,
it follows from (5.28) and the Borel-Cantelli lemma that for all ¢ > 0
2 P{Syr =2 L — )r(27)} = o .

This proves (5.20). Now assume that (5.20) holds. Then it follows from the
fact that the S,,+1 — S,- is independent of and has the same distribution as S,
that also

(5.29) Z,P{S2,;0 and Srr1— Sr o %p—s}
7(27)
;aZ,P{:S%%i;%p—s}:oo.

Denote by B,! the event between braces in the first member of (5.29) and by B,’
the complement of B,'. Then for s > rand any choice of ¢;, - - -, ¢,, ¢, = 0 or 1,

P{B}| By, - -+, Bir} < P{Syns — S = (30 — 9)7(2)} <Llp {B'}.
44

Now

¥ P{B,'} = E{# of N < r < M with B}
(5.30) = 2 ¥ P{B, is the first B;' to occur on or after N}

(1 + E{ of r < s < M with B'| B, B},,, - -+, Bl_,, B,'})

= <1 + x Z%P{Bj})-P{some B.!with N < r £ M occurs} .
44
Since, by (5.29)
25 P{B,} = o

we find from (5.30) by letting M — oo

(5.31) P{some B,* with r = N occurs} = a > 0.
(5.31) holds for all N and thus
(5.32) P{Bli.o.} = a>0.

Again by the Hewitt-Savage 0-1 law the left-hand side of (5.32) must equal 1
and thus
P{Sy+1 = (3p — ¢)y(27) i.0.} = P{Bi.0o.} = 1.

It follows that

. S,
limsup =2~ > 1o w.p.1
rm = °

and (5.21) follows from this and (5.27) with y(2n) replaced by y(n).

LemMA 3. If (5.11) holds, then it also holds with {y(n)} replaced by the increasing
sequence {r*(n)} defined by

(5.33) r*(n) = inf,., r(k) .
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PROOF. An easy concentration function argument shows that (5.11) implies
7(n) — co, unless F* is concentrated on {0} (see Lemma 4 for a sharper statement
with proof). We ignore this trivial case so that we may assume y(n) — oo,
7*(n) — oo and that for each n there is an f(n) = n with y*(n) = r(f(n)). Now
r*(n) < r(n) so that (5.11) implies

(5.34) w.p. 1

r (n)
Assume that the second 1nequa11ty in (5.34) is strict, and write again L for the
almost certain value of lim sup (y(#))~*S,*. Then for some ¢ > 0

(5.35) 1 =P{S;:= (L + ¢)r*(n) i.ol.} = P{S,* = (L + ¢)y(f(n)) i.o.} .
But, again by symmetry,

(St = (L + r(f) [ S, = (L + 9r(f(1)} = Sy — S, 20} 2 },
and by the extended Borel-Cantelli lemma (Problem 5.6.9 in [2]) (5.35) implies

P{'

This contradicts the definition of L so that

b2 P(Sjo 2 L+ (7)o} = 1.

= limsu

(5.36)

( )
and similarly for the lim inf. This proves the lemma.

We can now prove Theorem 6. Firstly, by Lemmas 1 and 3, if (4.8) holds,
(5.11) holds with {y(n)} replaced by the increasing sequence {y*(n)}. As proved
by Rogozin [52], Theorem 2, and Heyde [23], Theorem I, this implies

(5.37) F ¢ domain of partial attraction of the normal law.
We therefore only have to prove that (5.37) allows us to find {y(n)} such that for
agivene > 0,0 < n ¥+ (n) 1 and such that (5.11) holds. In view of Lemma 2,

applied to S,* (which satisfies (5.18) with & = 1), it suffices to construct a se-
quence {y(n)}, 0 < n~#*y(n) 1, for which there exists a 0 < ¢ < oo with

(5.38) X, P[Sy > 27(2)} < oo
and
(5.39) >0 PS> tr(27)} = oo .

For, by Lemma 2, (5.38) and (5.39) entail

O<lr<11msup <4r < o,
‘r(n)

and
lim sup S’ = —lim inf S’
7(n) 7(n)
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are constants w.p. 1. Now fix ¢ > 0, and without loss of generality even 0 <
e < 3, and take

and let

1 1
Y = W 87,, e~ dt P 1";: = -(-2—:7‘[_){ S;k e~ dr .
It is well known ([15], Lemma 7.1.2) that as k — o
C 1
5.40 ~ =" =
(5-40) T ama C T (log kiR 1T Ga
* 1 e~ — ¢ G, .
(27)¥22, 2(log k)k*

Now observe that if (5.37) holds, then also F* lies in the domain of partial
attraction of the normal law. By Section 36 of [41] one can now find a sequence
0 < x, 1 oo such that

X P X > %) 10

Ce =qer H(x,)
(where H(x) is as in Theorem 7). Without loss of generality we may assume
(5.41) C, S ke,

and the sequence of integers r, determined by

x,?

< 27+l
H(x,)

(5.42) 2 <

increasing. It is easy to see that for any r satisfying

(5.43) r,—etlogk<r<r,

one has (by virtue of (5.41), (5.42))

(5.44)  27P{X| > x} < G H(x)x, ™ = G < k7V(— 0 as k— o0) ,

and

(5.45) Slylgxk IyladFs

27{H(x,)}!

A

{ xk2 }& = 2“‘[5‘"‘)/2{ - _x_____k2 }& < {2’k‘r+lck§}%
2 H(x,) e Hx)) =

< [2KVLE < 2k 0 as k — o) .

Thus, by the Berry-Esséen theorem (Chapter XVI. 5 in [16]), the distribution of
[27H(x,)] 4S5

converges to a standard normal distribution as r — oo and k — oo in such a way
that (5.43) remains satisfied; moreover, this convergence is uniform in r under
the restriction (5.43). In particular we can thin out the sequence x, (if neces-
sary) such that for all k and all r satisfying (5.43)

(5.46) o < PI7H()ISy > 4) < 2
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and
(5.47) P{[2"H(x,)]" 2S5 > 24,} < 2v,* .
Finally, define
r(n) = ni=2e {H(x,)}} for 2 '<n <2
Since r, 1, 4, 1 and H(x,) T we see that
n7ire(n) 1
Also
2 P83 > (20} =2 Xk PIS5, > 1(279)}
= T, P2 H(x) 28y, > A} 2 3 Nw = oo

so that (5.39) holds with = = 1. On the other hand,
(5-48) X, P{Sy > 2r(2)}
= Zk {Zrk_1<r§rk—e—llog2k + Zrk—e_110g2k<r§rk}P{Sg" > 27(2r)} .
For r,_, < r < r, — ¢7'log, k we estimate P{S;. > 2y(2")} by means of (2.6) with
A= 272, L = 2y(27%) = 2[27cH(x,)]} 4, and n=2rk"TH,

We merely have to observe that S¢,, is the sum of the 27~"*! independent ran-

dom variables
S‘?gr—l - S?j_l)zr—l > j = 1’ 25 ] VAL >

J

each of which has the same distribution as S% -, and that (S%-.)° has the same
distribution as S3.. Thus, by (2.6)
3 < P(ISy,| < [27+H(x)] 4} (see (5.46))
= (8} 2(274))
= Cr2r)(r(27) 2P| S| > 2r (201
= C2="k " [2P{|S%| > 2y(2")}]°¢.
Consequently
- P{|Ss] > 27(27)} < 2C22 %)
and the first double sum in the right-hand side of (5.48) is bounded by
T Drtrpemtiogys 26274060 S 4C Tk < oo
The second double sum in the right-hand side of (5.48) is by virtue of (5.47)
and (5.40) bounded by
o Drpmetiogg<rsry, PUSH > 27(27) = 2[27H(x,) P4}
< Ypdet(log, k)y,* < oo
This proves that also (5.38) holds with z = 1 and by our previous remarks this

proves (5.11) and (4.8).
This proves the main portion of Theorem 6. By means of Lemmas 1 and 3
we have already seen that y(n) can be chosen increasing and independent of (r)
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as long as (4.9) holds, but we still have to prove the more specific statement

(5.49) (r(m)~"|o(n) — &'(m)| — 0
(see Theorem 6 for notation). We shall actually prove that (5.11) implies
(5.50) P{|S,}| > er(n)} —> 0 forall ¢>0.

Before proving (5.50), we remark that it implies

(S, 2er(n) — 1,
and since (see [41], Section 29)

O(S,73 2¢7(n)) = Q(S, — 8,3 2e7(n) < O(S,; 2¢7) »
also O(S,; 2¢7,) — 1. Thus, givenany 0 < » < min(x, '), for sufficiently large
n there exists an interval [a,, a, + 2¢7,] with
P{anésnéan"erTn}% 1 - 7.
Since P{S, < d(n)} = = > n it follows that a, < d(n) eventually. Similarly
o(n) < a, + 2¢y, eventually and the same has to be true for ¢’(n), i.e.,
a, < o(n), ¥'(n) < a, + 27(n)

for large enough #. Since ¢ > 0 was arbitrary (5.50) implies (5.49) and it suffices
to prove (5.50). We prove this together with (4.15) and (4.16).

LeEMMA 4. If F is symmetric, not concentrated on 0, and y(n) > 0 such that

n

< oo, w.p.l
7n) P

(5.51) lim sup

then (4.15) and (4.16) hold and
(5.52) P{|S,| > ¢r(n)} — 0 forall ¢>0.

ProoF. For any 0 < 7 < I and n, let {Y;},., = {Y;(n, 7)};»: be a sequence of
independent random variables, each with the conditional distribution of X; given
that | X;| > nr(n), i.e.,

(5.53) P{Y,e U}

= P{IXi| > nr(m)}'P{X; e U N {(—o0, —nr(n)) U (+77(n), +c0)}}
(we are only interested in the case where P{|X;| > ny(n)} > 0 as will become
apparent in a few lines). In particular, since F is symmetric, P{Y; > nr(n)} =
P{Y; < —7r(m} = § and

(5:54) O my(m) =sup, Pla < Ys < a+nr(m} = % -
Thus, by (2.6) (with L = 24y(n), 2 = }7y(n), X, replaced by ¥,) forany 4 > 1and
I>1, =128 <.Ci>2,
Y
(5.55) O(Z! ¥ 247(m) < A2 4

7y (m)i
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(5.55) of course implies
(5.56) P(IXZ1Y)| > Ay(m} = 1 — Q(X1 Yis 24r(m)) = & -
Assume now that (4.15) fails and that for some d > 0 and increasing sequence {n,}
n P{|X;| > 9r(m)} = 9.
Then, by the Poisson approximation to the binomial approximation
(5.57) P{|X;| > ny(n,) for at least /, values of i < m} = d(d,/) >0,
for a suitable strictly positive d, which depends on ¢ and /, only. But then,
again using symmetry, )
P|Sy,| > Ay(m)} Z Dzt Zirsiye--<iysmy, PUX] > 17(m)
exactly for ie {i,, - - -, i}, | Zicpiyoniy Xal > Ar(m,) and
SEN(Dig iy, iy Xi) = BN Die iy, iy Xi)}
= 4 Xz, P{IXi| > ny(ny) for exactly /indices 1 < i< n}
P{I X1 Yi(me, )| > Ay(m)} = 40, 1) (see (5.56), (5.57)) -
Consequently, for any 4 > 1,
(5.58) P{|S,| > Ay(n) i.0.} = lim sup,_., P|S,, | > Ar(m)} >0,
and by the Hewitt-Savage 0-1 law
P{|S,| > Ay(n)i.o.} =1,

which contradicts (5.11). Thus (4.15) must hold and we now show that (4.16)
must hold as well. Again assume the contrary and let

m H(r(m,)) = 0*(r(m,))
for some d > 0 and #n, { co. Let
Z, = Z(n) = X;I[1X;] < r(m)].
Then for any 5 > 0
LENZ) - 3
{”:a—('z-)'}—% = B HGEDT §iyi<rimp |V AF()
< m o H(p(m))] ¥y (my) Sivisormp V* dF(y)
(5.59) + (1)) S5y FF ()]
< m [ H(y ()] Hnr(m) H(r(n) + (r(m))*P{ X > 7r(m)}]
< 74 S mP(X] > 7rn) -

By (4.15) the last term in the last member of (5.59) tends to 0 as k — oo for
every » > 0, so that
n E|Z,[

Tkl k — o0).
{m.a*(Z,)}} ( :
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Thus, by Lyapounov’s theorem ([16], Problem 8.10.17 or Chapter XVI. 5)

lim inf, ., P{| Xtk Z,| = Ay(m)} = lim,_., P{| Z1* Zi| = (4/0)[n, H(y(m)) ]}
= (27)7 §jyzur et dt > 0.
Since, by (4.15)
P{S,, # 21t Z} < mP{X,| > r(m)} — 0
we conclude again that (5.58) must hold, which is not possible. Thus also (4.16)
has been proved. Finally (5.52) follows from Chebyshev’s inequality

P(S,| = ()} < P(S, + T Z(w) + T DL L)
e(r(m)
< nP{ %) > y(m)} + PHGM).
e(r(n)’
and (4.15), (4.16).

REMARK 9. Lemma 4 proves (4.15) and (4.16) and as stated before, the re-
mainder of Theorem 7 is proved pretty much as Theorems 1 and 3 of [17].
The most important deviation from Feller’s proof is in the choice of subse-
quences n, in the analogues of Lemmas 4.1 and 5.1 of [17] (we do not understand
anyway how Feller chooses n, for his Lemma 4.1). For both lemmas we pick
{n.} = {n.(c)} as follows: In each interval ((1 + ¢)*~*, (1 4 ¢)*] choose the largest
7(n), if at least one 7y falls in this interval. Let the sequence of y’s thus selected
be y(n) < y(m,) < y(n) ---. The sequence of indices n,, n,, - - - is the required
sequence.

We also point out that we cannot quite follow Feller’s argument about nor-
malization by p,(2 log log p,)! so that we only formulated a theorem involving
sequences 7(n) which behave roughly like roots of the equation

(r(m))’[log log y(m)]™* = AnH(y(n)) ,
for some 0 < 4 < oo, respectively sequences {y(n)} satisfying (4.21) or (4.23).

Fristedt [18] defines the analogues of y(n) in a slightly different manner, and his
choice could probably be adapted to the random walk case as well.
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