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THE STRUCTURE OF THE OPTIMAL STOPPING RULE
IN THE S,/n PROBLEM'

By M. E. THoMPSON AND W. L. OWEN
University of Waterloo and Rutgers University

The proof of the existence of the optimal stopping rule for Sx/n for the
case where the i.i.d. random variables X; have a moment of order greater
than one has been obtained by B. Davis. In the present paper the asymp-
totic growth of the boundary of the optimal stopping region is studied. The
method used generalizes one of Shepp (1969), and involves comparison with
the corresponding problem for an infinitely divisible process, obtained as a
limit of processes (S(at)/an, t = 0) for properly chosen norming constants
an. When the X; are in the domain of attraction of a random variable
which is stable with exponent greater than one, an explicit asymptotic
expression for the curve defining the boundary is obtained.

1. Introduction. Let X, X,, --- be independent and identically distributed
random variables with mean 0 on a probability space (Q, .7, P), and let S, =

_, X;. Suppose that we observe the process (S,, & (r), n = 1), where F (n)
is the sigma-field generated by X, -- ., X,, and are allowed to stop at any stage
n we please, basing our decision only on the past and present of the process at
time n. If we stop at stage n, we receive the “payoff” S,/n. The corresponding
“optimal stopping problem” is to find if possible a stopping procedure which
maximizes our expected payoff.

More formally, let _# be the collection of finite valued stopping times 7 rela-
tive to the family (. (n), n = 1) for which E(S_/r) is defined (possibly infinite).
The problem is to find if possible ¢ € _# such that

(1.1) E(S,/o) = sup[E(S.[t):te #Z].

Burgess Davis [3] has shown that if E(X, log *X;) = co (where log *a = log a
ifa> 1, and 0 if a < 1), then there is a ¢ € _# for which E(S,/s) = co. This
¢ is clearly optimal in the sense of (1.1). On the other hand, it is well known
that if E(X,log*X)) < oo, then E(sup,., (S,*/n)) < c. (This follows from
inequality (3.7) on page 517 of [5] and the fact that the process (---, S,*/3,
§,7/2, 8,%) is a submartingale.) Therefore, if E(X, log *X,) < oo, _# is the class
of all finite stopping times relative to (# (n), n = 1); and general optimal stop-
ping theory tells us a good deal more.

The process X = ((S,, n), » = 1) may be regarded as a Markov process with
state space R x [0, oo), stationary transition probabilities, and initial distribu-
tion that of X; on the line {(x, 1): x ¢ R}. (Here R denotes the real numbers.)
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Suppose that E(sup, (S,*/n)) < oo, and for each (x, s) e R x (0, o0) let

(1.2) h(x, s) = (x/s)* vV sup [E((x + S.)/(s + t))*: 1€ Z].

Let D = {(x, s) e R x (0, o0): h(x, s) = x*/s}. It can be proved as in Theorem
8 of [2] that (h(x + S,, s + n), % (n), n = 1) is the minimal supermartingale
above ((x + S,)*/(s + n), & (n),n = 1) for each (x, s) e R x [0, o). If 7€ _#
and ¢ = inf[n > 7: S, > —x], then # e _# ([7], page 380) and

1 B(EEE) S p(ES) - s((3E5)),
S+ T S+ f s+ 7
This being true, D c (0, o0) x (0, o0), and it follows by the Corollary to Theorem
6 of [2] that if for (x, s) e R x [0, co0) the stopping time z(x, s) = inf[n > I:
(x + S,, s + n) e D] is finite, it maximizes E((x + S.)/(s + 7)) among t € /.
Dvoretzky’s proof in ([6] Section 3) of the following theorem, describing the
set D, is valid; it does not use the general assumption of his paper that EX;* < co.

THEOREM 1.1. Let EX, log *X, be finite. Then there is a strictly increasing posi-
tive function f(s) on [0, co) such that for (x, s)e R x [0, o)

i‘_<sup_E<x+S’):Tewfi1 if x<f(s),

s s+ 7
1.4 X —suplE(XSN . ce s i x=
(1.4) Teswp| E(ZES)ice s | =119,
x [/ x+ S 7 .
- E(Z 1 ~=): o .
. >sup_ <S+T> TE //_ if x> f(s)

Dvoretzky [6] and Teicher and Wolfowitz [14] showed that if EX? < oo,
then 7(0, 0) is finite, and therefore optimal. Burgess Davis [4] has succeeded
in proving the conjecture of Dvoretzky that the same result holds in the case
where E|X,|? < oo for some ¢ > 1. In addition, it has been shown in [16] and
in [4] that if E|X)|? < oo for some ¢ > 1 then
(1.5) ftn) < KIS, » nzl,
for some K, > 0 (not depending on the distribution of X,). Here ||S,||, denotes
[E(S,|)]".

When X, has finite variance, then ||S,||, is asymptotically equivalent to n||X)||,,
and Shepp [12] and Walker [17] have shown that if EX,* = ¢* < oo, then actually
f(n) ~ cont for a positive finite constant ¢, which they evaluated. Our purpose
is to study the asymptotic behavior of f(n) in the more general case where
E|X,|? < oo for some ¢ > 1. It turns out that the limiting behavior of f(n) is
very closely tied in with the limiting behavior of the distributions of the partial
sums S,. In the case where the random variable X, belongs to the domain of
attraction of a stable random variable with exponent a greater than one we
obtain the asymptotic expression

(1.6) J(m) ~ ¢, ISl
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as n — oo, where p is any number greater than one and less than «. The con-
stant ¢, is the same for all random variables X, in the domain of attraction of
the same stable distribution. (It will be apparent from the proof that ||S,||, ~
Ka, for some K > 0, where a, are the norming constants for the attraction.
See [7] page 302, for the definition of the a,.)

2. Some inequalities. We shall make use of two important inequalities, as set
forth in the following lemmas. Again, for any random variable ¥ and b > 0
the notation || Y||, means [E|Y|]'/.

LemMA 2.1. Suppose 1 < b < 2. Then there is a positive finite constant N, such

that if X,, X,, - - - are any independent and identically distributed random variables
with E|X||® < oo, then
2.1) 1Sulls = Nym || Xy, » nzl.

Proor. This is an easy consequence of Theorem 5 of [10].

LEMMA 2.2. If b > a > 1, there is a finite positive constant L,, such that if X,
X, - - - independent and identically distributed with EX, = 0 and E|X,|* < co then

(22) P(Sn > Lab”Sn”a) > Lab
for infinitely many n.
Proor. This is Corollary 2 of [4].

CoroLLARY. If K is any constant, and b > a > 1, there is a positive number o,
depending on K such that under the conditions of Lemma 2.2

(2.3) P(S, > K||S,]la) > 0
for infinitely many n.
Proor. Using (2.1) we obtain

(2.4) P(Spn > K||Spalle) =2 P(Spn > KN m'I||S,||,)

for all m and n. Hence

(2-5) P(S,, > K|Spalle) Z P(Spa > (KL N,m™ymL,, ||S,]],)
>Ly >0

for all n satisfying (2.2) and a fixed m sufficiently large.
CoRrOLLARY. Under the conditions of Lemma 2.2
(2.6) P(lim sup, .., S,/||S,|l, = ) = 1.

3. Limiting distributions for S,/||S,||,. In this section, let us assume that the
X; of Section 1 are nondegenerate, and that E|X,|? < oo for some ¢ > p > 1.
For each nlet F,(x), —o0 < x < oo, be the distribution function of the random
variable S,/||S,||,. It is easy to show using a diagonal argument that given any
subsequence of the functions F, we must have some further subsequence tending
to a right-continuous limit function F at all continuity points of F.
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Now clearly
(3.1) P(|S,| > x][S,|],) < x7?

for all x, and hence any such limit distribution F cannot be improper. More-
over, if F, — F as n— oo through Q, a subsequence of the natural numbers,
then (3.1) and the dominated convergence theorem imply that

limg E(S,/[ISll,) = §2 ¥ dF(%) ,

where lim, denotes the limit as n — co through Q. Thus if F = lim,F, is
degenerate, it must assign mass 1 to the point 0. But therefore if Q is a subset
of the set of those n for which (2.3) holds, with ¢ and p instead of 4 and a,
the limiting distribution F must be nondegenerate. The following theorem is
now evident. )

THEOREM 3.1. If X, X,, - - - are independent and identically distributed random
variables with EX, = 0 and 0 < E|X,|? < oo for some q > p > 1, then some sub-
sequence of the random variables S,,/||S,||, converges in distribution to a nondegenerate
random variable.

The limiting distribution function F is infinitely divisible, and it follows from
Theorem 3.1 that any random variable X, satisfying its hypotheses is in the
“domain of partial attraction” of some infinitely divisible distribution. (See [7]
page 555.)

We cannot say in general that the sequence {F,} is stochastically compact, or
in other words that for any subsequence of the F, there is a further subsequence
which converges to a nondegenerate limit. In fact, as Feller has shown in [8],
a necessary condition for stochastic compactness of {F,} is that the truncated
variance

(3:2) U() = §i_o- y* dP(X, = )

be of “dominated variation,” i.e., that it satisfy

Ut®) o cxr-v | x>1, t>T
U(t)

for some constants v > 0, C and T > 0. It is not difficult to show (cf. the
Corollary on page 274 of [7]) that this implies that for any 6 > 0 the function
U(x) has the form

(3.3)

(3.4) U(x) = d(x)exp {7 LX). dw, x>T

where d(x) is Borel measurable, positive and bounded away from 0 and oo, and
¢(x) is Borel measurable, positive, and bounded above by 2 — v 4 4 for x > T.
Conversely, if U is of dominated variation with v > 1, then E|X,|” < oo for
1 < p < v. Feller proves in [8] that there is a sequence {a,} of positive constants
for which the sequence {S,/a,} is stochastically compact, and it is shown in [16]
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that for this sequence there is a constant C, independent of » and x such that
3.5) P(1S,] z xa,) < Cx.

It follows that the sequence {||S,]|,/a,} is bounded away from 0 and co, and
therefore that the sequence {S,/||S,||,} is also stochastically compact.

If the sequence {F,} itself has a limiting distribution F, the random variable
X, is said to belong to the domain of attraction of F. Then F is a stable distri-
bution function with exponent @, where 2 > a = ¢ if E|X,|* < oo, and the trun-
cated variance U(x) has a representation of the form of (3.4), where this time
d(x) approaches a positive finite limit as x — oo, and ¢(x) -2 — a as X — oo.
(See [7] page 302 ff.) Conversely, if U has this form for some a > 1, the distri-
bution of S,/||S,||, approaches a stable random variable with exponent a for
anyp, l < p<a. :

4. Lipschitz continuity of the boundary of the optimal stopping set. Consider the
nonnegative, increasing function f{(s) on (0, o) defined by (1.4). We have placed
an upper bound on its growth in (1.5), and now we shall determine its local
behavior, assuming that E|X,|? < oo for some ¢ > p > 1.

Lemma 4.1. Forany s = 1 and h > 0,
(4.1) |f(s + By — F(5)] < 4HE,N, |[X,]|, 577
where K, is defined in (1.5) and N, in Lemma 2.1.

Proor. For each re_ which has the property that P(S, > 0) = 1, define
f7(s) to be the solution for x of
(4.2) * _ E<Z‘_+_S_> :
s S+
That f*(s) for s > 0 is well-defined, finite valued and non-decreasing follows
from Lemmas 5 and 8 of [6]. It is not difficult to prove that the derivative
df *(s)/ds exists, and in fact the computation

L df<(s) _ f(5) _ L\ (s) _ g () + S
*-3) s ds T~E<s+r/ ds E< (s + 7)? )

shows that

(4.4 AL e R ey
Bty
N

The result follows easily from (1.5), (2.1) and (4.4) once we note that f(s) =
sup[fe(s): te ., P(S. > 0) = 1].

5. The analogous continuous parameter optimal stopping problem. Suppose that
Y is an infinitely divisible random variable in one dimension with a finite gth

moment for some ¢ > 1, and mean 0. Let Y* = (y(¢), t = 0) with y(0) = 0 be
a right-continuous realization with left limits of the homogeneous process with
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independent increments on the real line R, induced by the random variable Y.
(See [1] page 18.) Suppose that the probability space underlying Y* is complete,
and let (7 *(t), t = 0) be the increasing right-continuous family of sigma-fields,
with # *(0) containing all sets of zero measure, generated by Y*. Let ./ be
the class of finite valued stopping times with respect to (& *(¢), t = 0).

Consider the problem of maximizing for each (x, s) in R x (0, co) the quantity
E[(x + y(r))/(s + 7)] for re 4" Any 7z, which maximizes this quantity will be
called “optimal” for the starting point (x, s). If we define
(5.1) h*(x, 5) = sup [E (_x+_y(’)> ‘e ///"]

s+

it is easy to show that A*(x, s) is a continuous, nonnegatlve function of (x, s) in
R x (0, o). Furthermore, if

(5.2) = {(x,5) e R x (0, 00): h*(x, 5) = x/s},

then D* is of the form {(x, s) € R x (0, c0): x = f*(s)}, where f*(s) is a positive
and non-decreasing function of se (0, o). It follows from general optimal
stopping theory for Markov processes (see [15], Theorem 10.1) that if A*(x, s)
is finite and if an optimal stopping time for (x, s) exists, then there is a minimal
one, given by

(5.3) T = inf[t = 0: (x + y(¢), t 4+ 5) e D*].

Moreover ([15], Theorem 7.3 and Section 10), if we can show that sup [(x +
M(t))/(s + t): t = 0] is integrable and that the stopping time z,, is a.s. finite, then
7y Will be optimal for (x, s). Now
q t q
E|su () ]
:|+ ,: pl>s ¢ + B
»(1)

5.4 E[suptSo ) q} < E[supo§t§,
=lt+s
q q
é E[Sup0§t§s t + s :l + E[Supt>s - :I'
But the processes (|y(¢)|?, t = 0) and (|y(—1)/(—?)|% 0 < ¢) are both submartin-
gales, and hence for some constant C

()
t+ s

f) | CE v

(5.5) E[suptgo‘ tyj_)s :’ < E:(SN .
Applying Jensen’s inequality we conclude that

56 E 20 [ < Sl

(>-6) [SUPQO‘ t+sid s

for some constant C’. It follows from (5.6) that the process

(X + Y1) >
5.7 LI AL 1,t=>0
(5.7 (58 7oz

is bounded both above and below by integrable random variables.
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Because the process (5.7) is bounded below in this way, we can approximate
the continuous parameter problem .with discrete parameter problems in the
following way ([15], Section 10). Let ./, be the collection of finite valued
stopping times with respect to (. *(t), t = 0) taking values of the form k2-%
where k is an integer with probability one. Let

(5.8) hy*(x, 5) = sup [E ,’fsif’i:l re M,,,/;v]
and

(5.9) D,* = {(x,5) e R x (0, 00): hy*(x, 5) = x/s},
and define f(s) by

(5.10) D,* = {(x,5)e R x (0, 00): x = fy(s5)} .

Then lim,_, h,*(x, s) = h*(x, s5) for all (x, s) and f(s) / f*(s) as N — oo.
Now suppose 1 < p < g. It follows easily from (1.5) that f,(s) < K,||y(s +
2-")||, for each N and hence that

(5.11) JH(5) < K [ly)ll, -

From Lemma 2.2 we see that for any (x, s5) 7, is a.s. finite.

We have now shown that z,, is an optimal stopping time, and that it is mini-
mal. We may ask next whether the optimal stopping time is unique. In order
to apply the uniqueness argument used by Shepp ([12], page 1005) for the case
where Y* is the Wiener process, it is enough to show that f*(s) is Lipschitz
continuous locally and that

(5.12) P(lim sup,_, y(¢)/t > K) =1
for any K > 0.
LeMMA 5.1. The function f*(s) is Lipschitz continuous for s € [a, oo) for anya > 0.

ProoF. We argue as in Lemma 4.1 to prove that

(5.13) [fx(s + h) — fu(s)] < 20K, ||y(s + 1)||,s7"
for all N, s > 0 and 2 > 0, from which follows the result.

Equation (5.12) does not hold in general. B. A. Rogozin in [11] has given a
necessary and sufficient condition for (5.12) to hold in terms of the Lévy measure
of the random variable Y.

6. The asymptotic behavior of f(n). Suppose that the hypotheses of Theorem
3.1 are satisfied, and that some subsequence of the S,/||S,||, converges in distri-
bution to an infinitely divisible random variable Y. Let Y* = (y(¢), t = 0) be
the induced homogeneous process with independent increments as defined in
the beginning of Section 5. Then it is a well-known fact (see [9] page 479) that
for any s > 0 the random variables S;,,,/||S,||, for the same values of n converge
in distribution to y(s).
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In what follows let f*(s) and the stopping times 7, be defined as in Section 5,
and f(s) be defined as in (1.4). We shall prove two theorems, generalizing a
result of Shepp [12] and Walker [17], who both considered the case where the X,
were in the domain of attraction of a normal random variable.

THEOREM 6.1. Let Q be a subset of the natural numbers such that the random vari-
ables S,[||S,||, converge in distribution to Y as n — co through Q. Then

(6.1) lim inf, f(m)/||S.]1, = f*(1) .

Proor. To prove this, we suppose that lim inf, f(n)/||S,||, = " < f*(1), and
choose ysuch that ’ < y < f*(1). Consider r,, defined for the point (7, 1), i.e., let

(6.2) 7 = Inf[t = 0: 7 + y(6) = f*(1 + 1))
and let
(6.3) w(n) = inf[m = 1: 7S], + S, = IS,]],£*(1 + m/n)]

for each ne Q. Then because y < f*(1), 7,, being minimal as an optimal stop-
ping time implies that

6.4 E(T T y(%o)) T
(6-4) ( 1 + 7y > 1
But
(65) E<r||Sn||p + Sr(”)) < T”Sn“p
n 4+ =(n) - on

for infinitely many n e Q by our original supposition. Thus if we could show that
(6.6) lim,—" E<T||Sn||p + Sr(n)) _ E(r + y(700)>

1S5l n + z(n) I+ 7

we would have a contradiction. The proof of (6.6) goes through in the same
way as Shepp’s proof of his Equation (8.1), using the invariance principle of
Skorokhod [13] where Shepp uses the invariance principle of Donsker.

THEOREM 6.2. Suppose that the conditions of Theorem 6.1 hold and in addition
that for every finite B

(6.7) lim_,, P(y(¢) < Be) = 0.
[This condition is stronger than (5.12).] Then
(6.8) lim sup, f(n) /|| S, |, < f*(1) -

As a first step in the proof, we let f,(s) = f(ns)/||S,||, for ne O, and establish
the following lemma.

LEMMA 6.1. The functions f,(s) for ne Q are equicontinuous.

Proor. Using (4.4), we see easily that
Ifn(s + h) _fn(s)l = 4ths_1”S[m]||1)/||Sn||p .
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Using Lemma 2.1 we obtain
[fa(s + h) — fu(s)| = 4hK N, s~1+1I7
and hence the result.

Continuing with the Proof of Theorem 6.2, we suppose that as n — co through
some subset @’ of Q, lim f(n)/||S,||, = r; > f*(1). By Lemma 6.1 and the Arzela-
Ascoli theorem there is a subsequence Q" of Q' and an fy(s) continuous and
increasing such that lim,,, f,(s) = f(s) for all s > 0. Suppose f*(1) < r < 7;-
For each ne 0", let

o) = infm 2 1: (S, /l,7 + Su = fin + m)],

and

Lot (1) = ([|Sull,7 + Seem)/(n + T*(n))_-
t*(0) = inf[r = 0: y + p(¢) = fi(1 + 1)],

and

7(0) = (r + y(=*(0)/(1 + =*(0)) .
Then ||S,||,7/n < En(n) for all but a finite number of ne Q”, and because the
optimal stopping times for the continuous parameter problem are unique,
E(»(0)) < 7. If we can show that

(6.9) limg., (n/[]S,[],) E(7(n)) = E(7(0)) ,
we shall have a contradiction.

Let us select an ¢, 0 < ¢ < 7, — 7, and assume that Q" has been chosen so
that f,(1) > r for any ne Q”. Choose N, so large that for all s, 1 <s < T,
where T is some positive number, we have |f,(s) — fy(s)| < ¢ for all n > N,
ne Q”. Define for ne Q"

t(n, ) = inf[m = 1: 7[|S,]|, + Su = [IS4ll,Lfo(1 + m/n) + €]] ,
(6.10)  z(n, —¢) = infm = 1: 71IS,[|, + S, = [IS,ILUA( + mjn) — €]l ,
(s €) = ([1Sallo7 + Sc)/( + 7(n, €))
7(n, —e) = ([[Sull,7 + Scn-o)/(n + (1, —¢)) .
Define also
2(0,8) = inf[t 2 01y + y(t) = f(l + ) + <],
(6.11) 20, —&) = inf[r 2 0: 1 + p(t) = fu(l + 1) — <],
7(0, ¢) = (r + »(=(0, ¢)))/(1 + (0, ¢)),
7(0, —e) = (r + y(z(0, —&))/(1 + (0, —¢)) .

LEMMA 6.2. For any y which is a continuity point of the right-hand side,
(6.12) limy,, P(t*(n)/n < y) = P(*(0) < y) .

Proor. Forn= N, ne Q",

(6.13)  P(z(n,e) A nT < ny) < P(r*(n) A nT < ny) < P(t(n, —e) A nT < ny).
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Applying Skorokhod’s invariance principle and letting T'— co, we obtain
(6.14) P(7(0, ¢) < y) < liminf,, P(z*(n) < ny)

< lim sup,,., P(z*(n) < ny) < P(z(0, —¢) < y)
for every y which is a continuity point of both extreme terms.

If we take a sequence ¢, decreasing to 0, we find, using the Lipschitz conti-
nuity of f;, the property (5.12), and the quasi-left-continuity of Y* (see [1] page
45), that lim,,_, (0, ¢,) — v*(0) = O a.s. and lim,,_,, 7*(0) — (0, —e¢,) = O a.s.
Thus (6.12) holds at any continuity point of its right-hand side.

LEMMA 6.3. If ¢ > O, then for all y outside some countable set S(e),

(6.15) limy,. P(7(n, &) > ||S,||,/n) = P(1(0, ¢) > y)
and )
(6.16) limg., P(y(n, —e) > ||S,]|,y/n) = P(1(0, —¢) > y) .

Proor. The proof is analogous to the proof of Shepp’s ([12] Equation (8.1)),
with the use of Skorokhod’s invariance principle where Shepp uses Donsker’s.

To complete the proof of Theorem 6.2, let K, = 4K, N,, with K, from (1.5)
and N, from (2.1). Let 4, = inf[f,(1): ne Q"”,n= Ny] > 0. Then for n = N,,
n e QII
(6.17)  P(an(n, —e)]||S.ll, > y + ¢) — P(np(n)/||S.[], > y)

< P(z(n, —e) > nT) + P(t*(n) > nT) + p(n)
where p(n) = P(SUPog, <., Start/||Sull, = 26 4+ Ay¢), 4, = Ay/2)* and 4, = K A,; and

all, =
(6.18)  P(ny(n)/||S,]], > y) — P(my(n, &)/||S,|l, >y — €)
< P(z(n) > nT) + P(t(n, ¢) > nT) + p(n) .
From (6.18) we obtain, again using Skorokhod’s invariance principle,
(6.19) lim sup,.. P(ny(n)/||S,||, > y) — P(7(0,¢) > y — €)
< P(z*(0) > T) + P(z(0,¢) > T) + p(0),

where p(0) = P(Supg,<.4, )(t) < 2¢ + Ay¢), if T is outside some countable set S
and y — e¢ S(¢). Letting T— oo through points of R — S, gives

(6.20)  limsupg. P(ny(m)/||S,ll, > y) < P(7(0, ¢) >y — ¢) + p(0) .

Now it is obvious if (6.7) is satisfied that p(0) approaches 0 as ¢ — 0. Therefore,
if ¢,, is a sequence of points decreasing to zero,

(6.21) lim sup,,., P(nyp(n)/||S,||, > y) = lim inf,_,_, P(9(0,¢,) >y — &,)

for any y such that y — ¢, ¢ S(c,,) for all m. If in addition y + ¢, ¢ S(c,,) for all
m, we also have

(6.22) lim inf,,, P(np(n)/||S,||, > y) = limsup,,_... P(7(0, —¢,) > y + ) -



1120 M. E. THOMPSON AND W. L. OWEN

For any m’, the right-hand side of (6.21) is less than or equal to

liminf, ., P(7(0,¢,) >y — ¢,/) or P(n(0) >y —¢,.),

if y — ¢, is a continuity point of the distribution of 7(0). The right-hand side
of (6.22) is no less than P(7(0) > y + ¢,.) by quasi-left-continuity, under analo-
gous conditions on y. Thus, if y is a continuity point of the distribution of
7(0), then

(6.23) limg.. P(my(n)/||S.]], > y) = P(9(0) > ) -

Equation (6.9) follows, by a standard argument using the dominated conver-
gence theorem. This completes the proof of Theorem 6.1.

7. The case of attraction to a stable law. Suppose that the X; belong to the
domain of attraction of some stable random variable with exponent a > 1.
Then the sequence Q of the previous section may be taken to be the set of all
the natural numbers. Since the process Y* is now a stable process with exponent
a, it is easy to show, as Shepp has done in [12] for a = 2, that f*(s) = C,s"*
for some positive constant C,. Moreover, (6.7) is satisfied for stable processes
with exponent greater than one, and therefore for this case Theorems 6.1 and
6.2 combine to produce the result (1.6), with c,=C,.
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