CORRECTION NOTES

CORRECTION TO

"ADMISSIBLE BAYES CHARACTER OF T²-, R²-, AND OTHER FULLY INVARIANT TESTS
FOR CLASSICAL MULTIVARIATE
NORMAL PROBLEMS"

By J. KIEFER AND R. SCHWARTZ

Cornell University and General Electric Company

In our paper "Admissible Bayes character of T^2 -, R^2 - and other fully invariant tests for classical multivariate normal problems" (Ann. Math. Statist. 36, 747–770) the write-up of Lemma 3.1 is somewhat incomprehensible. We thank Tom Ferguson for pointing this out. One difficulty is that it is not made sufficiently clear that $C^{(j)}$ in (3.9) is fixed and independent of θ and a fortiori independent of i. The assumption is that Π , the original a priori measure for the problem without nuisance parameters, as well as any specified relationship between θ and the $\Sigma^{(i,j)}$, allow the representation (3.9) with $C^{(j)}$ fixed throughout. Similarly at the bottom of page 754, $\Pi_{i,\theta}$ must assign all measure to a set of the form (3.9) with $C^{(j)}$ constant (i.e., independent of θ and i). The reading is made easier by thinking of $C^{(j)}$ as I_p and of $D^{(i,j)}$ as $\eta \eta'$ which they usually are in the sequel.

We remark that if $r_{ij} = 0$, the representation (3.12) should be replaced by the degenerate conditional prior law which assigns probability one to any single value of γ_i (e.g., zero) under H_i^* .

The relationship of (3.14) and (3.15) to (3.16) was not made clear. From (3.13) it follows that the numerator and denominator of (3.14) and therefore of (3.15) are independent of β and θ . Hence, the numerator (resp. denominator) of (3.16) contains the numerator (resp. denominator) of (3.15) as a factor. Cancellation then yields the RHS of (3.16).

On the bottom line of page 756 I_p should read I_r .

CORRECTION TO

"MULTIVARIATE PROCEDURES INVARIANT UNDER LINEAR TRANSFORMATIONS"

By R. L. OBENCHAIN

Bell Telephone Laboratories

I am indebted to R. A. Wijsman for pointing out that the argument supporting Lemma 1 of this paper (Ann. Math. Statist. 42 1569–1578) does not preclude the possibility that γ could be a different vector of constants on each orbit of

 $\mathcal{L}(p, N)$ induced by L(p). Thus the statement of the lemma is false, the multivariate case p > 1 is not essentially different from the univariate case p = 1, and $\gamma = \gamma(X)$ could be any continuous L(p) invariant vector whose elements sum to one. The error in Lemma 1 has no effect on the rest of the paper.

I must also apologize for not using certain established terminology in this paper. L(p) is the (nonsingular) affine group, and $L^0(p)$ is the homogeneous subgroup. Central measures satisfying equation (3.1) are termed affine commutative (or affine equivariant) rather than compatible. C of equation (4.5) represents an isogonal transformation rather than a rotation. R of equation (6.1) has an intraclass correlation structure.