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INEQUALITIES FOR THE LAW OF LARGE NUMBERS

By Tuomas G. KurTz
Universtiy of Wisconsin
Let X1, Xz, X;, - -+ be independent random variables and ai, a2, as, - - -
positive real numbers. Define

F(t) = supe P{| Xi| > 1}

and
Sm = L1 ar Xk .

Inequalities of the form

P{supm |Sn| > 0} = C T, §§¢/)F(ujar) du
are given for a large class of functions ¢, as well as ihequalities of a some-
what different form that are appropriate for considering exponential con-

vergence rates. Examples of how the inequalities can be used to prove rate
theorems are also given.

1. Introduction. Let X, X,, X;, ... be independent random variables with
E(X,) =0. Let S; = 0 and
Sp = 2k, Xy mz=1,

where the a,’s are positive real numbers. We are interested in giving bounds on
P{sup,,., |S,| > 0} in terms of the sequence {a,} and

F(t) = sup, P{|X,| > 1).
We will always assume lim,_, F(f) = 0.

In Section 2, we obtain the basic bounds using inequalities from martingale
theory; in Section 3 we combine these bounds with truncation; and in Section 4
we indicate how some particular results can be obtained using the inequalities.

The notation used for the most part follows that used by Hanson and Franck [1].

The best known result of the type we are interested in is Kolmogorov’s In-
equality which is essentially (2.3) with ¢(x) = #*. Related inequalities have been
obtained using estimates of E(|S,,|") for r > 1. The results of Hanson and Franck
and other authors (see the bibliographies in [1], [2], [3], [5]), which are stated
in terms of the asymptotic behavior of sequences of sums, imply the existence
of inequalities sharper than can be obtained in this manner. (For example, if
a, = n~* for k < n the moment inequalities, such as in [6], [7], give estimates on
P{sup,.<, |S.| > 0} that are O(n="7) for r > 2 and O(n~"**) for 1 < r < 2 while
the asymptotic results suggest o(n="**) for all r > 1.) In fact the primary moti-
vation of the work presented here was to obtain explicit inequalities equivalent
to the asympotic results of Hanson and Franck in the sense that their results
could be obtained from the inequalities. The results in Section 4 indicate that
we have achieved that goal.

Received July 13, 1970; revised March 1972.
1874

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics. RIKOIRE ®

WwWw.jstor.org



LAW OF LARGE NUMBERS 1875

At the time this paper was originally submitted for publication no method for
obtaining exponential rate theorems using these techniques was apparent to the
author. Professor I. Olkin subsequently pointed out the work of Hoeffding [3]
which inspired a second look at exponential rates and led to the results in Sec-
tion 5 which, while not direct applications of Lemma 2.2, are at least in the
spirit of the rest of the paper.

2. Basic inequalities. Since the S, form a martingale we have
1
2.1 P{SUp,.g, [Su| > 0} = —— E(¢(S,))
¢(9)

for every nonnegative, even, convex function ¢. The problem is to estimate the
expectation on the right.
(2.2) LEMMA. Assume that ¢ and ¢’ are absolutely continuous. We consider
two cases.

(@) Let ¢(0) = ¢'(0) and ¢" be nonnegative and non-increasing on (0, o). (For
example, p(u) = |u|*, 1 < a < 2.) Then

Plsup S, > 0} £ 2 (25) T4 7 pla DIF()
(2.3) (25) 2k \e @' (a, O)F () dt
(25) 26 V8 ¢ (W)F (ufay) du .
(b) Let ¢(0) = ¢’(0) = 0 and ¢'" be nonnegative and bounded. (For example,
p(u) = [u|* | =1
:a’(llll—l)—|—1 |ll|>1,

for a = 2.) Then
P{sup,, [S,| > 4}

. , (%nso"n(zk a,) §5 CldF (1))
(2.4) < (I 57 e(@,0ldF () Tl S oar

n (zllso”ll(Zka;f) i LldF@D))”
o 9(9/2m*7)
If 2.a, <1 then
P{sup,, |S,,| > 0} < (2, §7 (@, )dF())M, (3, ¢, F, L)
(2.5) + (2 @) M0, ¢, F, L)
= (D §5 ¢'(a, )F(r) d)M, (0, o, F, L)
+ (Zpa)* My, ¢, F, L) .
ProOF.

E(p(S,) = ¢(0) + 2= E(9(Sn) — ¢(Sn-1))
(2-6) = ¢(0) + Xin=1 E(E(p(@p Xy + Spot) — ¢(Sp-1)
— ay Xm SD,(Sm—l) | Sm—l)) ’
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which reduces our problem to the problem of estimating

(2‘7) E(go(am Xm + Sm—l) - gD(Sm—l) - am Xm gD'(Sm_l) l Sm—l) *
The basis for our estimate is the fact that
(2.8) o+ 2) — o(2) —up'(z2) = §3 (¢'(v + 2) — ¢'(2)) dv

= Wlie"(w+ z)dwadv.

Since n is arbitrary and could in fact be oo if the sum on the right-hand side
of (2.6) is convergent, we drop its use.
Under the assumption of part (a)

o+ 2) — ¢(2) —up'(z) = §§ 5 ¢"'(W + z) dw dv
< 2§ 2 " (w) dw dv

(1)

In order to unify the final results we replace ¢(u) by ¢(2x) and (2.3) follows.
Under the assumptions of part (b) let

e.(u) = o(ju| —¢) [u] = e
=0 |u} <e.

Then
QU+ 2) — @(2) —up/(2) < p.(u + 2) < ¢(u) 2] < e

2 2
< sup, ¢"(0) - =l 5 lel >

Consequently, for ¢ < 0
1

(0 —¢)

@9 Plsup. |S.| > 0} < [ (5 55 pla OO Plsup, 1S, < )

Setting ¢ = /2 and bounding P{sup,, |S,| < ¢} by one, the inequality may be
iterated to obtain (2.4).

REMARK. For o(u) = |u|*, 1 < a < 2 (2.3) becomes

PIsup 8,1 > 0) S i (o) 57 IFO)
Taki
o o) = w W =1
= 20u — 1 | > 1,

(2.3) can be used to give a simple proof of the Weak Law of Large Numbers
under the assumption that

§o t|dF(f)] < oo .
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Since ¢' is non-decreasing, if we let a = max, a, (2.3) implies

4 ,
(2.10) P{sup,, |S,| > 0} = o2 (L a) §5 ¢'(an)F (1) dt .
3. Truncation.
3.1 THEOREM. Let 7 = sup, a, §ia, F(1) dt and e = 3, a, \5,, F(t) dt.
(@) Suppose p(0) = ¢'(0) = 0, " = 0, ¢ is non-increasing on (0, oo) and 7 <
20. Then

4 1
Plsup, [, >0 + ¢} | +
920 —7)  o(1)
(b) Suppose ¢(0) = ¢'(0) = 0, ¢"” = 0, and ¢" is bounded. If there exist e,

L > 0 such that

] Y s o' (w)F(ujay,) du .

7 <92,
(3:2) ¢(0/2" —7) >0,
2 SouwF(uja)du = M < oo, and

ML—1u1+s(L—1) S Cgo’(u) ,
then

P{sup,, |S,| > 0 + e}
= (Zk Sé GD,(”)F(”/ak) d”) [QD(I) i=1 l——lo S0(5/2m+1 _ 77)

Cllg”|I* ,
T e gz = v)}

REMARK. Leta = sup,a,. We note that
e < (D a) §5. F(o)dt
e = (2r ") SUp,sye ¥yt §7 F(1) dt

< (T SUPye X F0) L

s (el 2§ 4F(u/ay) duy

and for a > 1

If we drop the assumption of finite expectations, we can still say that

E
P(js,| > 5} < B
¢(9)
for every nonnegative even function ¢(x) that is non-decreasing for u > 0. If
in addition ¢’(x) is non-increasing for u > 0 then
E(e((S,) = 2 E(p(a, X,)) -
If we assume ¢'(#) = 0 for u = 1 and ¢(3) > 0 then
1 '
(3-3) P{S,| > 6} = -0 2 Yo ¢ ()F (ufay) du .
This inequality may be used to obtain results similar to those due to Rohatgi [2].
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Proor. If welet X, = (X, A (1/a,))V (—1/a,) and define $,, = 17, a, X,, then

P8, # S,} < Zr. F(l/a,)
and
|E(‘§m)| = Xiaa, S;c/‘“k F(f) dt .

Consequently,
(3.4)  P{sup,|S,| > 0 + ¢} < P{sup, IS, — E(S,)| > 8} + L. F(l/a) -
We observe that since F(¢) is decreasing

(3.5) . F(l/a) < 2 So¢'W)F(u/a,) du
B (1)

Under the assumption of part (a) (2.3) implies

(3.6)  Plsup, IS, — ES.)| > 0} < — 2 _ 3, a, §¥o o (ayt + 7)F(r) dt .

¢(20)
If we replace ¢ by
$u) = ¢(lu| — ) for |u] =z 7
=0 for |ul <7,
then for » < 20 (3.6) becomes
37 Psup, IS, — ES) > 0} < — 2 0, §1% o'(a,0F() di
¢(20 — 1)
4
- * L o F .
o(25 — 7) 2k So @' ()F(u/ay) du

Part (a) follows from (3.4), (3.5) and (3.7).
Under the assumptions of part (b), (2.4) implies

P{sup,, |S,, — E(S,,)| > 8}

< . @, NV o' (a, )F (1) d L (le"ll 2ix @ §i'* tF(r) di)'~
< (Tua o' (@nF() ) s, LB 20

i (le”ll S, it §yo 1 (t) dryt
(3-5) T p62m — 1)
P o (Il S 3 uF(uay) duyi=
— (52 @ e do) K, 127 2 S ultuien
L (")l S SsuFuay duyt
3 (027 — )

Since
2 sucF(uja,)du = 3 a2 S F(t)dt = M < oo,

Jensen’s Inequality implies

(3-9) (2 SouF(u/ay) du)® < M= 33, §out*“"VF (ufay) du .
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Consequently ME-Yy!+<L-1 < Co'(u) implies
(3.10) (X SouF(ula,) du)t < C 3, §o ¢'(w)F(ufay) du .
Part (b) follows from (3.4), (3.5), (3.8) and (3.10).

4. Examples. Suppose now that we have a sequence of collections of non-
negative constants {a, ,} with lim,__ (sup, a, y = a,) = 0,

N _
S, = 2 Qy X -

Many known theorems, including those of Hanson and Franck [1] (and Rohatgi
[2]), can be obtained from the above inequalities by using various methods to
bound

4.1) 2 S0 @' (w)F(u/ay,) du
by expressions in which the integral is factored out of the sum. For example
(4.1) is bounded by

(4.2) (Zea) 52 H,wja) du,
where
H,(t) = sup,, x“F(x) .

(4.3) THEOREM. Suppose (¢ F(t)dt < oo and H,(0) < co. In addition, for
a = 2 suppose there is an ¢ > 0 such that

4.4 lim supy .., 23, Ss ' ~F(uja, y) du = M < oo .
Then (a)
ey = 21 Ay $ija, y F(0) dt < O(X, af x)
P{sup,, |S,"| > 0} =< O(Zi a%.v) 5
(b) if lim,_., H,(t) = 0,

and

ey = 0(X.aiw)
and
P{sup,, [S,"| > 0} < o(X, 9t n)

(©) if §7 1 H (1) dt < oo,
limsupy, ., >3, a8y < oo,
(this is implied by (4.4) for a = 2)

n(N) Zeaiy = N7',
and
ay, < N-*, some f >0,

then
2iv 7(N)P{sup,, S, > 6} < oo .

REMARK. This theorem corresponds to Theorems 1, 2 and 4 of [1].

PrOOF. Let () = u**7 where y > 0 and a 4 y < 2 if a < 2. Parts (a) and
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(b) follow immediately from (4.2). To obtain part (c) we approximate
>.x N7'H_ (uN?) by
w 1
v —
x
and note j (¢’'(u)/u*)p~* \3 t7'H (1) dt du < o.
Another important class of theorems corresponds to the assumptions
a,,y = 1/r(N) k = ¢(N)
=0 k > ¢(N).
The problem is to find conditions on y(N), ¢(N) and »(N) that imply
Using our inequalities this reduces to proving that ‘
Ziw AN)P(N) §o ' (u)F(up(N)) du < oo .
Let A(N) = p(N)¢(N) and assume we can approximate Y, A(N)F(uy(N)) by

H (ux?) dx = % i % H (1) dt

(4.5) 5 AF(up(x)) dx .
A change of variable in (4.5) gives

L (o () (1) o
Let

A(x) = §FA(s) ds .

Then (4.6) can be rewritten as {3, A(y~'(¢/u))|dF(¢)|. Consequently, if
(ot dF(t) < oo,

and ¢(u) is the same as in the proof of Theorem (4.3), then we can take

AGri(x)) = Kx*;
that is

1) S K 2 1
X

= Ka[r()]*™'(%) -

If « = 2, condition (3.2) introduces the additional requirement that ¢(x)/y(x)*~
be bounded for some ¢ > 0.

In particular, if we want »(x) = 1 and ¢(x) = y(x), then for &« =1, we can
take y(x) = e**, and for a = 1 + 1/8, y(x) = x?. More generally if we want
7(x) = x*, ¢(x) = x* and 7(x) = x? then for 1 < « < 2 we can take b, ¢ and d
satisfying b + ¢ < ad — 1,and fora =22, b + ¢ < ad — 1 and 2d > c.

REMARK. An examination of the proofs will show that all we really need to
assume is that S, = Y17, a, X, is a martingale with respect to an increasing
family of g-algebras %, i.e., that S,, is &, -measurable and E(X,, | & ,_,) = 0,

and that
F(t) = P{|X,,| > t| F ) a.s.
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In fact, we can even permit a, to be an &, _,-measurable random variable
provided we take the expectation of the right-hand side of the inequalities, thus
obtaining inequalities of the form

P{sup,, [S,| > 0} = C X1, §s @' (W) E(F(u/a,)) du .

5. Exponential rates. We prove the following lemma, analogous to Lemma 2.2.
5.1 LEMMA. Let ¢(u) = e* — 1 — u, and suppose \7 p(at)|dF(t)] < oo for
some a > 0. Then
(3:2)  Pfsup, [S.| > 0} = 2Zexp{inf,,, (X, §¢ ¢(a, )|dF(1)] — 20)}

= 2 exp{inf,,, (23, 4a, \¢ F()¢'(Aa,t) dt — A0)} .

Assuming Y, a, = 1 and a = max a,,

(5.3) P{sup,, |S,| > 6} < 2exp {% inf, ({5 o(st)|dF(t)| — sa)} ,

— 2exp {i inf, s(\& F(£)¢'(st) dt — 5)} .
a

REMARK. Note that if y(s)= {5 ¢(st)|dF(t)| is finite for some s then lim,_ 7 (s)/s=
0 and hence inf (y(s) — s0) < 0.

Proor. Let @(x) = e* + e~*. Using the fact that for u > 0, o(—u) < ¢(4)
we have

E($(2S,)) = ¢(0) + Xin-1 E(P(2S,) — G(AS-1))
(5.4) =2+ 3r_, E(exp[4S,,_1]l¢(4a, X,,)
+ exP[_ZSm—l]SD(_Zam Xm))
= 2+ Xha E(p(Aan| X)) E($(AS-1)) -

Iterating the above inequality gives

(5-5) E(¢(2S,)) < 2 exp{Xn- E(e(2a,| X))},
and hence
o EP(2S,))
Plsups |S,] > 3) < inf, 0D
(5.6) < inf,,, 2¥P{ T 0= Blp(4a,|X,)))
- elo“ _|_ e—}é

= 2exp{infy,o (Zha E(p(Aa,] Xal)) — 20)} -

Inequality (5.2) follows from the fact that ¢(«) is increasing. To obtain (5.3),
note that ¢(u)/u is increasing for positive u and hence

T §5 9(a, O] — 36 = 2( S a, 55 20D |aF(0)| - o)

= 255 249 ar)| - 5) .

Letting s = Za, (5.3) follows.
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The following theorem is obtained in exactly the same way as Theorem (3.1).
(5.7 THEOREM. Let g = \3, F(t)dt, F,(t)= F(t —q), and e =}, a, X
§57, F(1)dt. Then with p(u) = e* — 1 —u
(5:8)  Plsup, S, > 8 + ¢}

< X F(ljag) + 2 exp(inf,., (X, 2 § ¢/ ()F (ufa,) du — 1)}

Lemma 5.1 can be used to prove the following:

(5.9 THEOREM. Suppose F(t) < exp[—A(t — T)] for all t > T. Let a=
sup, a, and A = ), a,’/a. Then there exists a constant 0 < p < 1 depending on
0, T, 4y and A (increasing as a function of A) such that

P(sup, |S,| > 3} < 20" .

REMARK. The constant p can be taken to be

o = exp {infS<A ; A et _ (AT + Afa, + 0) — A)} :

0 —

This can be seen by writing the exponent on the right-hand side of (5.2) as

Ling,, ( 5, 9 (2ay §o R (r) £ 44D g 205)
a a Aa,t

and applying the monotonicity of ¢’(x)/u to bound this by
Linf,, < . “_kz> da \g F(1)¢'(Aat) dr — 2ad) .
a a
Substitute s = laand F(r) = 1 A exp[—2,(t — T)] in this expression and integrate.
We apply Theorem 5.7 to obtain

(5.10) THEOREM. Let
a, y = N-# k < N«

=0 k> N=
where 8 > aand 8 = 1 or 8 = a > 1. Suppose
(5.11) lim,_,, p,/t*F(t*) = 0.
Then for 1 < p < p,and 0 < 1
lim .. p¥P{| T @y Xy > 0} = 0.

ProoF. Let ey = 3, a, 5 $7a, , F(r) dt and replace d in (5.8) by (3 — ey).
The first term on the right of (5.8) causes no difficulties. Let b = log p, and
let 2 = bN. The exponent in the second term is bounded by

ONN<* §§ (e — 1)F,(uNP)ydu — bN(0 — ey) .
We will be through if we can show

(5.12) limy_. N §!(e"* — 1)F,(uN*)du = 0.
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A change of variable in (5.12) gives
N 3 (exp{bNI*) — 1)F,((tN)?)pri=" dt
= B i tP7 Y exp{—bN(t — t*)} — exp{—bNt})t*Np,!"F,((tN)?®) dt .

Since (5.11) holds for F it holds for F, uniformly for a < 1. If 8 > a, t~%'is
integrable on [0, 1] and the theorem follows by the Lesbesgue Dominated Con-
vergence Theorem.

If B = a > 1, the integral is bounded by a constant times

§ % (exp{bNt?} — 1) exp{—bNt} dt .

The difficulty is close to zero so select ¢ > 0 such that + — ## is monotone on
[0, ¢]. Then

i % (exp{bN*} — 1) exp{—bNt} dr

IA

1 1
Sto,v—1/m] - bNtée® exp{—bNt} dt + §(n-wp o - exp{—ON(t — tF)} dt
< (N-WP)e=teb §1o v —wsy DN exp{—bNt} dt

+ S[N"(l/ﬂ),e]_}“ eXp{—bN(t — tH} dt

< SN-UVB 4§y 1 exp { —bN(N—(l/ﬂ) — L)} dt
t

= eb(N-1-Y® {4 log(sNV?) exp{—bN'-18}) .

Acknowledgment. The author wishes to thank Prof. S. Wainger for pointing
out this last estimate.
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