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ON BONFERRONI-TYPE INEQUALITIES OF THE SAME DEGREE
FOR THE PROBABILITY OF UNIONS AND INTERSECTIONS
By MiLTON SoBEL' AND V. R. R. UPPULURI?

University of Minnesota and Oak Ridge National Laboratory

For any collection of exchangeable events 41, As, - - -, A, the Bonferroni
inequalities are usually stated in the form

max {No, Nz, « -+, N,} < P{U¥_, 4} < min{Ni, N3, -+ -, Nio}

where Ny = 0, k.(ko) is the largest even (odd) integer < k,

N, = Ty (=D @)P, =12k
and Py = P{Ai, Ai, -+ Ai,} for any collection of a events. We may regard
N, as being of the vth degree because it involves Py, Py, - -+, P,; hence the

lower and upper bounds above are never of the same degree. In this paper
we develop improved lower and upper bounds of the same degree. For
degree v = 2, 3, and 4 these results are given explicitly. A related problem
is to get lower and upper bounds for the probability of the intersection of
events, Py, for large k in terms of Py, Py, - -+, P,. These are also derived
and given explicitly for v = 2, 3, and 4. Applications of these inequalities
to incomplete Dirichlet Type I-integrals and to equi-correlated multivari-
ate normal distributions are indicated.

1. Introduction and summary. Let 4, (i = 1,2, ..., k) denote a finite set of
events associated with a probability space (2, &, P) and let y;,(w) denote the
indicator random variable of 4;,. Then max {y,(®), xs(®), - - -, x,(®)} is the indi-
cator variable for the set |J¥_, 4;. In [4] Kounias strengthens the Bonferroni
inequalities (cf. Fréchet [2]) by giving both lower and upper bounds for
P{|JL, 4;} in terms of P(4;) and P{A4;A;}; these bounds are both of the same
degree v = 2. In this paper we consider the fixed collection 4,, 4,, ---, 4,
with arbitrary v (v = 1,2, ..., k) and derive lower and upper bounds of the
same degree v for P{{JX_, 4;}. Some applications with numerical illustrations
are indicated.

For exchangeable random variables y;(w) we let P, = P{4; A4; --- 4;}. We
obtain as a typical example of our bounds for any odd degree v < k

(L) DS (=) @OP, + ()P, = UL A} = 2o (D) (@) P,
and for any even degree v < k

(1.2) X (=D)*H(Q)P, = P{UL 4} = TS (= D)0 P, — ()P, -
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The extra term on the left side of (1.1) and on the right side of (1.2) clearly
show the improvement on the Bonferroni bounds. One can easily construct
examples where these bounds are attained; in fact, for v = k we have equality
throughout (1.1) and (1.2). It should be noted that the lower bounds can be
negative and the upper bounds can exceed 1. More generally, we obtain for
any v < k a set of v + 1 bounds all of the same degree v (including those in
(1.1) or (1.2) depending on the parity of v) and use the minimum of the upper
bounds and the maximum of the lower bounds. Corresponding results are also
obtained for bounds on P(Ni., 4;}.

2. Basic lemma and its consequences. In order to express the results in a com-
pact notation we will define a Bonferroni indicator random variable and an
operation denoted by x.

DEFINITION. Let B, ; with j < kand 1 < r < j denote the Bonferroni func-

tion of degree r on the jsets 4, , 4, - - -, 4;, defined by
(2.1) B, ;= 2i=1da, = Day<ag XaKay T -
+ (— l)r—l Za1<a2<~~-<a, Xal Xa2 e Xa,,
where y, = y(0)and 1 < a; <j(i=1,2,.-.,r). Wedefine B,; to be identi-

cally zero for j = 1.
DerINITION. Let B, ; = B, ; denote the function defined by
(2.2) B.,+B,,=B,,+B,; —B,B,,.

T, 8,7

It is implicitly assumed in this definition that the i sets in B, ; do not include

any of the j sets in B, ; and vice versa, i.e., the index sets are disjoint, although

the sets need not be. It is easily verified that B,, = B,, » B,, and more gener-
ally B, ; = B, ; = B;,; ;,;- We also have the property
(2.3) B+« (B, + B)=B,«B,+ B x B, — B

which is used in Sections 3 and 4 below.

It is interesting to note for any % product of two B’s the sum of the coeffi-
cients is identically one. In fact, if Q denotes the operation of setting all y;
equal to 1

(2.4) OB, B,;} = ol — (1 — B, )1 - B,;)}
=1- Q{l - Br,r}Q{l - Bs,j} =1

since Q{1 — B, ,} = Xin_, (—1)*(%) = 0.

It is easily verified that the » product is both associative and commutative.
It should be noted that in general B, , = B, ; # B, i.;-

We now state and prove a lemma on certain monotonicities among these
Bonferroni functions which will help us to deduce (1.1) and (1.2) when the
indicator random variables are exchangeable.

LEMMA 2.1. For any fixed k = 2 with 1 < v < k and for any partition of the
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index set (1,2, - - -, k) into two parts of sizes 1 and k — 1, we have
(2.5) B_,,<B,+« Bv—l,k—l <B,= B, , fo" v odd,
(2.6) B, _,.zB,*B,_,,,=B,,=B,, for v even.

Proor. By direct substitution of (2.1) into the second expression of (2.5) we
have for any v

(2.7) . By xB,_ =B, + (=1 Zl<¢x1<-~~<¢x,,_l ay =" Kay_y

which proves the first inequality in each of (2.5) and (2.6). To prove the
second inequality in each of (2.3) and (2.4) we first note that if B, ; < B, ;
then B, « B, ; < B,, = B, ; since B,, < 1. It follows that we can iterate the

inequality implied by (2.7) for v odd and even obtaining, respectively,
(2'8) Bv—l,k = B1,1 * B»—l,k—l = Bz,z * Bv—l,k—z =0 = Bk,k = L,
(2'9) Bv—l,k = Bl,l * Bv—l,k—l = Bz,z * Bv—l,k—Z = e = Bk,k =0.

The remaining inequality in each of (2.5) and (2.6) is the well-known Bonferroni
bound; this completes the proof of the lemma. The first inequality of (2.9)
with v = 2, namely B, , = B, , * B, ,_,, is the inequality that appears in Kounias
[4]. Of course, this can be further improved, possibly by using B, ,, but for
the fixed degree 2 neither the Bonferroni bound B, , nor the improved bound
in (2.9), B, , = B, ,_,, are allowed, since both are of degree 3. More generally
we can write (2.7), (2.8), and (2.9) with v — 1 replaced by v — j (j =0, 1,- - -,
v) and then (2.8) will hold for v — j even and (2.9) will hold for v — j odd.

REMARK 2.1. We note from (2.8) and (2.9) that the degree increases by
steps of 1 as we approach B, , from either side. Hence, for any star product of
degree v < k (say, Z = B, , = B,_; ,_;) there is always another function or star
product (either B, , if j=k — 1 or B,,,;,,+B,_;,_,_, if j <k — 1) whose
degree is v + 1 and which is in the same string of inequalities as Z and hence
closer to B, ,.

3. Bounds for the probability of a union. In this section we derive lower and
upper bounds of the same degree v for the probability of a union of exchange-
able events A4, 4,, ---, 4,. These bqunds are expressed in terms of P; (j = 1,
2, -+, v) and we define the degree of either bound to be v if it is the largest
subscript to appear. It will be convenient to state most of our results in sym-
bolic form involving powers of P and 1 — P; this means that, after a formal
expansion in powers of P we replace P* by P, for all « and P, by 1.

Lemma 3.1. Symbolically, for any j < v < k
(-1)  E{B;;*B,_;, ;} =1 — (1 — Py 3rj (—1)i(*;9)P = L"), (say) .
Proor. Using the fact that
(3'2) Bu—j,k—j = Bk—j,k—j + (_ l)v—j+1 Zal<~~<ay_j+1 X“l U Xa,,_j+1 + -
+ (_ l)kﬁanl e X“k—j
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and the property (2.3), we find after taking expectations that we have symbolically
E{B; ; « B,_; -}

(3.3) = 1= (1= P (1= PY DS (= 1y ) P
=100 =P+ 1= PP{(1 — P)~ — Fd (= 1)'(*7) P}
=1— (1= Py 3uZ5 (— 1579 Pt

We use below the notation L, ; for L{*'; when there is no danger of confusion.

Our bounds of the vth degree for the probability of a union are succinctly
given in the following

THEOREM 1. For any fixed degree v < k
(34) max {Lo, Lz Tty Lye} é P{Uf:l A,&} é min {Ln Lsa M) Lyo} )
where v,(v,) is the largest even (odd) integer < v,

(3-5) L =X (= D)TOP + Diemn (D), P, 0=j=v<k),

@y = Nipzari-v ()(&25) and m = min{j, v — j}.
Proor. From (2.8) and (2.9) it follows that L,_; = E{B; ;«B,_; ,_;} is a
lower bound for v — j even and is an upper bound for v — j odd. The re-

mainder of the proof lies in the fact that the expression for L,_; in (3.5) can be
obtained by direct expansion of (3.1).

As a corollary to either Lemma 3.1 or Theorem 1 we write out one of our
bounds explicitly corresponding to j = 1.

CoOROLLARY. For any integer v < k
(3.6) L= 02 (=D 7 @P + (=) 7C)P,
which is a lower (upper) bound on P{{J*_, A;} for v odd (even).

Proor. This follows from (3.4) after expanding (3.1) with j = 1. []

ReEMARK 3.1. It follows from Remark 2.1 that for any one of our vth order
bounds with v < k there will always be a v + Ist order bound which is closer
to the true value; here we assume that the collection 4,, 4,, -- -, 4, remains
fixed (cf. Remark 5.2).

The result (3.6) gives the two new bounds in (1.1) and (1.2); the other two
bounds in (1.1) and (1.2) correspond to j = 0 in (3.1).

Since these bounds are especially useful for small values of v, we write them
explicitly for v = 2, 3, and 4. For degree v = 2 the bounds are for k > 2

3.7) L/®» =2P, — P,; L = kP, — (5P,; L® = kP, — (k — 1)P,.

For degree v = 3 the bounds are for k > 3

(3.8) L, =3P, — 3P, + P,; L® = kP, — (5P, + (*3%)P,
L™ = kP, — 2k — 3)P, + (k — 2)P,; L, = kP, — (5P, + (5)P,.
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For degree v = 4 the bounds are for k = 4
L% = 4P, — 6P, 4 4P, — P,;
L = kP, — ()P, + (k — 2)'P, — (*39)P,,
(3.9) LY = kP, — ()P, + ()P — ()Ps>
L = kP, — 3(k — 2)P, + (3k — 8)P, — (k — 3)P,,
L = kP, — ()P, + ()P, — (51 P, .
For k = v we note that all the v 4+ 1 bounds are identically the same; hence
the common value must be the correct value.

It follows from the property (2.4) that for any L, ; obtained as the expecta-
tion of a product in (3.1), i.e., with 0 < j < v, the sum of the coefficients is 1.
For j = 0 the sum is easily seen to be 1 — (—1)*(¥;'), which is again 1 for v = k.

4. Bounds for the probability of a k-fold intersection. In this section we obtain
bounds for the probability of a k-fold intersection of exchangeable events in
terms of j-fold intersections with I < j < v, where v is the fixed degree of our
bounds (v < k).

Let A, denote the complement of 4, (i = 1,2, ..., k) and B, ; with j < kand
1 < r < k denote the same Bonferroni function as in (2.1) with all 4, replaced
by 4;. We now prove a lemma corresponding to (3.1) and then obtain a result
similar to Theorem 1.

LemMMA 4.1. For any j < v < k all of our vth degree bounds can be written in
the form
(4.1) 1 —E{B;; B, ;. ;} = 52 (= D)) E2)P = MY, (say) .
Proor. Let O; = P{d, A, --- 4,}. From (3.1) we take complements and
write symbolically
(4.2) My = (1 = Q) 3iof (—1)'(*i)0f
where, after expanding in powers of §, we replace 0° by 0,. Using inclusion-
exclusion, we find that
(4.3) 0= Tia (=()P; = (1 — Py
where P; = P{4, A, --- A, ]} for any subset of size j as in previous sections
and P, = 1. It follows that

(44) (1 -0) = Zi (= DANO)* = Zize (=) ()1 — P)* = P7.
Hence (4.2) can be written as
(4.5) M2y = Zi2 (=D P Bizd (= D)
= T (= 1)) P
This reduces to (4.1) and proves the lemma if we set v — j — @ = y and replace

Pi by P,. It should be noted that the M», = M, _, (j=0,1, ..., v)are all of
degree v and we drop the superscript when there is no danger of confusion.
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Our bounds of the vth degree for the probability of a k-fold intersection are
succinctly given in the following

THEOREM 2. For any fixed degree v < k
(4.6)  max{M, M, ..., M,} < P{(\o, 4} < min{My, M,, .-, M, },
where M,_; is defined by (4.1).

Proor. Since L, ; = E{B, ; = B, ; ,_;} are bounds on P{{J, 4;} we obtain
from (3.4)
47)  max{l —L,1—L,-.-,1—L,}

= I — P{Ui'c=1ffi} = min{l *i‘oa 1 _Ez’ S| _Eve}'

Since U/{.‘://L =MNti4;and 1 — L, ; = M,_,, the result (4.6) follows.

COROLLARY. For the special case k — v =1 we can write symbolically all our
bounds in the form

(4.8) P51 — P+ = 0 B=0,1,...,1).
Proor. From (4.1) for k =v + 1 and 8 = v — j we have
(4.9) M/a — Zﬁ:o (—1)“@2‘)1)”_“ — pPv-# Z'?:O (_1)ﬂ+i(ﬂ-§1)Pi

— (_l)ﬂPv—ﬂ(l — P)ﬂ+1 + Pl

Hence for both odd and even
(4.10) (=) (M; — P,) = P=?(1 — P)F+t,
From (4.6) we know that the left side of (4.10) is nonnegative and this proves
the corollary. []

These bounds (4.6) are especially useful for small values of v and we there-
fore write them explicitly for v = 2, 3, and 4. For degree v = 2 the bounds
are for k > 2

M? = (k — 1)P, — (k — 2)P,,
(4.11) M"» =P,,
M, = (5P, — k(k — 2)P, + (*3").
For degree v = 3 the bounds are for k > 3
M® = (k — 2)P, — (k — 3)P,,
(4.12) M, = ()P, — (k — 3)(®)P, + k(*3)P, — (*3Y),
M® = P,,
M,® = (*39)Py — (k — 1)(k — 3)P, + (*3?)P, .
For degree v = 4 the bounds are for k > 4
MW = (k — 3)P, — (k — 4)P,,
M, = ()P, — (k — ()P, + (k — 1)(*3°)P, — (*39)P,,
(4.13) MY =P,,
M,® = ()P, — (k — 2)(k — 4)P; + (*3°)P,,
M = (P, — (k= HEPs + G)(3°)Py — k(5P + (7).
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For k = v all the v 4+ 1 bounds are identical and hence this must be the correct
value.

Remark 4.1. With the help of (4.8) and the Bonferroni inequality it can
easily be verified that for the bounds (3.7), (3.8), and (3.9) as well as for the
bounds (4.11), (4.12), and (4.13), the result in Remark 3.1 holds. Thus we
need not consider all the bounds of degree at most v, but can restrict our atten-
tion to bounds of degree exactly v.

5. Applications and numerical illustration. Suppose » balls are dropped inde-
pendently into k + 1 cells, k of which have a common single-trial cell prob-
ability p < 1/k (and one with probability 1 — kp). Let min (k, n) denote the
observed minimum of the k cells frequencies in this multinomial problem.
Then it is shown by Olkin and Sobel [5] that for r > 1 and n > kr

(5.1 P{min (k, n) = r} = I,*'(r, n),
where
(5.2) L®(rmy=— LT e s ek [T x,

I'*(nL'(n — kr + 1)

For n < kr we define 1,*(r, n) to be zero. Similarly we let max (k, n) denote
the observed maximum of the k cell frequencies. For k = 1 it reduces to the
incomplete beta function, 1,(r, n) = I (r,n — r 4 1).

If we let the set 4, denote the event that the frequency in the ith cell is at
least r, then [*., 4, denotes the event that max(k, n) = r and the event
A, A,, --- A, (for any collection of size j) denotes the event that min (j, n) =
r. Hence by using the inclusion-exclusion principle, it is easy to see that
(5.3) P{max (k,n) = r} = E{B, .} = Xt_, (= 1)*'(*)P{min (a, n) = r}

= 2h_ (=D GO (r, n) .
If n < kr then some of the terms on the right side of (5.3) will vanish so that
we need only sum up to [n/r], the integer part of n/r. The distribution of
max (k, n) can be obtained from (5.3) using tables for 1 (r, n) (« < k). How-
ever for higher values of k some of these tables are not available and it becomes
useful to obtain bounds for the left side of (5.3), preferably of the same degree.
Thus we utilize the results of Sections 3 and 4 as illustrated below.

Suppose, for example, we wish to find lower and upper bounds of degree
v = 3 for P{max(k,n) = r} when k=10,r=2,n=238, and p = ;. Using
(3.8) for the upper bound we obtain .98715 since

(5.4) E(B, ,,} = .98715; E{B,,x B 4 > 1.
For the lower bound we use (3.8) or (1.1) and obtain
(5.5) E{B,, * B,,} = 10P, — 45P, + 36P, = .85132.

The exact value, using (5.3), is .98186.
For many values of k, r, and n it should be noted that “degeneracies” will
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enter into our problem in different possible ways. For example, if n > kr then
(5.6) P{max (k,n) = r} = E{B, ,} =1,

since for any distribution of z balls in k cells the maximum frequency is at least
[#/k] = r. Another type of “degeneracy” is when E{B, ,} already gives the exact

answer. For example, if [n/r] = v then 1, (r,n) = 0 for j > v and hence we
see from (5.3) that

57 P{max (k,n) = r} = E{B, ,} = E(B, }

so that the vth degree bounds give exact answers. In this sense the bounds in
(1.1) and (1.2) cannot be further sharpened. In the above numerical illustra-
tion [n/r] = 4 = v and hence the 4th degree bounds will be exact.

To illustrate numerically the third degree (v = 3) bounds for the probability
of an intersection in (4.12), consider the multinomial example with &k = 10, r =
2, n =40 and p = .09. In this example the exact value of P{min(k, n) = r} is

(5.8) Py, = 139(2, 40) = ,24434 .

From (4.12) the lower bound is max (.02826, .23809) = .23809 and the upper
bound is min (.29487, .68801) = .29487.

We can use the same example with a higher v to see if the bounds get closer.
For v = 4 from (4.13) the lower bound is max (.09040, .24070) = .24070 and
the upper bound is min (.60264, .27682, .24456) = .24456. Thus in our example
we note that both bounds are closer to the exact value (5.8) for v = 4 than for
v = 3.

Another application of these bounds is to the case of k equi-correlated
multivariate normal chance variables X;, where we can assume that E{X;} = 0
and *(X;)) =1 (= 1,2, ---,k). Let 4; denote the event that X, < & so that

i, A; is the event that max,_,_, X; < h and |JL, 4, is the event that
min,_,;_, X; < h. Again we have the problems of finding bounds of common
degree v on (1) the cdf of min,_;_, X; in terms of P, = P (h) = the cdf of
max, ., X; for a = 1,2, ...,y and on (2) the cdf of max,_,_, X; in terms of
the same quantities P, (A).

For Problem 1 we show below that existing tables can be used to obtain the
exact answer if the common correlation p between X; and X, (for i + j) is
nonnegative. For o = 0, if we let X; = Y,(1 — o)} — Yot (i=1,2,...,k)
where the Y; are independent standardized normal, then it is easily seen that

)

o @e(X0t+h o —
(5.9) P(h) = (= @ <(1 )g) AD(x)  (a=1,2, -, k).
Similarly, the cdf of H = min,,, X; is easily seen to be
xpt +
(5.10) G(h) = 1 — §=. [ ((1 )Q] dD(x)
— oo k xto h
1§ 0 <m> AD(x) .
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To illustrate the use of the bounds consider the case p = 4, A= land k = 5.
The exact answers of problems 1 and 2 are .98506 and .58608, respectively.
For problem 1 the lower and upper bounds for degree v = 4 from (3.9) are
max (.97859, .97461, .39899) = .97859 and min (.99095, 1.02569) = .99095, re-
spectively. For problem 2 the lower and upper bounds for degree v = 4 from
(4.13) are max(.57562, .57959) = .57959 and min (.62670, .59196, .60101) =
.59196, respectively.

REMARK 5.1. In the interchangeable case the Chung-Erdds lower bound [1]
for the probability of a union, the matrix inequality of Whittle [6] and Gallot
[3] and the extension to the singular case by Kounias [4] all coincide and can
be written in the form

kP2

where P, = P{4;} and P, = P{4; N A;} foralli, j. As pointed out by the referee
this bound (5.11), which depends only on P, and P,, is better than our second
degree (v = 2) lower bounds given in (3.7) above when (k — 1)P, < (k — 2)P, <
(k — 1)(k — 2)P,. However, it should be noted that (5.11) has (as yet) no
generalization to higher degree and for sufficiently high v (< k) our bounds
will improve on (5.11). The reader is referred to the paper by Kounias [3] for
discussion of still another improvement on (5.11).

REMARK 5.2. It has been noted by E. Kounias that one can further improve
our lower bounds when v < k by considering all possible subcollections of the
interchangeable events 4,, 4,,- - -, 4,. A similar improvement may be possible
for the upper bound if we are allowed to adjoin events to our collection to
form a larger set of interchangeable events. For example, for the lower bound
in Theorem 1 our result is improved by considering a subcollection of size s
where v < s < k and replacing the left side of (3.4) by

(5.12) max, . ., max{L, ; L, ; - -; LVM} =< P{Uso, 4} £ P{UE 4}
where L, is defined as in (3.5) in terms of the s events 4,, 4,, - - -, 4,. For the
left side of (1.1) with v = 3 this gives

(5.13) max, g, ()P, — Q)P; + (3P} = PUL, 43} -

From (5.13) with k = 5 we find that when

(5.14) Pl_t?’_}_)i<p2<fif%_2_1)_s,

holds, s = 4 gives a larger (and hence better) result in (5.13) than s = 3 or s =
5, namely 4P, — 6P, 4+ 3P,. Similar modifications can be made to the bounds
in Section 4 (and possibly in the illustrations of Section 5).

It is not known whether our bounds or the improved bounds resulting from
the above modification are the best linear bounds in any sense; this is an inter-
esting question that needs further research.
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REMARK 5.3. It should be emphasized that our bounds have not been shown in
any setting more general than exchangeable events. Actually many interesting
and useful applications for such bounds already appear in this setting. In par-
ticular, a simple-minded replacement of (¥)P, by S, (= the sum of the prob-
abilities of all possible intersections of the 4; taken « at a time) in our bounds}
is not justified since our symbolic methods do make use of exchangeablility.
(e.g., in the proof of Lemma 3.1).

Acknowiedgment. The authors wish to thank E. Kounias for several useful
comments, especially those related to Remark 5.2.
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