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Sequential probability ratio tests are defined for testing a simple hy-
pothesis against a simple alternative for the mean value function of a real
Gaussian process with known covariance kernel. Exact formulas are ob-
tained for the error probabilities and the OC function using the fact that
the log likelihood ratio process is a Gaussian process with independent
increments and have continuous sample paths. An identity of a familiar
nature holds for the expected value of the log likelihood ratio process at a
random stopping time. In certain situations this identity yields an exact
formula for the ASN function. Two examples are given. The analysis
employs the theory of reproducing kernel Hilbert spaces.

1. Introduction. The theory of sequential tests of simple hypotheses against
simple alternatives based on independent and identically distributed random vari-
ables was developed by Wald (1947) and the optimum character of such tests
was established by Wald and Wolfowitz (1948). A few years later Dvoretzky,
Kiefer and Wolfowitz (1953) pointed out that practically all of these results easily
extend to the case of stochastic processes in continuous time provided that the
latest observation is a sufficient statistic for the entire past and that the log like-
lihood ratios of these statistics at various points of time form a process with
stationary and independent increments. In particular, this settled the problems
of sequentially testing for the drift of a Brownian motion and the intensity of a
Poisson process.

Wald’s theory of sequential tests is based on sequential probability ratios, and
if the problem of sequential testing in case of processes in continuous time is to
be attacked in the same spirit, the first thing one would look for is the continuous-
time analogue of sequential probability ratios. Such an attack would be feasible
only when (i) for each ¢ > 0 the measures P, and P! of the process up to time
t corresponding to the null and the alternative hypotheses are equivalent, (ii) the
Radon-Nikodym derivative process {dP,‘/dP;, t = O} is analytically tractable,
and (iii) the measures P, and P, of the entire process on [0, co) corresponding to
the null and the alternative hypotheses are orthogonal. The first two require-
ments are to ensure that the sequential probability ratios are defined and analyti-
cally tractable, while the last one is for the sequential probability ratio test to
terminate with probability one.
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The purpose of this paper is to carry out this project for testing the mean value
function of a separable real Gaussian process with known covariance kernel.
Feldman (1958) has proved that two Gaussian measures are either equivalent or
orthogonal. Parzen (1959) has given conditions for equivalence or orthogonality
when the two processes have a common covariance kernel differing only in their
mean value functions, and has provided a formula for the Radon-Nikodym de-
rivative of one measure with respect to the other in case of equivalence. These
results of Parzen form the basis of our work by allowing us to understand dP,’/dP,
as a random variable for any given ¢ (Theorem 1), and to set up the sequential
probability ratio test (SPRT). We then look at the collection of all these random
variables for different values of ¢ as a stochastic process and observe a remarkable
fact. The process {log (dP,'/dP,), t = 0} is a Gaussian process with independent
(though possibly non-stationary) increments and under certain conditions has
a sample continuous version (Theorem 2). Using these properties of the log
likelihood ratio process we then show that a SPRT terminates with probability
one (Theorem 3) and obtain formulas for the error probabilities (Theorem 4)
and the operating characteristic (OC) function (Theorem 5) of a SPRT. We also
obtain for certain situations a formula for the average sample number (ASN)
function (Corollary to Theorem 6). Several examples are given. The theory of
reproducing kernel Hilbert spaces is employed in our analysis. For a survey of
this theory the reader may consult Aronszajn (1950) and Parzen (1959).

2. Preliminaries. Let {X(¢), 1 = 0} be a separable real Gaussian process with
known covariance kernel R and unknown mean value function m. We want to
test the simple hypothesis H,: m = m, against the alternative H,: m = m, where
m, and m, are given real-valued functions on [0, oo). For all ¢ real, let m, =
(I — 0)my + Om,.

We consider the stochastic process in its sample path formulation, i.e., we
consider the sample space Q to consist of all real-valued functions on [0, co] and
in this space we consider the smallest g-field containing all sets {|w(f) < a}
for t > 0 and a real. Then the random variables X(¢) are functions defined as
X(t, ») = o(f), and we denote by P, the probability measure on (RQ, %) cor-
responding to which {X(¢), r = 0} is a Gaussian process with mean value function
m, and covariance kernel R. By P,’ we denote the restriction of P, to the o-field
7t of {X(s), 0 =5 < ¢}.

By H(R) we denote the reproducing kernel Hilbert space (RKHS) of real-valued
functions on [0, co) with reproducing kernel R and by H(R*) we denote the RKHS
of real-valued functions on [0, ¢] with reproducing kernel R* which is the restric-
tion of R to [0, ¢] x [0, r]. When we mention a function f on [0, co) in the con-
text of H(R'), we actually mean its restriction on [0, ¢].

We assume that the covariance kernel satisfies the following conditions.

ConbpiITION 1. R is continuous and for every positive integernand ¢, > ... >
t, = 0, the matrix (R(t, t;)) is nonsingular.
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ConpitioN 2. For every t > 0, the restriction of m; — m, to [0, ¢] is in H(R").
CoNDITION 3. Let ¢(f) = [|m; — my||%zt,- Then

(i) ¢ is continuous.
(ii) ¢ is strictly increasing and lim,_,, ¢(f) = co.

Let {T,} be an increasing sequence of finite sets converging to the set T of all
nonnegative rationals, and for any positive integer n and any = > 0, let 7,7 =
T, n[0,7]. By R;%.(s, t), s, t e T,*, we denote the elements of the inverse of the
matrix R, . = (R(s, 1)), :c 7, Which exists by virtue of Condition 1.

We conclude this section with a theorem due to Parzen ((1959), Theorem 9A)
which gives a formula for dP}/dP,*.

THEOREM 1 (Parzen). Under Conditions 1 and 2, P* is equivalent to P," for every
r = 0, and

(1) dPy’[dPy = exp [KX — my, my — my). — §(7)]
where
(2) X — my, my — my),
= limnﬁoo Zs,te T,% {X(S) - mO(S)}R;,lr(s’ t){ml(t) - mO(t)} ’
the limit holding both in mean square and with probability one under P,.

Since m, — m, = @(m, — m,), Conditions 1, 2, 3 remain valid when m, is re-
placed by m, throughout. In view of this fact, the following is an immediate
corollary to Theorem 1.

CoROLLARY. Under Conditions 1 and 2, the measures Py, 0 real, are equivalent
for every © = 0.

3. Sequential probability ratio test. Following Wald (1947) we now define se-
quential probability ratio tests for H,: m = m, against H,: m = m,.

DerINITION 1. The sequential probability ratio test (SPRT) with boundaries
B < 1 < A for testing H, against H, is defined by the following stopping rule and
terminal decision rule:

Continue observing as long as B < dP,!/dP, < A. Stop and accept H, at the
smallest ¢ for which dP'/dP;' < B, or stop and reject H, at the smallest ¢ for
which dP/dP} = A, where dP;!/dP is given by (1) and (2).

We call this test SPRT(A, B) for H, against H,.

We shall call the process {Z(t) = log (dP,!/dP,}), t = 0}, the log likelihood ratio
(LLR) process and we shall always consider a separable version of this process.
In terms of the LLR process, SPRT(A4, B) can be equivalently expressed as:

Continue sampling as long as log B < Z(f) < log 4. Stop and accept H, at the
smallest ¢ for which Z(r) < log B, or stop and reject H, at the smallest # for which
Z(t) = log A.
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4. Properties of the LLR process. In this section we establish two important
properties enjoyed by the LLR process. These two properties make it possible
for us to investigate the behavior of SPRT(4, B).

THEOREM 2. (a) Suppose Conditions 1 and 2 hold. Then under P,, the LLR
process {Z(t), t = 0} is a Gaussian process with mean value function

E[Z(1] = (0 — $)¢()
and covariance kernel
Cov, [Z(s), Z(t)] = ¢(min (s, 1))
where (1) = [|my — m|[3pe).-
(b) If Condition 3(i) also holds, then under every P,, almost all sample paths of
the LLR process are continuous. :

REMARK. From an examination of the proof given below it can be seen that
this theorem remains true (with obvious modifications) if in the definition of
Z(t) the function m, — m, is replaced by any function f whose restriction to [0, ]
isin H(R’) forallt = 0. Infact, these ideas have been used by one of the authors
(see Bhattacharya (1971), Theorem 1) to transform a class of Gaussian processes
to the Brownian motion.

ProoF oF THEOREM 2. Argue under P,. Then {Y(t) = X(f) — my(t), t = 0} is
a Gaussian process with mean 0 and covariance R. Letd = m;, — m, (Y, d), . =
Dister,e YO)R, (s, 1) d(7), and (Y, d) = lim,_.(Y,d), .. By Theorem1,(Y,d),
exists a.s. and in mean square. Since Z(r) = (Y, d). + (§ — })¢(r), it suffices
to show (for part (a) of the theorem) that {<Y, d)_, = = 0} is a Gaussian process
with mean 0 and covariance ¢ (min (s, #)). Now let L,(Y) denote the linear space
of the Gaussian process {¥(f), t = 0} and let 2 denote the congruence between
H(R) and Ly(Y) for which A(R(+, t)) = Y(¢) holds for all z. Then by Theorem 9B
of Parzen (1959),

KY,d), .= NE*[d|R, teT,)), n=1,2,...
is a wide-sense martingale for every r = 0 where E* stands for projection and
R,(+) = R(-, t), and converges to

KY,dy, = AE*[d|R,, te Uz T.7)) -
Since R is continuous and |J;y_, T, is dense in [0, ], the subspace of H(R)
spanned by {R,, t € Uy, 7,7} is the same as the one spanned by {R,, t < r}. Thus
3) (Y, dy, = E[d| R, t < ]) .

Since the random variables (Y, d)_are in L,(Y), all finite-dimensional distribu-
tions of {(Y, d)., ¢ = 0} are Gaussian with mean 0. Now consider ¢ < 7. Since
E*{E*[d|R,,t = 7]|R,,t <0} = E*[d|R,, t < 0],

we have

(E*[d|R,, t < 7] — EX[d|R,, t S 0], E*¥[d|R,, t S 0]y = 0.
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This, in conjunction with (3) gives
Cov[<Y, d),, (Y, d).] = (E*[d|R,, t < o], E*[d|R,, t < 0])
= ||[E*[d|R;s t < o]|[ixn)
= |l4|lsze, = $(9)
and that concludes the proof of part (a). To prove part (b), we note that
{Z(), = = 0} is a separable Gaussian process with independent increments and

by Theorem 6, Chapter IV, Section 5 of Gikhman and Skorokhod (1965), has
a.s. continuous sample paths by virtue of Condition 3(i).

5. Acceptance region, rejection region and stopping time of the SPRT.

DerINITION 2. The acceptance region and the rejection region of SPRT(4, B)
are defined respectively as S, = U, So(f) and S, = Uz, Si(f) where Si(¢) and
S,(t) are given by

So(t) = {0] Z(0, w) < log B}, t=0
={o|log B < Z(s,w) < log A4, 0 <s<t and Z(t, v) < log B},

t>0

S.(1) = {0] Z(0, w) = log A4}, t=0
= {w|log B < Z(s,w} < log 4, 0 <5<t and Z(t, w) = log 4},

t>0.

THEOREM 3. Suppose Conditions 1,2, 3(ii) hold. Thenthe SPRT(A, B)terminates
with probability one under all P,.

Proor. Condition 3 implies the existence of an infinite sequence {z,} such that
for some 6 > 0, ¢(t,,,) — ¢(t,) = ¢ for all n. Under P, {, = Z(¢,,,) — Z(¢,),
n=1,2, ... are independent random variables, {, being normally distributed
with mean 0 and variance ¢ Following the same arguments as in the case of
discrete sampling, we see that SPRT(4, B) terminates with probability one under
P,. Since all other P, are equivalent to P,, the theorem is proved. In fact it is
enough to have {r,} satisfy ¢(z,,,) — ¢(z,) = 9, and Condition 3(ii) guarantees
the existence of such a sequence.

From now on we shall disregard those sample paths o for which SPRT(4, B)
does not terminate.

DeriniTION 3. The stopping time of SPRT(A, B) is a function 7 on Q defined

as
T) =t if oeSyt) U S).

ReMARK. From Theorems 2 and 3, the following conclusions are immediate.

(i) Both S, and S, are measurable and S, = S, (except for those » that we
are disregarding).
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(if) T is a random variable on Q and for eacht = 0, {0 | T(w) < ¢} belongs to
the g-field of {Z(s), 0 < s < ¢}, i.e., T is a random stopping time of the LLR
process.

(iii) If T(w) = 0, then Z(T(w), ) = Z(0, ), otherwise

Z(T(w), ) = log B if wes,
= log 4 if wes;.

The subsequent theorems of this paper rely on Theorems 2 and 3 in which all
the Conditions 1, 2, 3 have been used. From now on we shall not state these
conditions explicitly though everything depends on them.

In the rest of this paper we shall study the error probabilities, the OC function
and the ASN function of SPRT(A, B). These results will be derived by con-
ditioning the process {Z(¢), t = 0} by the random variable Z(0) and then making
a suitable transformation on the time axis. By means of this device we shall
relate our problems to the corresponding ones for the Brownian motion and use
the results of Dvoretzky, Kiefer and Wolfowitz (1953). The following lemmas
are needed for this purpose.

LemMA 1. Under Py, the conditional process
{Z,(t) = Z(1) — 2(0),t =z 0}
given the random variable Z(0) is a Gaussian process with mean value function
E[2,(1)| Z(0)] = (0 — H{$() — $(0))
and covariance kernel
Cov, [Z,(s), Z:(1) | Z(0)] = ¢(min (s, 1)) — &(0) .

Proor. By Theorem 2, the LLR process has independent increments. Hence
the distribution of the conditional process {Z,(¢), t = 0} given Z(0) is the same
as that of the unconditional process {Z(¢), t = 0} which is a Gaussian process
and E,[Z,(1)] = (0 — $){$(1) — $(0)}and Cov, [Z(s), Z(1)] = (min (s, 1)) — $(0).
This completes the proof.

We now define a function y by the relation
P(r(1) — ¢0) =1, tz0.

By Condition 3, 7 is a well-defined, 1 — 1, continuous mapping of [0, co) onto
[0, o).
LeEMMA 2. Under P,, the conditional process
{Z(1) = 2,(r(1)), t = 0}
given the random variable Z(0) is a Brownian motion with drift (6 — %) per unit time.

Proor. Due to the very nature of the transformation 7, it immediately follows
from Lemma 1 that the conditional process {Z,(¢), t = 0} given Z(0) is a Gaussian
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process with independent increments. The following computations now complete
the proof.

E[Z(1)| Z(0)] = Eo[Z,(1(1)) | Z(0)]
= (0 — PG (@) — ¢(O)} = (6 — ), and
Var, [Zy(1)| Z(0)] = Var, [Z,(y())| Z(0)] = $(r(1)) — $(0) = .
6. Formulas for error probabilities and the OC function. Let us denote by a and
B respectively, the probabilities of the type I and type II errors of SPRT(4, B),
i.e., @ = Py(S,) and B = P,(S,). More generally, we denote the OC function of
SPRT(A4, B) by L(0) = P,(S,). Formulas connecting a, 8, 4 and B are given by
Theorem 4, and Theorem 5 gives a formula for L(f).

THEOREM 4. The type I and type II error probabilities of SPRT(A, B) satisfy the
relations

a= (1 = p/A4+ f(4)
B =B(l —a)+ fu(B),
where fy(A) = fi(B) = 0 for m,(0) = my(0) and otherwise,

fo(A) = {1 = I(4, 0)} — {1 — I(4, D}/4,
fu(B) = 1(B,1) — BI(B, 0),

and

and for C > 0,
I(C, 0) = P,[Z(0) < log C] = O({log C — (9 — $)¢(0)}/($(0))?) ,

D being the standard normal distribution function.

THEOREM 5. For 0 + %, the OC function of SPRT(A, B) is,

L(0) = [1 — B 4 h(A, B, 0)])(A*~* — B=*),

where h(A, B, ) = 0 for m,(0) = my(0) and otherwise,

h(A, B, 0) = A*{1 — (4, 6)} — {1 — I(A, 1 — 0)} + B*™I(B, 0) — I(B, 1 — 0)
with I(C, 0) as in Theorem 4,

Let us denote by a(z) and f(z) respectively, the conditional probabilities of
type I and type II errors and by L(f, z) the conditional OC function given
Z(0) = z, i.e., a(z) = Py(S;|Z(0) = z), B(z) = Py(S,|Z(0) = z) and L(0) =
Py(S;| Z(0) = z). These quantities are given by the following lemma.

LEMMA 3. (a) The conditional etror probabilities a(z) and B(z) satisfy the relations

a(zy =0, if z<logB
= {1 — B(2)}/Ae ", if logB< z<logA4
=1, if z=log4,
B(z)=1, if z<loghB

= Be~*{1 — a(z)}, if logB<z<log4
=0, if zz=logA.
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(b) The conditional OC function L(0, z) is given by

L, 2)=0, if z<logB
— (8(1—20)2 _ B1—249)/(A1—2/) _ Bl—ze) , lf log B<z< lOg A
=1, if z=logA.

ProOF. We shall prove the lemma for the case when m,(0) # m,(0). In this
case ¢(0) > 0 and Z(0) is a nondegenerate Gaussian random variable. When
m,(0) = my(0), ¢(0) = 0 and Z(0) = O with probability 1 under all P, and the
values of a(z), B(z) and L(0, z) for z = 0 are irrelevant, but for z = 0, the same
proof works whether m,(0) # my(0) or m,(0) = m,(0).

Since the values of Z(0) < log Band = log 4 lead to immediate acceptance
or rejection of H,, the cases for z < log B and = log 4 hold trivially. We there-
fore consider only the case when Z(0) takes values log B < z < log 4. In this
case we shall prove the lemma by using Lemma 2 and the corresponding results
for the Brownian motion in the following way. When Z(0) takes one of these
values z, SPRT(4, B) acts on the Z-process exactly as SPRT(Ae"*, Be™*) acts on
the Z,-process described in Lemma 2. The only difference is a change in the
time-axis, but that does not affect the boundary-crossing probabilities. Since by
Lemma 2, the conditional Z,-process given Z(0) = z is a Brownian motion under
P, with drift (¢ — 1) per unit time, a(z), p(z), 4e~* and Be~* satisfy the usual
relations for a Brownian motion and L(6, z) is given in terms of Ae~* and Be~*
in the same way as for a Brownian motion. The lemma now follows from the
results of Dvoretzky, Kiefer and Wolfowitz (1953).

PrOOF OF THEOREM 4. When m,(0) = m,(0), the theorem follows trivially from
Lemma 3(a) because in that case « = «(0) and 8 = $(0). We now consider the
case m,(0) # my(0). Let ¢ denote the density function and @ the distribution
function of a standard normal random variable. Then the density function of

Z(0) under P, is given by
(4) Po(z) = {90} H6({z — (0 — $)P(0)}/(¢(0))*) »

and
a =2, a(z)py(2)dz, B = {7 P(2)p(2) dz .

Using Lemma 3, we thus get

5) o = et (ST 2 pue) dz + ST pol2) 2
and
©) B= g oy de + St {2AT = D pey ae

From (5) and (6), the theorem follows.

PrOOF OF THEOREM 5. Here also, when m,(0) = m,(0), the theorem follows
trivially from Lemma 3(b), because in that case L(f) = L(6, 0). When m,(0) +
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my(0), we use Lemma 3(b) to get
™) L(®) = §=. |

e1-20z __ p1-20

W} Po(2) dz + $fogs po(2) dz

where p,(z) is given by (4). From (7), the theorem follows.

REMARKS. (i) Theorem 5 gives L(f) for 6 + 4. If L(#) could be shown to be
continuous at =1, then by taking limits we would get L(})=1og B/(log B—log A)
when m,(0) = m,(0) and otherwise,

1(3) =1

_I(4,})log A—1I(B, }) log B+(¢(0)){$(log 4/(¢(0))*) — p(log B/(¢(0))})}
log B — log A4

We now show that L(6) is continuous at = §.

Consider the set S; N {@|T(w) < t} where T is given by Definition 3. Since
this set is in the g-field .57 of the random variables {X(s), 0 < s < ¢}, we apply
Theorem 1 to get

Po[S, 0 {T = 1}] = §s,01050 @Ps' = Vsynir50 (dPo'[dPyY) APy
= §synirse eXp [0X — mg, my — me), — 30°)(1)] dPy

which is a continuous function of # by Theorem 9, Chapter 2 of Lehmann (1959).
We know from our Theorem 3 that lim,_, P,[S, n {T < t}] = L(6) for each 4.

To complete the proof we need this convergence to be uniform in a neighbor-
hood of # = 4. To show this, let {r,} be the sequence defined in the proof of
Theorem 3, and let #, = 0. Choose ¢, 7 > 0. Then for all fe (3 — &, 4 + ¢),
P Z(t;,) — Z(t;) > n] = 1 — ®(y9~% + edt) = p > 0. Let k be such that kp =
log A — log B. If we now look at the random walk {Z(t;), j = 0, 1, 2, - - -}, then
it can be easily seen that

Plog B < Z(t;,) < log A|log B < Z(t;_,,) < log A] =1 —pF <1,
j=1, .-, n.
Hence
L(0) — Pyl S, 0 {T = t,4]]
= Py[S; N {T > 1,,}]] = Po[T > t,4]
< Pylog B < Z(t;,) <log4,j=0,1,...,n] < (1 —p*)*,
and that concludes the proof.
(ii) It should be noted that our definition of the OC function is more restrictive
than Wald’s original definition according to which the domain of L should

be all real-valued functions m on [0, co). We have defined L only for me
{(1 — 0)ym, + Om,, 0 real}.

7. ASN function. A random stopping time 7 of the LLR process can be treated
exactly in the same way as it was treated in the case of stationary and independent
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increments by Dvoretzky, Kiefer and Wolfowitz (1953). It follows from Theorem
2 that the process {W(f) = Z(t) — (0 — })¢(t), t = 0} is of independent incre-
ments with mean 0, hence it is a martingale in continuous time. We assume
E,(T) < oo and note that by Condition 3 and Theorem 2(b) almost all sample
paths of the process {W(f), t = 0} are continuous. Hence E,[W(T)] = 0 by
Theorem 11.8, Chapter VII of Doob (1953). We thus have the following theorem.

THEOREM 6. Let T be a random stopping time of the LLR process with E,(T) < co.

Then
E[Z(T)] = (6 — HE[HT)] -

In the special case when ¢ is linear in 7, Theorem 6 can be used in conjunction
with Theorem 5 to obtain a formula for the ASN function of SPRT(A4, B) whose
value at ¢ is the expected value under P, of the stopping time T given by Defini-
tion 3. We have the following corollary to Theorem 6.

COROLLARY. If ¢(f) = a + bt and T is given by Definition 3, then for 0 + 1,

E(T) = BLZD] _
0 — )

b

and
E[Z(T)] = L(6)log A 4 {1 — L(6)} log B + (6 — $)¢(0)
— (0 = 2)¢(0)I(4, 6) — (B, 0)}
— {1 — I(4, 6)}log 4 — I(B, 6) log B
+ (O)HI(4, 0) — J(B, 0)},
where I(C, 0) is as in Theorem 5, and
J(C, 0) = ¢({log C — (6 — H)P(0)}/($(0))?) -

8. Examples. We consider two examples of stationary Gaussian processes.
The mean value functions under the null and alternative hypotheses are constants
in one example and polynomials in the other. To apply our results to these
situations, we need to compute ||1||} .-, in the first example and (¢, t*),, .., for

J»k=0,1,2, ... in the second example. For computing these inner products
in H(R*) we shall use the well-known fact that

(fs Duwey = (EX[f|R, t < 7], EX[g| R, 1 £ Ty -
Consequently, for fe Ly(R,|t < t)and s < 7,
(fs R)uire) = (s Ro)uwy = f(5)

by reproducing kernel property of H(R). However, it may be quite difficult to
compute (f, R,) -, in general.

(I) Consider the covariance kernel
R(s,t) = a — B|s — { for |s —t < a/f
= 0 otherwise
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where a and § are positive constants and Condition 1 holds. We want to test
the null hypothesis that the mean value function m(r) = 6, against the alternative
m(t) = 0, where 6, and 6, are given constants. Let ¢ = 0 be given and find the
positive integer n such that (n — 1)a/f =< v < na/B. We shall show that on
[0, 7], the function 1 is a linear combination of functions {R,, 0 < ¢ < r} and
compute |[|1]|%-,. Consider the function

= n-1 — NDIR lg,t R —-‘]—-a :l.
110 = T30 = D[R (5 )+ R (s = 0)
It is easy to verify thatforra/f <t <z —(n —r — 1)a/B,r=0,1, ..., n — 1,

fit) = (n — PR (’_g t> 4 (n—r—1R (V_”Fﬁl)ﬁ t>

F(r+ 1)R<r—(L—_’ﬁ__—1~)ﬁ, r>+rR<r—i’1_‘ﬁﬂ, r),

and fort —rajf <t < (n—nea/f,r=1,.-..,n—1,
_ (n—r—a (n — r)a
fi) = (4 DR(CZLZ20 1) 4 R (202, 1)

ra _(r=Da

+(n—r)R<r—?, t>+(n—r+1)R<r I t).

Examining these two cases separately, it can now be seen that
f(t) = 2na — fr, 0

IA
IIA
a

Hence
I = f(2na — p)
= Zin0 (1 = DIRSusp + Rijol/(2na — Br),
and Condition 2 holds. Now in view of the remark made earlier in this section,

(01 = 00)7*P() = 11"z
= (Zna — po)72 33550 (n — J)'R(0, 0)
+ 2 N Lin (n = D)(n — DR(jalB, T — ja/B)]
= n(n + 1)/(2na — B7)
by straightforward computation. ¢ is continuous and it is easy to verify that it
satisfies all other parts of Condition 3.

(IT) Ornstein-Uhlenbeck process: Here the covariance kernel is
R(s, t) = aexp[—f8|s — 1]
where a and § are positive constants and Condition 1 holds. We want to test
the null hypothesis m(r) = >}7_,0,t* against the alternative m(t) = >2_,0,'t*
where 6,, 6,, ---,6,, 0/, 6/, ---,0, are given constants. Now for all 7 € [0, 7],
(B*[KD) §3 s*R(s, 1) ds = (—1)**'R(0, 1) — {37, (Bo)"[r!}R(z, 1)
+ A Zra (B[P + X (=17 (Boyrl}
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Hence

[(B+4/K1) §; 5*R, ds + (—1)*R, + {Ekoy (82)[r)R.) /20
= D (Bt (k — 20!,

where [k/2] is the largest integer <k/2. From this, we have

1 =[B§;R,ds + R, + R.]|2a ,
t = [§ s sR,ds — R, + (I + Br)R.][2aB,
and
tt = k[{k(k + 1)}7* §5 {B*s* — k(k + 1)s*=*}R, ds + k~'(Br* — * )R ]/2ap

for k = 3,4, .... Thus the restrictions of 1 and all positive integral powers of
rare in H(R") and Condition 2 holds. Furthermore, in view of our earlier remark,
(7, t*) yze) 1s easily seen to be a polynomial of degree max (j, k) 4+ 1 in = and
therefore, ¢ satisfies Condition 3. In particular, if my(f) = 6, and m(t) = 6/,
then

(60 — 60)7*(r) = | U|haey = (1, Ry + R, + B §§ R, ds) e[ 2a
= [(L, R)urey + (1, R)uirey + B 5 (L, R pre) ds]/2a
=[1+1+4+ B§1.ds))2a = (2 + fr)2a.

In this special case, ¢ is linear and the corollary to Theorem 6 becomes
applicable.

Smith (1971) has considered various other examples where our results are
applicable. He has also shown that for a certain class of stationary covariance
kernels, 17 € H(R), = = 0 giving rise to a linear ¢-function.
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