NOTE ON THE TIGHTNESS OF THE METRIC ON THE SET OF COMPLETE SUB σ-ALGEBRAS OF A PROBABILITY SPACE

BY J. NEVEU

University of Paris

The purpose of this note is to show that the usual metric on the set of complete sub σ-algebras of a probability space is very tight; a recent result from E. B. Boylan on equi-convergence of martingales follows and is thereby, we believe, better understood.

Given a probability space (Ω, \mathcal{F}, P), a metric can be introduced on the set S of all complete sub σ-algebras \mathcal{B} of \mathcal{F} by letting (see [1])

$$d(\mathcal{B}_1, \mathcal{B}_2) = \sup_{B_1 \in \mathcal{B}_1} \inf_{B_2 \in \mathcal{B}_2} P(B_1 \triangle B_2) + \sup_{B_2 \in \mathcal{B}_2} \inf_{B_1 \in \mathcal{B}_1} P(B_1 \triangle B_2)$$

where \triangle denotes symmetric difference of sets as usual; here a sub σ-algebra \mathcal{B} of \mathcal{F} is said to be complete (relatively to \mathcal{F}) if every set $A \in \mathcal{F}$ of probability zero belongs to \mathcal{B}. The following proposition is then the main result of this note.

PROPOSITION. Let $\mathcal{B}, \mathcal{B}'$ be two complete sub σ-algebras of \mathcal{F} in (Ω, \mathcal{F}, P) such that $\mathcal{B} \subset \mathcal{B}'$. Then there exists a set $A \in \mathcal{B}$ such that

$$P(A') \leq 4d(\mathcal{B}, \mathcal{B}') \quad \text{and} \quad A \cap \mathcal{B}' = A \cap \mathcal{B}.$$

Conversely if $A \in \mathcal{B}'$ is such that $A \cap \mathcal{B}' = A \cap \mathcal{B}$, then $d(\mathcal{B}, \mathcal{B}') \leq P(A')$.

When $A \in \mathcal{F}$ and $\mathcal{B} \in S$, we denote by $A \cap \mathcal{B}$ the σ-algebra of subsets of A which are of the from $A \cap B$ for a $B \in \mathcal{B}$; when $A \in \mathcal{B}$, then this class $A \cap \mathcal{B}$ is also the σ-algebra of subsets of A belonging to \mathcal{B}.

Proof.

(a) When $\mathcal{B} \subset \mathcal{B}'$, the distance $d(\mathcal{B}, \mathcal{B}')$ can be characterized as the smallest positive real number d for which the following implication holds

$$B' \in \mathcal{B}', \ P(\mathcal{B}') \leq \frac{1}{2} \ a.s. \implies P(B') \leq d,$$

where $P(\mathcal{B}')$ denotes the conditional expectation of the indicator function $1_{B'}$ of B' with respect to \mathcal{B}. This is easily proved as follows.

Because $P(B \triangle B') = E[|P(\mathcal{B}') - 1_B|]$ when $B \in \mathcal{B}$ and $B' \in \mathcal{B}'$, we have for every $B' \in \mathcal{B}'$

$$\inf_{B \in \mathcal{B}} P(B \triangle B') = \inf_{B \in \mathcal{B}} E[|P(\mathcal{B}') - 1_B|]$$

$$= E[\min\{P(\mathcal{B}') - 1_B, 1 - P(\mathcal{B}')\}]$$

the infimum being for instance achieved by the \mathcal{B}-set $\{P(\mathcal{B}') > \frac{1}{2}\}$. Hence

$$d(\mathcal{B}, \mathcal{B}') = \sup_{B' \in \mathcal{B}'} E[\min\{P(\mathcal{B}') - 1_B, 1 - P(\mathcal{B}')\}].$$

Received November 24, 1971.

1369
Now we use the hypothesis $\mathcal{B} \subset \mathcal{B}'$ to assert that for every $B' \in \mathcal{B}'$, the set $B^* = B' \triangle \{P^\mathcal{B}(B') > \frac{1}{2}\}$ is also in \mathcal{B}'; since

$$P^\mathcal{B}(B^*) = \min[P^\mathcal{B}(B'), 1 - P^\mathcal{B}(B')] \leq \frac{1}{2}$$

it is not hard to see that

$$d(\mathcal{B}, \mathcal{B}') = \sup\{P(B''); B'' \in \mathcal{B}', P^\mathcal{B}(B'') \leq \frac{1}{2}\}$$

as announced.

(b) If $\mathcal{B}, \mathcal{B}' \in \mathcal{S}$ still verify $\mathcal{B} \subset \mathcal{B}'$, let A be a \mathcal{B}-atom of \mathcal{B}' [i.e. a set $A \in \mathcal{B}'$ such that $A \cap \mathcal{B}' = A \cap \mathcal{B}$] with largest possible conditional expectation $P^\mathcal{B}(A)$; the existence of such a set has been proved in [2], Theorem 1, page 258. Let us show now that $P(A^c) \leq 4d(\mathcal{B}, \mathcal{B}')$.

By Theorem 2 of [2], we may find a set $C \in \mathcal{B}'$ such that

$$P^\mathcal{B}(C) \leq \frac{1}{2} \leq P^\mathcal{B}(C) + P^\mathcal{B}(A).$$

Then we let

$$D = C[P^\mathcal{B}(A) \leq \frac{1}{2}] + A[\frac{1}{2} < P^\mathcal{B}(A) \leq \frac{1}{2}] + A^c[P^\mathcal{B}(A) > \frac{1}{2}].$$

This set D belongs to \mathcal{B}' and is such that

$$\frac{1}{2}[1 - P^\mathcal{B}(A)] \leq P^\mathcal{B}(D) \leq \frac{1}{2} \quad \text{a.s.}$$

as is easily checked on each of the three sets $\{P^\mathcal{B}A \leq \frac{1}{2}\}$, $\{\frac{1}{2} < P^\mathcal{B}A \leq \frac{1}{2}\}$ and $\{\frac{1}{2} < P^\mathcal{B}(A)\}$ on which respectively $P^\mathcal{B}(D) = P^\mathcal{B}(C)$, $P^\mathcal{B}(A)$, or $1 - P^\mathcal{B}(A)$. The properties of this set D imply with the aid of (a) that

$$d(\mathcal{B}, \mathcal{B}') \geq P(D) \geq \frac{1}{4}[1 - P(A)].$$

The direct part of the proposition is thus proved. The converse is immediate; indeed if $A \in \mathcal{B}'$ is such that $A \cap \mathcal{B}' = A \cap \mathcal{B}$, then for every $B' \in \mathcal{B}'$ there exists a $B \in \mathcal{B}$ for which $AB' = AB$ and then $P(B \triangle B') \leq P(A^c)$; hence $d(\mathcal{B}, \mathcal{B}') \leq P(A^c)$. [Q.E.D]

The following easy corollary has an interest only for equi-integrable sets of functions (for which $\delta_h(a) \downarrow 0$ as $a \nearrow \infty$).

Corollary. Let H be a set of real integrable functions defined on a probability space (Ω, \mathcal{A}, P) and let $\mathcal{B}, \mathcal{B}'$ be two sub-σ-algebras of \mathcal{A} such that $\mathcal{B} \subset \mathcal{B}'$. Then the following inequality holds

$$\sup_{f \in H} ||E^\mathcal{B}(f) - E^\mathcal{B}'(f)||_1 \leq 16d(\mathcal{B}, \mathcal{B}') + 4\delta_h(a)$$

for every real $a > 0$, provided one lets

$$\delta_h(a) = \sup_{f \in H} \int_{|f| > a} |f| \, dP.$$

Proof. Let A be a set with the properties stated in the preceding proposition and let f be a \mathcal{B}'-integrable function. Then it is easily checked (see Lemma 2, page 257 of [2]) that $E^\mathcal{B}(f1_A) = fP^\mathcal{B}(A)$ a.s. on A; hence
\[||E^{\mathcal{A}}(f1_{\mathcal{A}}) - f1_{\mathcal{A}}||_1 \leq \int_{\Omega} E^{\mathcal{A}}(f1_{\mathcal{A}}) \, dP + \int_{\Omega} f[(1 - P^{\mathcal{A}})(A)] \, dP \]
\[\leq \int_{\Omega} E^{\mathcal{A}}(f)(1_{\mathcal{A}} + P^{\mathcal{A}}(A^c)) \, dP \]
\[= 2 \int_{\Omega} |f| P^{\mathcal{A}}(A^c) \, dP. \]

On the other hand
\[||E^{\mathcal{A}}(f1_{\mathcal{A}}) - f1_{\mathcal{A}}||_1 \leq 2 ||f1_{\mathcal{A}}||_1 = 2 \int_{\Omega} |f| 1_{\mathcal{A}} \, dP. \]

The addition of the two inequalities gives that
\[||E^{\mathcal{A}}(f) - f||_1 \leq 2 \int_{\Omega} |f|(P^{\mathcal{A}}(A^c) + 1_{\mathcal{A}}) \, dP \]
for every \(\mathcal{B}' \)-integrable function \(f \); the inequality remains valid for every integrable \(f \), if \(E^{\mathcal{A}}(f) \) is substituted for \(f \) in the first member and then
\[||E^{\mathcal{A}}f - E^{\mathcal{A}'}(f)||_1 \leq 2 \int_{\Omega} |f|(P^{\mathcal{A}'}(A^c) + 1_{\mathcal{A}}) \, dP \]
\[\leq 4aP(A^c) + 4 \int_{\Omega} |f| \, dP \]
\[\leq 16ad(\mathcal{A}, \mathcal{B}') + 4 \int_{\Omega} |f| \, dP. \]

By taking the supremum of the extreme members over \(H \), we obtain the formula of the corollary. \[\square \]

Boylan has recently proved [1] that for any equi-integrable subset \(H \) of \(L'(\Omega, \mathcal{A}, P) \) and for any monotone sequence \((\mathcal{B}_{n}, n \in N)\) of sub \(\sigma \)-algebras of \(\mathcal{A} \) the \(L' \)-convergence \(\lim_{n \to \infty} E^{\mathcal{B}_{n}}(f) = E^{\mathcal{B}_{\infty}}(f) \) holds uniformly on \(H \), provided \(\mathcal{B}_{\infty} \) denotes the limiting \(\sigma \)-algebra of the increasing or decreasing sequence \((\mathcal{B}_{n}, n \in N)\) and provided \(d(\mathcal{B}_{n}, \mathcal{B}_{m}) \to 0 \) as \(n \uparrow \infty \). This theorem can be readily obtained from the preceding corollary, since by this result
\[\sup_{H} ||E^{\mathcal{B}_{n}}(f) - E^{\mathcal{B}_{\infty}}(f)|| \leq 16ad(\mathcal{B}_{n}, \mathcal{B}_{\infty}) + 4\delta_{H}(a) \]
\[\to 0 \]
when \(n \not\to \infty \) and then \(a \not\to \infty \).}

REFERENCES