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CONVERGENCE OF QUANTILE AND SPACINGS
PROCESSES WITH APPLICATIONS'

By GALEN R. SHORACK

University of Washington and
Mathematisch Centrum

The quantile process was shown by Bickel to converge in the uniform
metric on intervals [a, b] with 0 < a < b < 1. By introducing appropriate
new supremum metrics, this result is extended to allof (0, 1). Hence a natu-
ral process of ordered spacings from the uniform distribution converges in
certain supremum metrics. This is used to establish the limiting normality
of a large family of statistics based on ordered spacings, which can be used
in testing for exponentiality. The non-null case is also considered.

I. QUANTILES

1. Introduction. Let X, ---, X, be a random sample from a df F and let |,
denote the empirical df. We wish to study the quantile process on (0, I) de-
fined as

n(F,” — F7).

The appendix of Shorack (1972) should be regarded as a preliminary part of
this paper. (It contains a number of results from Pyke and Shorack (1968) in
a form we will find convenient.) Theorems and equations from that appendix
will be referred to routinely as Theorem Al and (A1) respectively, etc. In par-
ticular, special independent Uniform (0, 1) rv’s &, - - -, &, are defined in Section
Al. These rv’s have empirical df I',, and quantile process V, defined in (A2).
Also V, converges to a special Brownian bridge ¥ in the sense of (A4).

The quantile process has the same finite dimensional distributions as does the
process on (0, 1) defined as

m[FYT,™) — F'].
We will now study the convergence of the process

(1) Qn = n%[g(l—‘n_l) - g]

on (0, 1). The functions g considered below are quite general continuous func-
tions. The most interesting case of course is when g = F~' for some df F, but
we do not require this. However, we will refer to Q, as the quantile process.
Theorem 1 below is the main theorem of Part I. However when the more
difficult Condition 1 can be verified, Corollary 1 gives a stronger conclusion.
Corollary 2 allows ¢’ to have discontinuities (it should be regarded as a useful
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technique, rather than as a useful result). Corollary 3 allows g to depend on n.
We first obtain asymptotic normality of the quantiles in Proposition 1 (which
has been proved many times). See Bickel (1967) for Proposition 2.

We comment briefly now on Part IT below. The ordered spacings of a renewal
process are closely related to the obvious set of order statistics. In Section 6 we
will introduce a problem for this kind of spacings, and use Theorem 1 in our
solution of it. (Some results of Shorack (1972) could also have been made to
depend on Theorem 1.)

Now for differentiable functions g on (0, 1)

(2) Qn = AnVn where An = [g(rn_l) - g]/(Fn_l - 1)
is a difference quotient defined (for a.e. fixed w) by left continuity at the most

n values of t where I'’ = = I. We define the Q process at all points in (0, 1)
where g’ exists by

(3) Q=gV.
Note that the covariance function of Q is
Ky(s, ) = (s At — st)g'(5)g'(1) .
2. The quantiles. For 0 < p < 1 let X, denote the ([np] + 1)th order statis-
tic, where [ ] denotes the greatest integer function. Note that X, = g(§,,) =
g(T',~'(p)), where in this section we set g = F~1.

PRrROPOSITION 1. (Asymptotic normality of the sample quantiles). Suppose 0 <
P < oo < p. < 1and g'(p,) exists for | < k < k. Then the random vector

(M Xy, = 9(P1))s - - -5 M X,y — 9(P)))
is asymptotically multivariate normal with mean vector 0 and covariance matrix ||o ;||
given by
0 = Pl = P9 (p)o'(pe)  for 1=j<k=x.
Proofr. Supposer = 1. Then n}(X,, — g(p)) =... 4.(p)V.(p). Now V,(p)—,
V(p) and A,(p) —,d'(p) since T',"(p) —, p and ¢'(p) exists. Thus ni(X,, —
9(P)) —.s 9 (p)V(p). For £ > 1 we simply observe that a random vector con-
verges a.s. if and only if each of its coordinates does. The vector (¢'(p,)V(py), - - -5
g'(p)V(p,)) clearly has the stated normal distribution. []

3. The main theorem on convergence of the quantile process.

LemMmA 1. If g has a nonzero continuous derivative g’ on (0, 1), then for all ¢ > 0

05g(Ans 9') = SUpP,.cici_. |48 — 9'(D)|/]9° ()] —. 0 as n— oo .

Proor. By the mean value theorem |A4,(f) — g'()| equals |g’(s) — ¢’(¢)| for some

s between rand I',~'(t). For nexceeding some n, , we have ¢/2 < T',-(1) < 1 —

ef2foralle =t <1 —e¢. Alsop(l',7, 1) —,0and ¢’ is uniformly continuous

on [¢/2,1 — ¢/2]. Hence sup,,,_, |4,(t) — ¢'(t)] —, 0. Finally, |¢’| is bounded
away from Oon [e, 1 —¢]. [
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PROPOSITION 2. If g has a continuous derivative on [a,B] for 0 <a < B <1,
then for any a < a < b < f we have

SUP, << [Qa(1) — Q(1) —. 0 as n— oo .

ProoF. Write Q, — Q = (4, — ¢)V, + ¢'(V, — V); and apply Lemma I
above and Remark A5 and (A4). [J

ConDITION 0. ¢ has a nonzero continuous derivative g’ on (0, 1). Also |¢'| <

R on (0, 1) where R is a reproducing u-shaped (increasing) function of Defini-
tion A3 for which

C(OR()/9' (1) — 0 as t—0 or 1 (as r—1).

(See Lemma A4 for the definition of { in terms of g. For g = [I(1 — I)]*~° for
some § > 0, we could take { = [/(1 — I)]’"%.)

THEOREM 1 (Convergence of the quantile process in supremum metrics). Suppose
Condition O holds for a particular q in the class & of Definition Al. Then
04151(Qn*> Q) —, 0 as n — co; where * restricts functions on 0, 1) to[1/n, 1 — 1/n]
in the sense of Definition A2.

ProOF. Let Condition 0 hold with Ru-shaped. Using the triangle inequality

pqu’l(Qn*’ Q) é (an + M)qu( Vn*s V) + aanE(V’ O) = Op(l) + anop(l)
where a, = p,,,:(A4,*, ¢9') and M = p({,0). From the mean value theorem
|4,(5) — g'(1)] = |g'(s) — ¢'(1)] < R(s) + R(t) for some s between ¢ and I',7'().
Thus on the set S,, of Lemma A3 we have [4,* — ¢'| = 2R, < 2M;R with
B = B.. Thus for ¢ > 0 and some d = 4, > 0 sufficiently small we have from
the limit condition of Condition 0 that

X(Sn,e)an é € + p?g’l(An’ g’)p(C’ 0) ;

this can for large n be made (by Lemma 1) to exceed 2¢ with probability not
exceeding 1 — ¢. Thus a, —, 0.
The proof for R increasing is analogous. []

ExaMPLE 1. Let F(x) = 1 — e for x = 0. Then g = F~' = —log(l — 1)
and ¢’ = (1 — I)~'. Condition 0 holds for every ¢ in & with R = (1 —I)7".
Thus for all ¢ in & '

Poa-n(Q,* Q) —,0 as n—oo.

Note also that * need only restrict functions on (0, 1) to [1/n, 1) in this example.

4. Some variations on the main theorem. Condition 1 below is in the spirit of
Chernoff, et al. (1967).

ConDITION 1. ¢ has nonzero continuous derivative on (0, 1). There exists a
6 > 0 such that for all positive § in some neighborhood of 0 there exists 0 <
M, < oo such that |g'(s)/g'(r)] < M, whenever ft = s =<1+ B and ¢+ < 6 and
whenever (1 — ) <1 —-s< (1 —¢f+ pandt < 0.
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CoroLLARY 1. If Condition 1 holds, then for all q in & we have p,,.(Q,*, Q) —,

0asn— oo.
Proor. Just work Remark A4 into the proof of Theorem 1. []

CoNDITION 2. g is absolutely continuous on (0, 1) and g’ exists a.e. |v|. Also
l9'l < Ra.e. with respect to Lebesgue measure on (0, 1) where R is a reproducing
u-shaped (or increasing) function for which {} gRd|v| < oo for some g in &.

COROLLARY 2 (Convergence of the quantile process in integral metrics). If Con-
dition 2 holds, then ||Q,* — Q||, —,0 as n — oo for || ||, as defined in Section A2.

Proor. Basically similar to the proof of Theorem 1. The triangle inequality
reduces the problem to one of showing {; ¢|4,* — ¢'|d|v| —,0. Pointwise con-
vergence of the integrand for every fixed w is trivial. Note that for the set S, ,
of Lemma A3

1(Sn 4> — ¢’ = 2x(S, J(R vV R(T,™) < 2R; = 2MR
by writing A, = (T« g'(s) ds/(T',™* — I). 0
5. Uniformity. We next take up a theorem aimed particularly at letting g, =
F,~*where F, is a sequence of df’s that converges to a fixed F,. We now redefine
so that
0, = ntg, [T, — g,] and Q=g'V.
ConpITION 3. g, has a nonzero continuous derivative g,” on (0, 1). Each g,

has a continuous derivative g,’ on (0, 1). Also|g,’| £ Ron (0, 1) for all n where
R is a reproducing u-shaped (increasing) function for which

C(HR()/19/ (1) — 0 as t—0 or 1 (as t—1).

For any ¢ > 0 the functions g, restricted to [¢, 1 — ¢] form a uniformly equi-
continuous family for which sup,_,.,_. |9,.(f) — go(t)] > 0 as n — co.

CoroLLARY 3. If Condition 3 holds for particular q in &, then p,,.(Q,*, Q) —,
0asn— co.

Proor. This is but a minor variation on the proof of Theorem 1. []

EXAMPLE 2. Let F,(x) = 1 — exp{—x"*’x} for x = 0 where #, —0asn— oo.
Let Fo(x) = 1 — e7® for x = 0. This is the case of Weibull df’s converging to
the exponential. Now g, = [—log(l — I)]V**%») and g, = —log(l — I). Let
R =11 — I)~"+% for any 6 > 0. (/=%(1 — I)~! suffices for R when 6, > 0
and (1 — 7)~4+9 suffices when ¢, < 0.) We conclude from Corollary 3 that
04(Q,* Q) —,0 as n— oo for any ¢ = I*-%(1 — I)~#=% with 6 > 0. We may
let * restrict functions on (0, 1) to [1/n, 1) in this conclusion.

II. SPACINGS

6. A problem. Let X, -.., X be independent rv’s having df F with F(0) = 0
and having empirical df v,. Letg = F~*. Letn = E(X) > Oand let Var[X] < oo.
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i=1

D,, denote the ordered values. Note that D,; = X,;/X where 0 < X,
X,, are the order statistics.

If F is an exponential df, then D,/n, - - ., D, /nare distributed as the n spacings
from a sample of size n — 1 from the Uniform (0, 1) distribution.

A standard statistical problem is to test the hypothesis that a given stochastic
process is a Poisson process against the alternative that it is some other renewal
process. Many statistics proposed for this problem are of the form

Let D, = X;/X for 1 <i < nwhere X =n'Y7, X;andlet0 < D,

IA 1A
A IA

Tn =n"! Z;L cnih(Dni) 5

where h is a specified function and where the c,;’s form a triangular array of
known constants. The null hypothesis of course specifies an exponential df F.

We will establish the asymptotic normality of T, (under regularity) in Theo-
rem 6 as a consequence of the convergence in Theorem 3 of a certain process
H, based on the D,;’s. The null hypothesis will receive special attention in
Theorems 2 and 5. Theorem 4 (first proved by Pyke (1967)) and Corollary 4
are digressions.

Related results are contained in Darling (1953), Pyke (1967), Bickel and
Doksum (1969) and Bickel (1969). See Example 5 below in this regard.

7. The spacings processes. The natural ordered spacings process or inverse
spacings process is defined on [0, 1] by

4 H,(t) = n*[D,; — g(1)[7]
for i — 1I)/n <t <i/nand 1 <i < nwith H,(0) = 0. Note that

H, = n'[g(T',™)/X — g/1] on (0,1).
For the Brownian bridge U = — V' of Section Al we define
(5) H= —gUpy— Zg|7’ on (0, 1);
where

Z = —\xUWF)dl
isa N0, Var[X]) rv having
Cov[Z,U(t)] = —§5 [t A F(x) — tF(x)] dx.

In case F(x) =1 — e ® for x = 0, we give the processes H,, H the special
labels D,, D and call D, the ordered uniform spacings process. Thus

(6) D= —U[l —1I)+ Zlog(1 —I).

(Note that for exponential F, the processes H, and H do not depend on 7.) Note
that D is a normal process on [0, 1) having continuous sample paths, mean value
function 0 and covariance function

Kp(s, 1) = s/(1 — s) — log(1 — s)log(1 — 1)
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for 0 < s <t < 1. (There will be no need to confuse this process D, with the
spacing D,.)

Less important for our purposes is the empirical spacings process

() G,(y) = n[F(Xy) — F(1y)] for 0=y < oo.
Note that n@,(Xy) equals the number of D;’s not exceeding y. Define
(8) G(y) = UF@y) + £3f(0y) for 0=y <o

where [ is the density function of F.

THEOREM 2 (Convergence of the ordered uniform spacings process in supremum
metrics). Let F be an exponential df. Then for all g in <’ we have

Poa-n(Dy*s D) —,0 as n— oo
where * restricts functions on [0, 1) to [1/n, 1).

THEOREM 3 (Convergence of the ordered spacings process in supremum metrics).
Suppose g = F~" is such that the conclusion of Theorem 1 holds. Suppose g/qg9’ is a
bounded function that approaches 0 as t approaches 0 or 1. Suppose $ooq(F)dl < co.
Then for this particular q we have

p”,(Hn*,H)—>p0 as n— oo,
where * restricts functions on (0, 1) to [1/n, 1 — 1/n].

ProoFs. Consider first Theorem 3. Let Z, = n*(X — 7). Then

©) H,=(Q,— Zg/n/X and  H=(Q— 29/
Thus
Our(H 5 H) < 0,0, Q)fF + 0,,(Q, O)1/X — 1/1]

+ 04(9*, O)Z, — ZIXn + p,(9% ONZI1/X = 111/

+ pqg’(g’ g*)lzl/”2 .
Now p,,(Q,*, Q) = 0,(1), X >, 7> 0,0,(2,0) = 0,1), X -, 1/n,1Z] =
0,(1), p,,(9,0) < co and p,,(g,9*) — 0. To establish that o ,.(H,*, H) —,0,
it thus suffices to show that Z, —, Z. It was communicated to me by R. Pyke
that Z, = —nt \¢ (F, — F)dl = —\7 U,(F)dl. Thus

1Z, — Z| = pr(Un(F), U(F)) § q(F) dl

Consider Theorem 2 next. The hypotheses of Theorem 3 hold; and it is
a trivial matter to change the definition of *. Note that {7 ¢(F)dl =
§1[q/(1 — I)]dI for exponential F. Thus p,,,_,(D,*, D) —, 0 for all ¢ in & for

which §![¢/(1 — I)]dl < co. But any ¢ in < is clearly bounded below by a
member of < for which this integral is finite. []

COROLLARY 4 (Convergence of the ordered spacings process in integral metrics).
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Suppose g = F~1is such that the conclusion of Corollary 2 holds. Suppose ||g||, <
oo and ||q9'||, < oo for some q in &. Then

||H,* — H|[, —,0 as n—s oo

where * restricts functions on (0, 1) to [1/n, 1 — 1/n].

Proor. Simply replace p,, by || ||, in the first inequality in the proof of
Theorem 3. []

REMARK 1. Itis well knownthata,; = E(D,;)= Ni(n—j+ 1)'for1<i<Zn
when F is any exponential df. Let
(10) D, = n[—log(1 — T',7Y)/X — a,] on [0, 1)
where a,(1) = a,; for (i — 1)/n < t <i/nand 1 < i< n and q,(0) = 0. Then
D, may replace D, in Theorem 2.

Proor. It suffices to show that p,,(a,, g) — O for any ¢ in & where g =
—log(l — 7). Now

g(i/(n + 1)) = §ati, x7dx < a, < §ith, x7Hdx = g(if(n + 3))
and g((i — 1)/n) < g(t) < g(i/n) for (i — 1)/n < t Zi[n. Since (i — 1)/n < i[(n +
1) < if(n + %) < i/n we have for (i — 1)/n <'s, t < i/n that
la,(t) — 9(0)] = lg((i — D/n) — g(ifm)] = g'(s)/n = (n — )75

and thus (1 — f)|a,(t) — g(t)] < [1 — (i — D)/n]j(n —i) < 2/nforl <i<n—1
This yields the claim. []

ExaMpLE 3. In testing for exponentiality, the standard exponential probability
plot suggests a statistic whose null distribution may be represented as

Z;L (Dni/ani - 1)2 - SéDn/an)z d] *
An easy application of Theorem 2 and Remark 1 shows that this statistic is
asymptotically distributed as §; (D/g)* .

ExaMPLE 4 (Linear combinations of ordered uniform spacings). Let F(x) =
1 — e~= for x = 0 so that g = —log(l — /) and consider
(11) Tn:n_l Z,{LcniDni'
We suppose that there exist functions C, on (0, 1) and a signed measure v on
(0, 1) such that
Cusfn = §imyy, G, dv for 1 <i<n.

Suppose also that
(i) For all n sufficiently large we have |C,| = ¢ a.e. |v| where §;[q/(1 —
I)]¢ d|v| < oo for some ¢ in &,

(ii) €y = o(n?),
(iiiy C, — Ca.e. |v| as n — oo for some function C on (0, 1) and
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(iv) nt §3(C,* — C)gdv — 0 as n — co where * restricts functions on [0, 1)
to [1/n, 1).
Then
ni(T,, — 1) —q N(O, o%)
with ¢ = {} Cg dv and ¢* = ] \} K (s, t)C(5)C(t) dv(s) dv(?) finite.

Proor. This is similar to Theorem 2 of [9]. It is a corollary to Theorem 5
below; or an easy consequence of Theorem 2 by writing n¥(T,, — p) = T,* +
7. + 0, where T,* = \{C, D, *dv, y, = ntc,, D, and 0, = n* {} (C,* — C)g dv
and considering |T,* — {;CD dv|. (As pointed out to me by P. Bickel, asymptotic
normality of T, can also be established by writing T, as a linear combination of
the i.i.d. normalized spacings |(n — i + 1)(X,; — X, ,_,)| divided by X.)

ExaMmpPLE 4a. Replace c,; in (11) by the a,; of Remark 1. Jackson (1967)

proposed this statistic to test for exponentiality. Its null distribution follows
easily from Example 4 with C, = a,, C = g and dv = dlI.

THEOREM 4 (Convergence of the empirical spacings process). Let F be an exponen-

tial df. Then
0(G,, G)—,0 as n— oo .

Proor. Weak convergence of G, to G for exponential F was proved in Pyke

(1965). We write
G, = U,FXI) + A,1(Z, — Z) + A,IZ
with A, = [F(XI) — F(yI)]/(X¥ — p)I. Thus
0(G., G) = p(U(F(XI)), U(F(y1)))
+ 12, — Zlo(4,1, 0) + |Z]o(A4,1, f(nD)]) -

Now po(U,(F(XI)), U(F(yI))) —,.. 0 for any continuous F having positive mean
since then o(F(XI), F(yI)) —,. 0. Now |Z, — Z| —,0 whenever {7 q(F)dl <
oo by the proof of Theorem 3. The mean value theorem easily handles the two
terms involving 4, when F is exponential. []

REMARK 2. The conclusion of Theorem 4 holds for many nonexponential F
also. The additional conditions needed are {7 g(F)dl < oo, p(A4,1,0) = O,(1)
and p(A4,1, f(nI)I) = o,(1). It seems better to check these last two in particular
cases using the mean value theorem than to give unnatural sufficient conditions.

8. Functions of ordered uniform spacings. In this section we prove asymptotic
normality of

(12) Tn - n_l ?=1 cnih(Dni) 5

where £ is a fixed known function, the ¢,;’s form a triangular array of known
constants and D,; = X,,;/X where 0 < X,; < ... < X,, are the order statistics
of a sample X, ..., X, of size n from the df F(x) = 1 — e*forx > 0. Let F,
denote the empirical df of the sample. Let g = —log(l1 — 1) = F~.
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As in Example 4 and [9], we suppose throughout this section that there exist
functions C, on (0, 1) and a signed measure v on (0, 1) such that

(13) cifn = "y, C, dv for 1 <i<n.
Thus

(14) T, = §s h(F,"/X)C, dv .

Let C denote a fixed measurable function on (0, 1) and let

(15) r = S h(9)C dv

and

(16) o' = §o §o Kp(s, DR (9(s)R'(9(0)C(5)C(2) du(s) du(1)

provided these exist. Let * restrict functions on [0, 1) to [1/n, 1). If C, * replaces
C, in (15) and (16) the resulting quantities will be called s, and ¢,”.
Now

where
T,* =\ D,*4,C, dv,

A, = [A(F,7X) — k@))[F, X — g1,
rn = n_k cnl h(Dnl)
and 0, = n* {3 (C,* — C)h(g) dv.
(Left continuity is used to define 4, at the most finite number of points, for

each fixed w, at which it might otherwise be undefined.)

(F1) (i) Foralllarge n we have |C,| < ¢ a.e. |v| where §} g|7'(9)g’|¢ d]v| < oo
for some ¢ in &.
(ii) §59|(4,* — #'(9))g’'|¢ d|v] —, 0 as n — oo, for this same g.
(F2) y,—,0asn— co.
(F3) C, > Ca.c. |v|as n— oo.
(F4) nt §{(C,* — C)h(g)dv — 0 as n — oo.
(F1,2) h has a continuous derivativ; k" on (0, co0); and
|h9) < M"=i + Myl + M,  on (0, 00) for i =0, 1
for some r, > 0,0 < r, < | and M, M,, M; = 0. Also for all large n we have
|IC.| £ ¢ a.e. |v| where
$0g[Milg|"™! + Mulg|™7" + Mylg’|¢ d]v| < oo
for some ¢ in . Finally c,, = o(n**) where
a= —r, if M,>0
0 if M,=0 but M; >0
r if M,=M,=0 but M, >0.
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THEOREM 5 (Asymptotic normality of linear combinations of functions of ordered
uniform spacings). Condition (F1, 2) implies (F1) and (F2). If (F1), (F2), (F3)
and (F4) hold, then

n¥(T, — p) —, N(O, ¢?)
with 1 of (15) and o* of (16) finite. If only (F1) and (F2) hold, then
ni(Tn - Aun)/O‘n —d N(O’ 1)
provided lim inf,__ 4,2 > 0.

Proor. We will prove that n¥(T, — p) —, N(0, ¢%). Let T = {} DK'(g)C dv,
which is a N(0, ¢?) rv by (F1)(i). Also

I, =T = |G [(D.* — DY)(A> — H(9) + K (9)C, + D(4,* — K(9))C,
+ DH(g)(C, — C)]db|
= 040(D,", D) §o 9l(A,* — H'(9))9'|¢ d|¥|

+ Yo qlH(@)9'1¢ dlv]] + 0,,(D, 0) §5 (A" — #(9))g'|¢ d]x|

+ 040(D, 0) §5 911" (9)9'] |IC, — C|d]] .
Now 0,,,(D,*, D) = 0,(1), 0,,(D,0) = O,(1) and §; q|h'(9)¢’||C, — C| d|v| —,0
by (F1)(i), (F3) and the dominated convergence theorem. Thus 7,* — T under
(FI) and (F3). Referring to (17), (F2) and (F4) show that n¥(T, — p) —, T.

The proof for n¥(T, — p,)/a, is even easier. Note that we can divide by g,
without destroying —, since ¢, is bounded away from 0.

We now show that (F1, 2) implies (F2). As in the basis for Remark 1 we
have E(D;,) = E(X;,)/E(X") and E(X;,) = E(X")/n". Now 237 X; is a Chi-square
(2n) rv; so it is easy to check that E(X") — 1. Thus E(Dj,)n" — E(X") for any r
such that E(X7) < oo (i.e. such that » > —1). Thus for some finite M,

P, = €) = P(|A(D,,)| = endlc,,) < (c,1fent)E(|h(D,,)])
= (Cu/en®)[MLE(DLY) + M,E(D,*) + M;]
< M.c,,n HM,n="1 + M,n" + M,].

e nl

We now show that (F1, 2) implies (F1). Now (F1)(i) is trivially true. Since
h' exists a.e. |v|, we have for every fixed w that the difference quotient 4,
converges to A'(g) a.e. [v|. We would thus like, for every fixed », to apply the
dominated convergence theorem to claim (F1)(ii). For fixed @ we will in fact
be able to bound (S, .)|4,*| (see Lemma A3 for S, ,) by M, R(g) for some con-
stant M, where R = M, I"~' + M,[-"~* + M,. Thus

2(Sn,) o gl 4 — ()9l d|v| -, 0 as n— oo

follows from the dominated convergence theorem; from which (F1)(ii) easily
follows.
It thus remains only to bound y(S, ,)|4,* by M,R(g) for each fixed . Now

| 4,] = 1§52 B (y) dyl/|g(T, ")/ X — g]
< R(g) v R(g(T",7)/X) < M,[R(9) Vv R(g(T,7))] .
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It thus suffices if we bound x(S, .)R(9(T',~"))* by M,R(g) for 0 < t < dand 1 —
0 < 1 < 1 for some fixed d > 0 (bounds for § < 7 < 1 — § are trivial). In fact
we need only consider 0 < ¢t < 6 when Case 1: M, > 0 or M, > 0 with r, < 1;
and we need only consider 1 — d < ¢ < 1 when Case 2: M, > 0and r, > 1.

Case 1. Since I' ;7' > 8,7 on §,, by Lemma A3, we have for 0 < ¢ < 4 that
2Sa IR(G(T,N))* < R(9(B.1)) = M.R(9) ;

the second step holds since for any given 0 < 8, d < 1 we can find a small
constant M = M, ; > 0 for which

(18) 9(Bt) = My(r) for 0<r<d.

(For exponential F statement (18) is equivalent to finding a small M > 0 such
that 1 — Br < (1 — )" for 0 < 1 < 4.)

Case 2. Since I',7' <1 — 8(1 — 1) on S,, by Lemma A3, we have for
I —0 <r< 1 that

1(SwR(OT,7))* = R(g(1 — B(1 — 1)) = M.R(g) ;

the second step holds since for any given 0 < $, § < 1 we can find a large con-
stant M = M, ; > 0 for which

(19) g(1 — B(l — 1)) = My(r) for 1 —d<rt<1.

(For exponential F statement (19) is equivalent to finding a large M > 0 such
that (1 — ) = (1 — ¥ forl —d<r< 1)

(In Theorem 6 when we consider nonexponential df’s, we will assume (18)
and (19) in our hypotheses.) []

RemARK 3. If ¢,;, = 1 for all i and n, then (12) reduces to
(20) T,=n"1Y1hD,,).
Such statistics were considered by Darling (1953) and Pyke (1965).

ExaMpLE 5. If A(x) equals x™ for r > —1, |x — 1|" for r = 1, log x or the
indicator function of and interval, then T, of (20) is asymptotically normal by
Theorem 5. These include the specific 4’s yielding asymptotic normality that
were considered by Darling (1953). Also note that Theorem 5 allows more
general c,;’s in these examples. However, Theorem 5 as applied to (20) itself
is not as strong as the theorem contained in the discussion between Kingman
and Pyke in [7].

ExAMPLE 5a. If A(x) = x~7, then the hypotheses of Theorem § fail for (20).
(This must necessarily happen, since this rv was shown by Darling (1953) to
have a nonnormal limit.)

9. Functions of ordered uniform spacings. In this section we remark on the
statistic T, of (12) for more general F. Let y, = n~*[c,,A(D,,) + ¢,.k(D,,)] and
let * restrict functions on (0, 1) to [1/n, 1 — 1/n]. Then (17) still holds.
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THEOREM 6. Suppose (F1, 2), (F2), (F3) and (F4) hold with the new definitions
of v, and *. Suppose g has a continuous derivative g' and (18) and (19) hold. Sup-
pose p,,(H,*, H) —,0 as n — oo for some q in &; and suppose g/q9’ is a bounded

function. Then
n¥(T, — p1) =, N(O, ¢*)

where 11 = § h(g)C dv and
ot = §o §o Kuls, DR (9())'(9(0)C(s)C(1) du(s) do(1)
are finite.

Proor. Under these conditions the proof of Theorem 5 goes through without
change for general g. []

REMARK 4. It is clear that minor variations in this approach allow us to let
F depend on n. The key part of a proof is Corollary 3. More general theorems
(at a considerable increase in complexity of notation and some increase in com-
plexity of thought) can be based on a version of Corollary 4 using || ||,
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