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LARGE DEVIATION PROBABILITIES FOR WEIGHTED SUMS!

By STEPHEN A. Book
California State College, Dominguez Hills

Taking as our point of departure the methods and results in a 1960
paper of Bahadur and Ranga Rao, we derive asymptotic representations of
large deviation probabilities for weighted sums of independent, identically
distributed random variables. The main theorem generalizes the Bahadur-
Ranga Rao result in the absolutely continuous case. The method of proof
closely parallels that of the 1960 paper, a major component of which was
the use of Cramér’s 1923 theorem on asymptotic expansions. For our result,
we need an extension of Cramér’s theorem to triangular arrays, and that
extension is also developed in the paper. We then show that the main
theorem implies a logarithmic result which generalizes a 1952 theorem of
Chernoff and is of more precision but less generality than a 1969 result of
Feller. Finally, we note that in the exponential case the theorem can be
used to estimate large deviation probabilities for linear combinations of
exponential order statistics.

0. Introduction. The principal result in this paper, Theorem 4.8, generalizes
the theorem of Bahadur and Ranga Rao (1960) to the case of weighted sums of
independent, identically distributed (i.i.d.) absolutely continuous random vari-
ables. Bahadur and Ranga Rao’s work involved ordinary sums of i.i.d. random
variables of all types. In Section 1, the problem is carefully stated and the
preliminary formulas are worked out. Section 2 introduces some conditions on
the random variables and the weights. In place of Bahadur and Ranga Rao’s
use of Theorem 25 in Cramér’s book [6], we employ an extension of Cramér’s
theorem that is developed in Section 3. The large deviation theorem itself is
stated and proved in Section 4. In Section 5, we derive from the theorem a
logarithmic estimate of the sort first due to Chernoff (1952) and recently dealt
with on a larger scale by Feller (1969). Section 6 contains an application of
the theorem in the study of linear combinations of exponential order statistics.

1. Preliminaries. Our goal is to derive an asymptotic representation for
P(S,>cXr ., a,,) where S, = >.*_ a, X, for a sequence {X,: 1 < k < oo}
of i.i.d. nondegenerate random variables and a double array {a,,: 1 < k < n,
1 < rn < oo} of nonnegative real numbers such that };7_, a2, = 1. We assume
that X, is normalized so that E(X;) = 0 and E(X;?) = 1. We denote by F(x) the
distribution function (df) of X,, and by ¢(f) the moment-generating function
(m.g.f.) of X;, which we assume to exist in a nondegenerate interval |¢| < B.
We need an additional condition on ¢(¢) that is similar to the condition in italics
on page 1015 of the Bahadur-Ranga Rao paper: for some numbers a, there exists
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a corresponding = such that ¢'(z)/¢(r) = a. This requirement will be satisfied,
as in [1], in the situations of the following lemma and its corollary:

(1.1) LemMMA. If ¢(f) < oo for all real t, E(X,) = ¢'(0) =0, a >0, and
P(X, > a) > 0, then there exists a number © > 0 such that ¢'(7)/¢(r) = a.

(1.2) CoROLLARY. If ¢(t) < oo for all real t, E(X}) = ¢'(0) = 0, and P(X, >
a,) > 0 for some a, > 0, then the function Q(t) = ¢'(t)/¢(¢) is a one-to-one (invert-
ible) mapping at least of [0, t,] onto [0, a,], where Q(t,) = a,.

Because X, is nondegenerate, we have:

(1.3) LemMMA. If ¢(f) < oo for |t| < B and E(X,) = 0, then the function Q(f)
is a one-to-one (invertible) mapping from [0, B) onto its range.

Later in the paper we will need to know that 0~*(a), exists for certain positive
values of a, and we will then make the necessary assumptions, as in Bahadur
and Ranga Rao (1960).

Having made these preliminary comments, we define the random variables
Y, = a,, X, — ca,, and observe that P(S, > c 2 ,a,) = P(Xi., Y., > 0).
The df of Y,, is H,(y) = F(ya,; + c¢), and the m.g.f. of Y,  is ¢,(h) =
exp(—hea,,)p(ha,,), where ¢,,(h) exists for |h| < Ba,;. Assuming, as we are,
that each a,, = 0, we see thatall ¢,,(k), | < k < n, exist for |h| < Bos,™', where
o, = max{a,,: 1 < k < n}. We restrict s to this interval from now on. We
define an “associated” df H,,(y) by dH,,(y) = [e*/¢,.(h)] dH,,(y) for each k&,
0 < h < Bs,™, and we denote by ¥,, a random variable distributed according
to this df. We have the following formula, whose proof is identical in form
with the proof of the analogous Lemma 2 on page 1017 of the Bahadur-Ranga
Rao paper:

(1.4) Lemma. If H(y) = P(53. Y, < p), then

P(S, > ¢ Xli1 Gui)
= exp(—he Nior )15 ¢(ha, ) §7 e M [H, () — H,(0)] dy .

2. Conditions. To make use of the formula in Section 1, we need to know
more about the quantity H,(y) — H,(0), in particular how far away from 0 it
staysasn — oo. We eventually find conditions under which the quantity remains
bounded away from 0 for each y > 0 as n— oo and under which it can be
approximated by the corresponding normal probability ®(y) — ©(0).

Recall that H,(y) = P(S, < y) where S, = 2., ¥, and ¥,, has m.g.f.
Gut) = § €7 AH,, () = [1/$,(A)] § €9V dH () = o(t + h)| (). Therefore
S, has m.g.f. ¢,(f) = [1i=: [$ni(t + h)/$.4(h)], and the moment-generating prop-
erties of the m.g.f. imply that E(S,) = Y2, 4,,(0)and Var(S,) = Xr_, [¢(0) —
(4.,(0))?]. Upon computing these derivatives from the expression for ¢,,(t), we
obtain explicit expressions as follows:

(2.1)  Lemma. E(S,) = Xio aul¢'(ha,,)[$(ha,)] — ¢ i @
= Dre1 @, Q(ha,,) — ¢ iy Guy
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nd Var () — s g, $0ha,)8" (hay) — [¢'(ha,)P
(5,) = Dioidi i
= 216, Q' (hayy) -

In this section, we find some conditions under which we can say that E(S,) = 0
and that the variances Var (S,) are uniformly bounded away from 0 and o for
all n. This amounts, it turns out, to choosing a sequence {4,: 1 < n < oo} of
k’s to appear in the definition of the associated df’s. As the next lemmas show,
the existence of such a sequence having the desired effects on E(S,) and Var(S,)
is closely bound up with the invertibility of the function Q.

(2.2) LeEMMA. If Q(f) = ¢'(2)/¢(t) takes the positive real axis onto itself, then
for every positive integer n there exists a solution h = h, of the equation E(S,) =0,
and the solution satisfies for all n the inequalities

Gn_lQ_l(n_lan_lc Zz=l a'nk) é hn é gn_lQ—l(an_lc ZZ:I ank) ’
where 6, = max{a,,: 1 < k < n}.

Proor. Consider the function Q,*(h) = Y7, a,, O(ha,,) so that E(S,) =
0,*(h) — ¢ ¢, a,,. Then Q,*(0) =0, Q,*(h) = ¢,0(hs,), and Q,* is continu-
ous on the positive real line. Since Q takes on all positive real values, there
exists a value of 4 for which Q(hs,) = 0,7 ¢ X7, @,,. Continuity then implies
the existence of an A, such that Q,*(h,) = ¢ 2,7, a,,- The bounds on 4, are
obtained from the inequality o, Q(h,0,) < Q,*(h,) < no,Q(h,a,), recalling that
Q is monotonically increasing and that Q, *(h,) = ¢ 2Ji_, G-

Note that Lemma 2.2 holds if Q takes a sufficiently large interval of the posi-
tive real line onto another sufficiently large interval. It is not necessary for Q
to take the positive real axis onto itself. In the next lemma, we put some con-
ditions on the a,,’s in order to obtain more detailed knowledge of the behavior
of the sequence of 4,’s.

(2.3) LEMMA. If there exist numbers a and 0, 0 < a < 1, 0< 0 <1, such
that Q assumes the value c|ad at some point and 0-*Q~'(c/abf) lies in the domain of
the m.g.f. ¢, and at least an of the a,,’s exceed or equal 07, then

0,70 Y(cal?) < h, < 0,707'Q7(c/al) .

Proor. If at least an of the a,,’s exceed or equal fg,, then ¢ 337 ,a,, =
0, ()= 11310, 0(h,a,,) = anba ,O(h,00,) so that ¢ 2 alno (i, a,) " Q(h,00.).
But no (Y7, a,,)" = no,(no,)"* = 1, so that ¢ = afQ(h,0s,). Since Q is in-
creasing, this means that h,0s, < Q~'(c/ad), providing the upper bound. For
the lower bound, ¢ Y7_, a,, = 21, a,,0(h,a,,) < ns,Q(h,o,) implies that ¢ <
10, (D0 8,) Q1 0,) < (@0?)'Q(h, 0,), SINCE 0, iy Gy Z Nhor @ = anfo, .

According to Lemma 2.3, if () < oo for all ¢, then for any pair of values
of a and @, the conditions of the lemma are satisfied if the range of Q is large.
This means that at least a fixed fraction of the terms in S, must always contribute
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significantly to the sum, a sort of infinitesimal array situation. Combining Lem-
ma 2.3 with Corollary 1.2, we obtain:

(2.4) CoRrOLLARY. If ¢(t) exists for all t > 0, at least an of the a,,’s exceed
or equal bo, for 0 < a <1, 0 < 0 < 1, and P(X, > c/al) > 0, then there exist
numbers b, > 0, B, < oo, such that b, < h,o, < B,.

(2.5) LEMMA. Under conditions which guarantee the existence of numbers b, > 0
and B, < oo, where ¢(B,)) < oo, such that by < h,o, < B,, there exist numbers
dy?* > 0 and D* < oo such that d* < Var(S,) < D for all n.

Proor. Because X, is nondegenerate, Q'(f) > 0 for all values of ¢, for Q'(?)
is the variance of the associated random variable X,. It follows that d? =
min{Q'(z): 0 < z < B} > 0, andso Var(5,) = N1, a2, Q'(h,d,) = di* Yjo, @, =
d,’. Since the facts that ¢(0) = 1 and ¢(B,) < oo imply that D> = max {Q’(z): 0 <
z £ B} < oo, we have also Var(S,) < D

For the rest of the paper we assume that conditions on ¢ hold which guarantee
the existence of a sequence of numbers £, such that 3 7_, a,, O(h,a,,) = ¢ X 51y
and that conditions on the a,,’s hold which guarantee the existence of numbers
by, > 0 and B, < co, where ¢(B,) < oo, such that b, < h,0, < B,.

non =

3. Cramer’s theorem. In this section, we extend Cramér’s Theorem 26 of [6]
on asymptotic expansions to the case of triangular arrays, which includes our
situation of weighted sums. The proof of the extension closely parallels the
development in Chapter VII of [6], with only minimal modifications being made
to Cramér’s work. A complete proof, including all the details, of Cramér’s
theorem for triangular arrays can be found in Chapter 4 of [2]. Here we shall
give a complete statement of the theorem, but only the briefest outline of its proof.

Denoting 8,,,, as the mth absolute moment of the random variable X,,, we
set B, = n7' 217_, Buns Oma = #™*B,,,, and then T,,, = nt/4p%™. The quantity
P, .(—®) denotes a certain linear combination of the first 3m derivatives of the
normal probability df. ®(x) = (27)~* §*., e **/* dt, and is discussed in detail on
page 76 of [6] and on page 73 of [2]. The quantity p,,,_, .(x) = e***P,, (— @) is
a polynomial of degree 3m — 1 in x.

3.1 CRAMER’s THEOREM. If {X, 11 <k <n, 1 < n < oo} is a triangular
array of random variables such that

(i) X, ---, X,, are independent for each n;

(ii) E(X,,) = O for all k and n;

(i) Xr_, E(X}) = 1 for all n;

(iv) E(|X,i|™) = By < oo for all k and n, for some m, = 3;

(v) each X, hasdf F, (x) = a,, F,,.(¥) + (1 — a,,)F,,,(x), where 0 < a,,, < 1,
F,,.(x) is absolutely continuous, and F,, (x) has no absolutely continuous component;

(vi) eachdensity f,,,(x) = F},.(x) has finite total variation v,,, on (— o, «); and

(vii) if Q, ={k: 1 <k < n,v,, < (34/8)T,,.}), then every sequence {n,: 1 <
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r < oo} of positive integers contains a subsequence {n,: 1 < p < oo} such that either
(A) lim,_ (logn,)™ Zkegw A, = 0, or
(B) limp—wO( monp /log np) Zkch (anpk/vffnpk) = 00,

then, if F,(x) = P(S, < x) is the distribution functlon of S, = XX

Fn(x) = q)(x) + Zmo—S n-" Pmn(—q)) + Rmon(x)
= O(x) + Xmo? n™? py,_y (X)e™ 4+ R, (%),
where |R,, (x)| < M|Tpo.* for M dependent on m, and the F,,’s but independent of
n and x.

Proor. The argument on pages 71-78 of [6], including Lemmas 2, 3, and 4,
goes through with only minor alterations, as does the proof of Theorem 26 until
the estimation of the magnitude of Z on page 85. The argument results in the
indicated expansion of F,(x) with all merit hinging on a bound for R, .(x),
given as

|Rm0n(x)| < 0(m0){T;L::LO+2 + Z log 0”‘}

where Z = sup{|[Ti=; ¢uu(t)|: t > T, .}, for ¢,,(f) the characteristic function of
F,.(x), and 6(m,) is a quantity bounded by a number depending only on m,. If
b1, and ¢, are the characteristic functions of F,,, and F,,,, respectively, then
() = @, Gra(t) + (1 — a,)Ps,(f). An integration by parts shows that
[1,4(2)| < V1i/lt], from which it follows that

[P = (@urVraif[t]) + (I —a,).

So, for |f| = 2V, [$u(f)] < 1 — }a,, and by Lemma | of [6], we have for

|t < 2v,, that
1Bu()] < 1 — (@, — 3a2,)(#/320%,,)
< 1 — (3a,,£/1284},,) .

Therefore, for all t > 0, |¢,.(8)] £ | — a,, min($, 3£2/128%},,). It follows for
t>T,., that
6D = | — a,, min(3, 377, /128v%,,)
< exp(—a,, min(§, 377 /128%1,,)) .
So Z < exp(— Ljoy a,y min(g, 37, ,/12841,,)) .
Noting that the set
={k: 1 <k <n min(§, 37, ,/1281,,) = 3},
we can write that
Z <exp(— Zern 3, — Dike e (3a,, Tibonllzgvf'ﬂlc))
< (n—é)(EkeQnank)/108%+(37'fn0n/64lOg%)Zkegz(ank/vmk) .

Since either condition (A) or condition (B) of (vii) of the theorem holds for
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some subsequence of every sequence of positive integers, we know that the ex-
ponent of n~* tends to oo as n — oo, for otherwise there would exist a sequence
along which the limit exists and is finite. Hence for any fixed 4 > 0, there
exists an n, such that n > n, implies that the exponent exceeds 4, i.e., that Z <
n~# < M,/T,, , because p,, , = 1, by pages 71-72 of [6], implies that T, , < nt/4.
Taking 4 = m, — 1, the bound on R, .(x) becomes [R,, .(x)| = M[Tyo"

To apply this extension of Cramér’s theorem to the large deviations problem,
we have to require conditions which imply that p,, , < A, < co, where A is a
constant. This means that T, , is of the order of n!, in particular that
(4A8m0)nt < T, , < 47'nt. The bound on the remainder term can then be
written as |R,, ,(¥)| < M/n"0=2P,

Of the seven conditions in Cramér’s theorem, perhaps condition (vii) is the
most “unreasonable.” In view of that observation, the following fundamental
lemma turns out to be crucial.

3.2) LEmMA. If {x,,: 1 £k < n,1 < n < oo} is a triangular array of real
numbers for which there exists a A* < oo withn Y 7_, xt, < A* foralln, {a,,: 1 <

nk =

k <n, 1 <n< oo} is a triangular array of numbers between 0 and 1 such that
S, Xk, =1 > 0 for all n and some number y, and, for each n, Q, is a subset
of {k:1 < k < n}, then every sequence {n,: 1 < r < oo} of positive integers contains
a subsequence {n,: 1 < p < oo} such that either

(A’) limp—m (log np)_l ZkeQ”p anpk = 00, or

(B,) limp—*w (np/log np) Zkesz;p anpk xfzpk = .

Proor. By the Schwarz inequality, we have that

bt Zkesznp U X e = (Zkennp a’i’,k)é(Zkean xi,,k)k
SO a

Zkean A = ZkeQ"p ag e = (e 2y, Fnph xf»,,k)2(2kesznp X))

= np(AO*)_l(Zlcean Ay X i) -

vV

Therefore

(log m,)™ Zlcean a, . = (8%)(n,/log np)(ZkeQ"p Uy X )’ -

Now, if condition (A’) holds for no subsequence {n,}, then (logn,)~* 3 . 0, Fnpk =
M < oo for some number M, for each subsequence. We would then have that

Zlceﬂnp Uy X = (MA*n, " log n,)* .
It follows that
(n,/log n,) Zkeﬂfn Xl xi,,k = (m,/log n,)[y — (MAy*n, ™ log n,)}] — oo
as p — co. So if (A’) does not hold, then (B’) must hold.

The next lemma, together with the result of Corollary 2.4, insures that the
forthcoming theorem on large deviations is not vacuous. Its objective is to show
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that, when the conditions of Corollary 2.4 hold, the conditions of Lemma 3.2
hold also.

(3.3) LEMMA. If there exist numbers a and 0,0 < a < 1,0 < 0 < 1, such that
at least an of the a,,’s exceed or equal 0o, then there exists a A* < oo such that
n Yo = A%

nk =

Proor. 1 = X7 a%, = ant’s,’ so that no,* < («6*)~'. Hence n } 3, a,, <
nno,t = (no,?)? < (a?60*)~' = Ay*.

4. The large deviation theorem. Our point of departure in proving the large
deviation theorem for weighted sums of i.i.d. random variables is the expression
in Lemma 1.4 for P(S, > ¢ Y.?_, a,,), where h = h, is the unique solution of
> 1a,,0Q(ha,) =c>* a,. Inorder to use our form of Cramér’s theorem,
we make the additional assumption that the df F of X, is absolutely continuous
with density f = F’.

The random variables Y,,, defined in Section 1, have densities £,,(y) =
a;} f(ya;} + ¢). The associated random variables ¥,, have densities

il'nk(.y) = [ehny/sbnk(hn)]hnk(y)
= [eMmvthncenkfa, , p(h,a,,)]f(ya + ¢) -

With ¢, = (Var §,), where §, = Y.7_, ¥,,, we have that #,(y) = P(S, < y) =
Py, X, <y3,7") = F,(y3,"), in view of the definition of 4,, where X,, =
[Y,. — E(Y,,)]d,”" is the element of the array called for in Cramér’s theorem,
and F, denotes the df of the row sum }7_, X,,. It will suffice for our present
purposes to take, in Section 3, m, = 4, and we proceed to verify that the con-
ditions of Theorem 3.1 hold. Elementary calculations, especially changes of
variable and expansion of binomial powers, yield:

4.1) LEMMA. The fourth absolute moment of X, is given by
Bk = 4,,0,7'G(h,a,,) ,
where - G(t) = =3[$"(1)/p()]* + 6[¢" (1) B(DOI[$"(1)/$(1)]
— AF(O/BONS”(OP(1)] + [6(D)]$(1)] -
The definition of p,,, at the beginning of Section 3 gives:
(4.2) COROLLARY. 04 = 16,7 215, ah,G(h,a,,) .
PRroOF. O = WB, =n3%_ Ber -
In view of Lemmas 2.4 and 3.3, which give credence to the conditions, we have

(4.3) LEMMA. Under conditions which guarantee the existence of a b, > 0 and
a B, < oo, where ¢(B,)) < oo, such that by < h,o, < B,, if there exists a A* < co

withn Y%_ at, < A* for all positive integers n, then there exists a A, < oo with
04w < A, for all positive integers n.

Proor. Because f,,, is a fourth moment of a nondegenerate distribution, we
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know that G(h,a,,) > 0 when a,, > 0. Now G(¢) is continuous on the closed
interval 0 < ¢t < B,, and therefore it attains a maximum value G, > 0 on that
interval. Corollary 4.2 implies then that p,, < Gydy™*n X 1_, ah, < G,d,~*A* = A,
where G,™* < d,™* < oo due to Lemma 2.5.

As noted after the proof of Cramér’s theorem, Lemma 4.3 shows that the
remainder term in the asymptotic expansion is bounded by a constant times n~*
for my = 4. The next two lemmas deal with condition (vi) of Theorem 3.1, on
the total variations of the density functions.

(4.4) LEMMA. The total variation of the density function f,,(X) of the random
variable X, = [Y,, — E(Y,,)]6,7" is

vnk = [a-n/ank ¢(hnank)]/v:k ’
where V¥, is the total variation of f}(z) = e'n*f(z), where f is the density of X,.

Proor. Recalling that E(Y,,) = a,,Q(h,a,,) — ca,, from the proof of Lemma
2.1, we have, using the expression for iznk(y) at the beginning of this section,

for®) = (@Jdx)P(Y,, — E(Y,,) < x5,)
- [6n/ank ¢(hnank)] exp[(xﬁn/ank) + Q(hnank)]f((x(in/ank) + Q(hnank)) *
The result follows if we set z = (xé,/a,,) + O(h,a,,).

4.5) LEMMA. If there exist numbers b, > 0 and B, < oo, where ¢(B,) < oo,
such that b, < h, o, < B,, and the functions f,(z) = e**f(z) are of uniformly bounded
total variations V,* < V* for 0 < 2 < B,, then there exist numbers v, > 0 and
Vy < oo such that vya,; <v,, < V,a,;.

nk =

PRrOOF. Since ¢(2) = =, e**f(z) dz < oo at least for 0 < 2 < B,, we know that
lim,_,, e**f(z) = O for those 2’s. Therefore the total variations V;* > e**f(a) =
f(@) > 0 for some value of @ > 0 by the assumptions of Corollaries 1.2 or 2.4,
and so we have that fla) < V,* < V*for0 < 2 < B, If weset 2 = h,a,,, as
0 < h,a,, < h,0, < B, wesee that f(a) < v}, < V*. Using the result of Lemma

nPnk =

4.4,6, f(a)a,,d(h,a,)) <0, <7,V*a,,b(h,a,,)]". But wealready know that

dy <6, <Dyand 1 = ¢(0) < é(h,a,,) < ¢(B,), so we can take v, = d, f(a)/$(B,)
and ¥V, = D,V* in the statement of the lemma.

The condition that the total variations ¥, * be uniformly bounded in the closed
interval 0 < 2 < B, holds if f is an exponential, uniform, normal, or other density
“usually encountered in practice.” It holds, in fact, whenever f has finitely many
“peaks.” It may hold even when f has infinitely many peaks, provided their
heights are successively small enough and are spaced far enough apart.

(4.6) CoROLLARY. Under the conditions of Lemma 4.5, for any sequence {n)}
of positive integers,
lim,_,, (Tin,,/log n,) ZkeQ;p v;;k =

if and only if lim,_, (T}, [logn,) Zke%p @, i = oo.



LARGE DEVIATIONS FOR WEIGHTED SUMS 1229

The corollary above brings us into contact with the last remaining unverified
condition of Cramér’s theorem. To show that Theorem 3.1 applies to the present
situation, we combine Lemma 3.2 with Lemma 4.3 and Corollary 4.6, and observe
that T,, behaves like nt when p,, < A, < oco. Taking note of Lemmas 2.2 and
3.3, we derive the following corollary of Theorem 3.1:

4.7) COROLLARY. If there exist numbers b, > 0 and B, < oo, where ¢(B,) < oo,
such that by, < h,0, < B, for all n, and a A* < oo such that n ) ;_; ai, < A* for
all n, and the functions f,(z) = e**f(z) are of uniformly bounded total variations
V,* < V*for0 < 1< B, then
H,(x3,) = O(x) + n7P,(— @) + R,,(%)
= q)(x) + n—!pwn(x)e_ﬂ/z + R4n(x) B

where p,,(x) is a polynomial of degree 2 in x, and |R,(x)] < Mn™*, where M is a
constant independent of n and x.

Proor. We apply Theorem 3.1 with m, = 4, in accordance with Lemma 4.1.
Taking X,, = [¥,, — E(Y,,)]5, ", we see that E(X,,) = 0 and Xj_, B(X2,) = 1,
since 4,2 = Var(S,) = Var(X7_, ¥,,). Lemmas 4.4 and 4.5 give the total vari-
ations of the density functions of the X;,’s, and, acéording to Lemma 4.3, we
know that T,, is of the order of nt. Therefore Corollary 4.6 and Lemma 3.2
combine to yield condition (vii) of Theorem 3.1, with each «,,, = 1. The conclu-
sion then follows from the fact that H,(x5,) = P(S, < xG,) = P(Lt_, X, < X).

We are finally ready to state and prove the main theorem:
(4.8) THEOREM. Under the conditions of Corollary 4.7,
P(S, > ¢ 21 ay)
= (2n) 4G, h,) " exp(—h, e Zioy au )Tl ¢(haa,))(1 + O(a,))
where O(s,) — 0 as n — oo.
Proof. In Corollary 4.7, we set y = xg, to obtain
H,(y) = ©(y3,7") + n74p,(y3,7") exp(—)'[26,7) + Ro(y5.7")
= K&(y6,7") + R(¥5.7)
where |R,,(y3,7")| < Mn~'uniformly in y. Then, lookingat Lemma 1.4, we write
I, = h, {5 e [H,(y) — H(0)] dy
= h, \¢ e [Ki(y5,7") — Ki(0)]dy + O(n7™) .
Using the properties of the quantity P,,(—®), as in [6] or [1], we can find the
‘“characteristic function” of K},(ys,™).
1) = §2 e dK3(y) = Xioon " §2, e dP; (- @)
= Yl nilP; (it)e"
is the Fourier transform of K3(y), so what we want is

rfn(t(;n) = Z_lf=0 n_j“Pjn(ita-n) exp[_%ﬁ&nz] .
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We define fo(y) = ety for y=0
=0 for y<o0.
Then g,(f) = (., €%f,(y) dy = (h, — it)~* so that, by integration by parts and
Parseval’s formula,
L = h, {0 e [Ki(y5,7) — KL(0)] dy = (27) 7" §=.. G(0)r1(t5,) dt .
It follows that
(2n)th, I, = (2n)th, 1,* + (27)th, O(n?)
= (2r)"th, §=. §.(t)rk(t6,) dt + O(n~'h,)
= 7,7 §2u [1 + is(h,3,) (D)oo n79P,,(i5)] dO(s) + O(nh,) .
Now [1 + is(h,6,)" ] = 1 + sw,(s)(h,d,)"!, where |wn(s)| is bounded in » and
s. We can then define
(s 1 q) = 3,7 §=. (i) P, (is) dD(s) .
Then p(n. r,q) = 0 if r 4 ¢ is odd, because the odd moments of the normal
distribution vanish and P, (is) is a polynomial of degree 3¢ in (is), containing
only odd (respectively, even) powers if g is odd (respectively, even), according
to the arguments on page 74 of [6] and page 60 of [2]. Since ® has finite moments
of all orders, we can continue from the above that
(2m)th, I, = 6,7 §2., Py, (is) dD(s) + 6,7 §=, sw,(8)(h, G,) "  Py,(is) dD(s)
+ 0[1 § 2 n7E Py, (is) dD(s)
+ 0,71 (20 n7hsw, (5)(h, )7 Py, (is) dD(s) + O(n~'h,)
=46, + Oh,™") + 0 + O(n~th,~") + O(n~'h,),
because P, (is) = 1, the second integral involves the first absolute moment of @,
the third integral involves the third moment which is 0, and the fourth involves

the fourth moment because P,,(is) is a polynomial of degree 3 in s. From the
assumption that b, < h, 0, < B, and the fact that ¢, = n~%, it follows that

n-on =

O(h,™") = O(a,), O(n~th,™) < O(c,) and O(n~'h,) < O(as,). Therefore,
@)1, = 6,7 + O(s,) = 3,71 + 0(s,)) .
in view of Lemma 2.5. It follows that
= (2m)~4(a,h,) (1 + O(a,)) -

The theorem then follows from Lemma 1.4, with O(s,) — 0 as n — oo because
A = n 3r, a}, = nod implies that ¢, < (A*n7')f — 0 as n — oo.

Our theorem on large deviation probabilities for the weighted sums S, =
2i%-1a,, X, reduces to case 1 of the Bahadur-Ranga Rao theorem when each
a,, = ni.

(4.9) BAHADUR-RANGA RAO THEOREM. There exist positive numbers o and b,
with 0 < p < 1, such that

P(Sio, X, = ne) = 2an)~ipb(1 4 o(1)) .
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Proor. When each a,, = n~t, we have S, = X7, niX, =nt > X, and
¢ >r,a,, = cnt, so that in the absolutely continuous case, P(S, > ¢ },»_,a,,) =
P(X ., X, = nc). The condition E(S,) = 0 of Lemma 2.2 becomes the asser-
tion that

0 = i a,l[¢'(ha,)[d(ha,,)] — ¢ 2iiei G
= n}[¢'(hn)[p(hn~*)] — cn?
or that ¢'(hn~)/¢(hn=%) = c¢. Taking h, = tn}, where r is the value of ¢ at which
¢(t) = e~°¢(¢) is minimized with minimum p (such a 7 is required to exist under
the Bahadur-Ranga Rao conditions), we have, in our theorem, that

exp(—hy¢ Ties @) TTims 6, a00) = € T3t $(0)
= (2" = p"

Finally, from Lemma 2.1, we see that

g, = (Var(8,))t = [¢(1)9"(x) — (#'(2))1/($(x))* = (br)~" .

Substituting these values into Theorem 4.8, and noting that O(n~t) = o(1), the
reduction follows.

5. The logarithmic form. The theorem of the previous section leads to loga-
rithmic results of the sort studied extensively by Sethuraman (1964) and (1970),
for example, and more recently by Feller (1968) and (1969). We extend the
simplest of these theorems, that due to Chernoff (1952), to the case of weighted
sums. Feller’s results deal with the more general case of triangular arrays, but
the generality apparently does not permit as detailed knowledge of the sequence
{h,: 1 < n < oo} as is available in our more restricted situation. Related prob-
lems have been studied by M. Stone (1969), in the discrete case, and Sievers
(1969), from the viewpoint of a sequence of moment-generating functions.

The logarithmic result of this section, derived here as a consequence of Theo-
rem 4.8, can actually be proved under more general conditions. In the general
case, there is no assumption of absolute continuity and therefore no requirements
on the total variations of the density functions that necessitate Lemmas 4.4, 4.5,
and 4.6. In that generality, details of the formulation and proof can be found
in Chapter 3 of [2], as well as in a forthcoming article. Here we give only the
following consequence of the theorem of Section 4:

(5.1) COROLLARY. If there exist positive numbers a and 0,0 < a < 1,001,
such that Q = ¢'|¢ assumes the value c(af)™* at some point and B, = 67*Q7*(c/a0)
lies in the domain of ¢, and at least an of the a,,’s exceed or equal §c,, and the
functions f(z) = €**f(z) have uniformly bounded total variations V,* < V* for
0 < 2 < B,, then there exist two positive numbers B, < B,, whose values can be
precisely determined, such that

—‘BZ é Un(ZLl ank)—l log P(Sn > c ZZ:I ank) é _181
for all sufficiently large n.
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Proor. Lemmas 2.3 and 3.3 guarantee the remaining conditions of Theorem
4.8. From the theorem, we can write

Tu(Lkm1 @up) 7 lOg P(S, > ¢ T3, a,)
= —h,co, + 0,(Li1a,)7" Lioilog ¢(h,a,,)
— 0,(Xka1 @) T l0g((27)EG, b,) + 0, (ko @) log (1 + O(ay)) -
The last two terms can be easily disposed of: by Lemma 2.5,
T Lk-1 @) l0g((2m)t6 , h,) < 0, log((27)tDy By, ™) >0  as n— oo,

since »7_,a,, = >» . a:, = 1, and

0Lt @) log(1 + 0(s,)) < log(1 + 0(s,)) >0 as n— oo,

since }r_, a,, = 7,. It remains to show that

nk =

181* é hncon - Gn(Z::l ank)_l ZZ=1 log ¢(h'nank) é 182* ’
where 8,* and B,* are positive numbers whose values can be determined. Con-
sider now the function L(f) = tQ(f) — log ¢(¢). Its derivative L'(f) = tQ'(¢) > 0
for all £ > 0 by an argument used in the proof of Lemma 2.5. Since L(0) = 0,
L(f) =z 0 for t =z 0 and increases in #. Using these facts, we write by Lemma 2.2.

h co

n n T 07&(22:1 ank)_l Zz=1 log ¢(hnank)
- dn(z}'cb:l ank)_l ZZ:I L(hnank) é Un(gn_l)_lnL(BO)
= no,’L(B,) < (a0”)'L(By) = B,*,

because the conditions imply that ns,* < («6?)~?, as in the proof of Lemma 3.3.
The lower bound is obtained by:

Un(ZZ:l ank)_l ZZ:I L(hnank) = Gn(nan)_lanl‘(ahn Gn)

; C(L(ﬁbo) = ﬁl* .

Note that in the i.i.d. situation, Corollary 5.1 reduces to Chernoff’s original
theorem. Wehaveeacha,, = o, =n4, 3% _ a, = nt, h, = tntand p = e~*7¢(7),
where Q(7) = ¢, as in the proof of Corollary 4.9. It follows that b, = B, = =,
a =0 =1,and L(r) = 7Q(r) — log ¢(r) = rc — log ¢(r) = —log p. The asser-
tion of the corollary becomes

lim, ., ntlog P(} 7., X, = nc) = —logp,
which is Chernoff’s theorem.

6. The exponential case and order statistics. In the special case when the random
variable X is exponentially distributed with mean 0, variance 1, and m.g.f. ¢(¢)=
(1 — #)~le7t, it then turns out that ¢(c + 1) < h,0, < 1 always. If we require
the existence of a number 6, < 1 such that 4,5, < 6,, 2a bound which holds under
the condition of Lemma 3.3, the remaining conditions of Theorem 4.8 are satis-
fied for the exponential density. Details can be found in Chapter 5 of [2]. Itis

possible to then use Theorem 4.8 to derive a large deviation theorem for linear



LARGE DEVIATIONS FOR WEIGHTED SUMS 1233

combinations of exponential order statistics. If V,,, ---, V,, are the increasing
order statistics of a sample of size n, then Chernoff, Gastwirth, and Johns (1967)
showed that linear combinations }}7_, c;, ¥;,, when properly normalized, con-
verge in distribution to the normal; they used the fact, proved in Rényi (1953),
that exponential order statistics can be expressed as particular weighted sums
of i.i.d. exponential random variables. More precisely, there exists a sequence
{Z,: 1 < n < oo} of i.i.d. exponential random variables with density f(x) = e=*
for x > 0, such that, for every positive integer nand each j, 1 <j<n, V,, =
Dihoi(n — k + 1)7'Z,. We then have the following lemma:

6.1) LEMMA. There exist nonnegative numbers {a,,: 1 < k < n}, depending on
the coefficients {c,,: 1 < j < n}, such that };_, a}, = 1, and a number c,,, depending
on the c;,’s and 2, so that P(}33%_, ¢;, Vi, > 4,) = P(2i, a,(Z, — 1) > ¢,).

Proor. Defining d,, = (n — k 4 1)~ }3%_, ¢;,, noting that E(Z,) = 1, and
interchanging the order of summation, we have
P(LicaCinVin > A) = P(Lic du Zi > 4,)
=P au(Z, — 1) > ¢c,),
where @, = di (X dy) 7 and ¢, = (4, — Xio da)(Zioadi) ™t -

IfwesetX, =Z,— landc, = c )}, a,,, equivalently 1, = (¢ + 1) 7., d,,»
then P(};7_, ¢c;, V;, > 4,) becomes P(S, > ¢ > 17, a,,) where S, = 17, a,,.X,.
We can then apply Theorem 4.8 to find the asymptotic representation of the
large deviation probability for >}7_; ¢;, V;,-

It is much simpler to represent large deviation probabilities for single order
statistics than for proper linear combinations. The asymptotic representation for
order statistics from an arbitrary distribution, not necessarily the exponential,
can be found in [3] and follows directly from the original Bahadur-Ranga Rao
theorem.
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