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ON UNIQUENESS OF SOLUTIONS FOR
THE STOCHASTIC DIFFERENTIAL EQUATIONS OF

NONLINEAR FILTERING1

By Vladimir M. Lucic and Andrew J. Heunis

University of Waterloo

We study a nonlinear filtering problem in which the signal to be esti-
mated is conditioned by the observations. The main results establish path-
wise uniqueness for the unnormalized filter equation and uniqueness in
law for the normalized and unnormalized filter equations.

1. Introduction. An early work on uniqueness for the stochastic differ-
ential equations of nonlinear filtering is that of Szpirglas [15]. The basic view-
point adopted in [15] is to regard the measure-valued stochastic differential
equations of nonlinear filtering as entities quite separate from the original
nonlinear filtering problem, for which one can formulate the notions of solution
(or weak solution), pathwise uniqueness and uniqueness in law, by essentially
adapting these concepts from the theory of Itô stochastic differential equations
(see Section IV.1 of [4] or Section IX.1 of [12]). With these notions at hand, it
is then established in [15] that pathwise uniqueness and uniqueness in law
hold for both the normalized (Fujisaki–Kallianpur–Kunita) and unnormalized
(Duncan–Mortensen–Zakai) filter equations, in the case of a nonlinear filter-
ing problem where the signal is a Markov process which is independent of
the Wiener process in the observation equation and the sensor function in the
observation equation is uniformly bounded.

Our goal is to look at uniqueness for the stochastic differential equations of
nonlinear filtering from a point of view very similar to that of [15], but for a
nonlinear filtering problem in which there is dependence of the signal on the
observations. In fact, we shall look at the specific nonlinear filtering problem
where the signal �Xt� is an �d-valued process solving an equation of the form

dXt = b�Xt�dt+B�Xt�dWt + c�Xt�dVt	(1.1)

the �d1 -valued observation process �Yt� is defined by

Yt = Wt +
∫ t

0
h�Xs�ds	(1.2)

and ��Wt	Vt�� is a standard �d1+d2 -valued Wiener process [precise condi-
tions on the mappings b�·�	B�·�	 c�·� and h�·� will be stated in Section 2]. The
pair (1.1) and (1.2) represents a simple model of a signal and observation in
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which the signal �Xt� depends on the Wiener process �Wt� of the observation
equation.

Motivated by [15], we shall regard the normalized and unnormalized filter
equations for this nonlinear filtering problem as measure-valued stochastic
differential equations, defined quite independently of the filtering problem,
and will formulate the notions of weak solution, pathwise uniqueness and
uniqueness in law for the filter equations. Our main result (see Theorem 2.21
to follow) establishes pathwise uniqueness for the unnormalized filter equa-
tion, together with uniqueness in law for the normalized and unnormalized
filter equations, subject to reasonably general conditions on the mappings
b�·�	B�·� and c�·� in the signal equation (1.1), and a uniform boundedness
condition on the sensor function h�·� in the observation equation (1.2). As
will be seen from the discussion of Section 2 (see Remark 2.22) the elegant
semigroup ideas used in [15] to establish pathwise uniqueness do not seem to
extend to the filtering problem represented by (1.1) and (1.2), where the sig-
nal �Xt� depends on the observation Wiener process �Wt�, and our approach
necessarily involves a different method of proof.

In Section 2 we review the normalized and unnormalized filter equations
for the nonlinear filtering problem given by (1.1) and (1.2), define weak solu-
tions, pathwise uniqueness, and uniqueness in law for the filter equations and
state the main result, namely Theorem 2.21. We also discuss the relationship
of this result with other works on uniqueness for the nonlinear filter equa-
tions in Remarks 2.22, 2.23 and 2.24. Section 3 is devoted to the proof of the
main result, while the proofs of various technical facts and lemmas needed in
Section 3 are relegated to Sections 4, 5 and 6.

2. Stochastic differential equations of nonlinear filtering.

Remark 2.1. For easy access we first summarize most of the basic notation
which will be used in the sequel:

(i) For a metric space E, let ��E� denote the Borel σ-algebra on E, let
B�E� denote the set of all real-valued uniformly bounded Borel measurable
mappings on E, and, for φ ∈ B�E�, define the supremum norm by 	φ	 
=
supx∈E �φ�x��. Likewise, write C�E� for the set of all real-valued continuous
mappings on E, and write �C�E� for the collection of all members of C�E�
which are uniformly bounded.

(ii) For a complete separable metric space E, let �+�E� denote the space of
all positive bounded measures on the measurable space �E	��E��, with the
usual topology of weak (or narrow) convergence. Then �+�E� is separable
and metrically topologically complete, and Exercise 9.5.6 of [3] shows that a
simple variant of the Prohorov metric turns the topological space �+�E� into
a complete separable metric space. Also, let � �E� denote the collection of all
members of �+�E� which are probability measures. For µ ∈ �+�E� and a
��E�-measurable and µ-integrable mapping φ from E into �, write µ�φ� or
µφ for the integral

∫
E φdµ.
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(iii) For a vector x in a finite-dimensional Euclidean space �q, write xk

for the kth scalar entry of x, ∀k = 1	 � � � 	 q, and write �x� for the Euclidean
norm of x, namely �x�2 
= ∑q

k=1�xk�2. Also, let C∞��q� denote the set of all
infinitely smooth real-valued mappings on �q, and let C∞

c ��q� be the collection
of all members of C∞��q� with compact support. Finally, let Ĉ��q� denote the
collection of all members of �C��q� which vanish at infinity.

(iv) For the positive integers q	 r, let �q×r denote the set of q by r matri-
ces with real entries. Likewise, let �

q×q
+ denote the collection of all members

of �q×q which are symmetric nonnegative definite, and let �
q×q
++ denote the

collection of all members of �q×q
+ which are strictly positive definite.

(v) For the positive integer q, let �q∗ denote the compact metric space
which is the one-point compactification of the Euclidean space �q.

Now consider a nonlinear filtering problem made up of the following basic
elements:

E.1 A fixed interval of interest �0	T�, with T ∈ �0	∞�.
E.2 A complete probability space ��	� 	P� carrying a filtration ��t	 t ∈

�0	T�� such that �0 includes all null events of ��	� 	P�. Defined on ��	� 	P�
is an �d-valued continuous ��t�-adapted process �Xt	 t ∈ �0	T�� and an
�d1+d2 -valued ��t�-Wiener process ��Wt	Vt�	 t ∈ �0	T�� such that (1.1) holds,
where b
 �d → �d, B
 �d → �d×d1 and c
 �d → �d×d2 are Borel-measurable
and locally bounded functions (i.e., uniformly bounded over bounded subsets
of �d).

E.3 An �d1 -valued observation process �Yt	 t ∈ �0	T�� defined by (1.2),
where h
 �d → �d1 is Borel-measurable, with

E

[
d1∑
k=1

∫ T

0

∣∣hk�Xu�
∣∣2 du] < ∞�(2.1)

Define the observation filtration �� Y
t 	 t ∈ �0	T�� by

� Y
t 
= σ

{
Yu	 u ∈ �0	 t�} ∨� �P� where � �P�


= {
N ∈ � 
 P�N� = 0

}
�

(2.2)

From Lemma 1.1 of [10] there exists some � ��d�-valued �� Y
t+�-optional pro-

cess �πt	 t ∈ �0	T��, called the optimal filter, which is defined on ��	� 	P�
and satisfies

πtφ = E�φ�Xt��� Y
t+ � a.s. ∀ t ∈ �0	T�	 ∀ φ ∈ B��d��(2.3)

From (2.1) and Jensen’s inequality we see that

E

[
d1∑
k=1

∫ T

0

[
πu��hk��]2 du] < ∞	



UNIQUENESS OF SOLUTIONS 185

and we can therefore define the �d1 -valued innovations process �It	 t ∈ �0	T��
by

Ikt 
= Yk
t −

∫ t

0
πsh

k ds ∀ t ∈ �0	T�	 k = 1	 � � � 	 d1�(2.4)

An important property of the innovations process is that �It	 t ∈ �0	T�� is
an �d1 -valued �� Y

t+�-Wiener process [see Theorem VI.8.4 of [13], observing
that the filtration ��t� on page 322 of [13] corresponds to our �� Y

t+�]. Since
�It� is continuous, it is necessarily �� Y

t �-adapted, thus �It	 t ∈ �0	T�� is a
�� Y

t �-Wiener process. Now define m
 �d → �d×�d1+d2� by

m�x� 
= �B�x� c�x�� ∀ ξ ∈ �d	

and put

	 φ�x� 
=
d∑

i=1

bi�x�∂iφ�x� + 1
2

d∑
i	 j=1

[
m�x�mT�x�

]ij
∂i∂jφ�x�(2.5a)

∀ x ∈ �d	 φ ∈ C∞��d��

�kφ�x� 
=
d∑

i=1

Bik�x�∂iφ�x� ∀ x ∈ �d	 φ ∈ C∞��d�	 k = 1	 � � � 	 d1�(2.5b)

For each φ ∈ C∞
c ��d� one sees from (1.1), (1.2) and Itô’s formula that the

process

M
φ
t 
= φ�Xt� −

∫ t

0
	 φ�Xs�ds	 t ∈ �0	T�	(2.6)

is a square-integrable ��t�-martingale with

�Mφ	Wk�t =
∫ t

0
�kφ�Xu�du	 t ∈ �0	T�	 k = 1	 � � � 	 d1�(2.7)

This observation, together with Theorem VI.8.11 of [13], establishes the
following.

Theorem 2.2. For the nonlinear filtering problem given by E.1, E.2 and
E.3, the optimal filter �πt	 t ∈ �0	T�� satisfies

πtφ = π0φ+
∫ t

0
πs�	 φ�ds+

∫ t

0

d1∑
k=1

�πs�hkφ+�kφ�

− �πsh
k��πsφ��dIks ∀φ ∈ C∞

c ��d��
(2.8)

The relation (2.8) is known variously as the Fujisaki–Kallianpur–Kunita equa-
tion, the Kushner–Stratonovich equation or the normalized filter equation.
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Remark 2.3. Since C∞
c ��d� is dense in Ĉ��d�, with respect to the supre-

mum norm, it must be convergence determining (see Problem 3.11.11 of [3]).
Now it follows from (2.8) that �πt	 t ∈ �0	T�� is a continuous � ��d�-valued
process, and therefore �� Y

t �-adapted. Thus, we can replace � Y
t+ in (2.3) by � Y

t .

The characterization of �πt� given by Theorem 2.2 becomes useful when
some form of uniqueness is established for (2.8). The approach adopted here
is suggested by [15], which in turn is motivated by the results of [16] on
weak solutions, pathwise uniqueness, and uniqueness in law for Itô stochas-
tic differential equations (see Section IV.1 of [4] or Section IX.1 of [12] for a
comprehensive account of these ideas). Taking advantage of the fact that the
innovations process �It� which “drives” 2.8 is a standard �� Y

t �-Wiener pro-
cess, we can follow [15] and regard the normalized filter equation as an entity
quite separate from the nonlinear filtering problem, namely as a probability-
measure valued stochastic differential equation driven by a standard Wiener
process, for which one can formulate the notions of weak solution, pathwise
uniqueness and uniqueness in law as follows (compare [15], Definition III.1,
V.1, V.2 and [1], Definition 9.1).

Definition 2.4. The pair ���̃	 �̃ 	 ��̃t�	 P̃�	 �π̃t	 Ĩt�� is a weak solution of
the normalized filter equation when:

(i) ��̃	 �̃ 	 ��̃t�	 P̃� is a complete filtered probability space.
(ii) �Ĩt	 t ∈ �0	T�� is an �d1 -valued ��̃t�-Wiener process on ��̃	 �̃ 	 P̃�.
(iii) �π̃t	 t ∈ �0	T�� is a � ��d�-valued continuous ��̃t�-adapted process

such that

P̃

(∫ T

0

d1∑
k=1

�π̃s�hk��2 ds < ∞
)
= 1	(2.9)

and, for each φ ∈ C∞
c ��d�, the following holds to within indistinguishability:

π̃tφ = π̃0φ+
∫ t

0
π̃s�	 φ�ds

+
d1∑
k=1

∫ t

0

[
π̃s�hkφ+�kφ� − �π̃sh

k��π̃sφ�
]
dĨks 	 t ∈ �0	T��

(2.10)

Remark 2.5. The terminology that ��̃	 �̃ 	 ��̃t�	 P̃� is a “complete filtered
probability space” will always be understood to mean that ��̃	 �̃ 	 P̃� is a com-
plete probability space carrying the filtration ��̃t	 t ∈ �0	T��, and �̃0 includes
all P-null events in �̃ .

Remark 2.6. In view of Definition 2.4, it follows that ���	� 	 �� Y
t �	P�	

�πt	 It�� for �� Y
t 	 t ∈ �0	T��, �πt	 t ∈ �0	T�� and �It	 t ∈ �0	T�� defined by

(2.2), (2.3) and 2.4 is a weak solution of the normalized filter equation.
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Definition 2.7. The normalized filter equation has the property of path-
wise uniqueness when the following holds: If ���̃	 �̃ 	 ��̃t�	 P̃�	 �π̃1

t 	 Ĩt�� and
���̃	 �̃ 	 ��̃t�	 P̃�	 �π̃2

t 	 Ĩt�� are weak solutions of the normalized filter equa-
tion such that P̃�π̃1

0 = π̃2
0� = 1, then

P̃
(
π̃1
t = π̃2

t ∀ t ∈ �0	T�) = 1�

Remark 2.8. For the next definition we shall need the following notation:
if ξ is a measurable mapping from some probability space ��̃	 �̃ 	 P̃� into a
separable metric space E, then 
P̃�ξ� is the probability measure on the Borel
σ-algebra ��E� defined by 
P̃�ξ��%� 
= P̃�ξ ∈ %� for each % ∈ ��E�.

Definition 2.9. The normalized filter equation has the property of
uniqueness in joint law when the following holds: If ���̃	 �̃ 	 ��̃t�	 P̃�	 �π̃t	 Ĩt��
and ����	 �� 	 � ��t�	 �P�	 �π̄t	�It�� are weak solutions of the normalized filter
equation such that 
P̃�π̃0� = 
�P�π̄0�, then the processes ��π̃t	 Ĩt�	 t ∈ �0	T��
and ��π̄t	�It�	 t ∈ �0	T�� have the same finite-dimensional distributions.

Remark 2.10. Under certain conditions one can associate a simpler unnor-
malized filter equation with the normalized filter equation. For this purpose
the following additional notation is useful: if ��̃	 �̃ 	 ��̃t�	 P̃� is a complete fil-
tered probability space, �M̃t� is a continuous ��̃t�-semimartingale, and �γ̃t� is
a locally bounded ��̃t�-progressively measurable process, then γ̃ · M̃ denotes
the stochastic integral of γ̃ with respect to M̃. Also, put

� �M̃�t 
= exp
(
M̃t − 1

2�M̃�t
)
�

Now let ���̃	 �̃ 	 ��̃t�	 P̃�	 �π̃t	 Ĩt�� be a weak solution of the normalized filter
equation, and define

Ỹk
t 
= Ĩkt +

∫ t

0
π̃sh

k ds ∀ t ∈ �0	T�	 k = 1	 � � � 	 d1�(2.11)

χ̃t 
= �

(
−

d1∑
k=1

�π̃hk� · Ĩk
)
t

∀ t ∈ �0	T��(2.12)

Since �Ĩt	 t ∈ �0	T�� is a ��̃t�-Wiener process, it follows that �χ̃t	 t ∈ �0	T��
is a continuous strictly positive ��̃t�-local martingale on ��̃	 �̃ 	 P̃�, and

1
χ̃t

= �

(
d1∑
k=1

�π̃hk� · Ỹk

)
t

∀ t ∈ �0	T��(2.13)

Define the �+��d�-valued process �σ̃t	 t ∈ �0	T�� on ��̃	 �̃ 	 P̃� by

σ̃tφ 
= π̃tφ

χ̃t

∀ t ∈ �0	T�	 φ ∈ B��d��(2.14)
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Hence

σ̃tφ 
= �π̃tφ� �
(

d1∑
k=1

�π̃hk� · Ỹk

)
t

∀ t ∈ �0	T�	 φ ∈ B��d�	(2.15)

and, in light of (2.9), we see that

P̃

(∫ T

0

d1∑
k=1

�σ̃s�hkφ+�kφ��2 ds < ∞
)
= 1 ∀ φ ∈ C∞

c ��d� ∪ �1��

Using Itô’s formula and relation (2.10), we easily arrive at the Duncan–
Mortensen–Zakai equation or unnormalized filter equation: for each φ ∈ C∞

c

��d� ∪ �1� we have

σ̃tφ = σ̃0φ+
∫ t

0
σ̃s�	 φ�ds

+
d1∑
k=1

∫ t

0
σ̃s�hkφ+�kφ�dỸk

s ∀ t ∈ �0	T��
(2.16)

Remark 2.11. From Remark 2.3 and (2.15) we see that t → σ̃tφ
 �0	T� →
� is continuous for each bounded continuous φ
 �d → �, thus �σ̃t� is a contin-
uous �+��d�-valued process which is ��t�-adapted. Moreover, from (2.15), we
see that the random element σ̃0 takes values in � ��d�, the set of probability
measures on �d.

Remark 2.12. If, in (2.15), we use the optimal filter �πt� in place of �π̃t�
and the observation process �Yt� in place of �Ỹt� to get an �+��d�-valued
and �� Y

t �-adapted process �σt�, namely

σtφ 
= �πtφ��
(

d1∑
k=1

�πhk� ·Yk

)
t

∀ t ∈ �0	T�	 φ ∈ B��d�	(2.17)

then �σt� is called the unnormalized optimal filter for the filtering problem
given by (1.1) and (1.2).

Remark 2.13. In (2.16) the “driving process” �Ỹt� is the continuous ��̃t�-
semimartingale defined on ��̃	 �̃ 	 P̃� by (2.11). Equation (2.16) becomes more
tractable if we can replace P̃ with some equivalent probability measure Q̃

such that �Ỹt	 t ∈ �0	T�� is an ��̃t�-Wiener process with respect to Q̃. To
this end, observe from (2.12) that ��χ̃t	 �̃t�	 t ∈ �0	T�� is a continuous local
martingale on ��̃	 �̃ 	 P̃�, and that, if it is a martingale, then

Q̃�A� 
= EP̃�χ̃T�A� ∀ A ∈ �̃ 	(2.18)
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defines a probability measure Q̃ on ��̃	 �̃ � which is equivalent to the proba-
bility measure P̃, namely

P̃ ≡ Q̃ ��̃ ��(2.19)

From (2.11), (2.12) and the Girsanov theorem, it then follows that ��Ỹt	 �̃t�,
t ∈ �0	T�� is a Wiener process on ��̃	 �̃ 	 Q̃�.

Remark 2.14. A sufficient condition on the weak solution ���̃	 �̃ 	 ��̃t�	 P̃�,
�π̃t	 Ĩt�� and sensor function h�·� which ensures ��χ̃t	 �̃t�	 t ∈ �0	T�� is a
martingale on ��̃	 �̃ 	 P̃� is that

EP̃

[
exp

(
1
2

d1∑
k=1

∫ T

0

[
π̃sh

k
]2

ds

)]
< ∞

(see Corollary 3.5.13 of [5]). In particular, this condition always holds when
hk ∈ B��d�, k = 1	 � � � 	 d1.

With the preceding discussion in mind, we next formulate the notion of
weak solution of the unnormalized filter equation, pathwise uniqueness and
uniqueness in law (compare with Definition IV.1 of [15]).

Definition 2.15. A pair ���̃	 �̃ 	 ��̃t�	 Q̃�	 �σ̃t	 Ỹt�� is a weak solution of
the unnormalized filter equation when:

(i) ��̃	 �̃ 	 ��̃t�	 Q̃� is a complete filtered probability space.
(ii) �Ỹt	 t ∈ �0	T�� is an �d1 -valued ��̃t�-Wiener process.
(iii) �σ̃t	 t ∈ �0	T�� is a �+��d�-valued continuous ��̃t�-adapted process

such that the random element σ̃0 takes values in � ��d�, and, for each φ ∈
C∞

c ��d� ∪ �1�, we have the following:
(a)

Q̃

(∫ T

0

d1∑
k=1

�σ̃s�hkφ+�kφ��2 ds < ∞
)
= 1�(2.20)

(b) The LHS and RHS of (2.15) are indistinguishable.

Definition 2.16. The unnormalized filter equation has the property of
pathwise uniqueness when the following holds: if ���̃	 �̃ 	 ��̃t�	 Q̃�	 �σ̃1

t 	 Ỹt��
and ���̃	 �̃ 	 ��̃t�	 Q̃�	 �σ̃2

t 	 Ỹt�� are weak solutions of the unnormalized filter
equation such that Q̃�σ̃1

0 = σ̃2
0 � = 1, then

Q̃
(
σ̃1
t = σ̃2

t 	 ∀ t ∈ �0	T�
)
= 1�
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Definition 2.17. The unnormalized filter equation has the property of
uniqueness in joint law when the following holds: if ���̃	 �̃ 	 ��̃t�	 Q̃�	 �σ̃t	 Ỹt��
and ����	 �� 	 � ��t�	 �Q�	 �σ̄t	 �Yt�� are weak solutions of the unnormalized fil-
ter equation such that 
Q̃�σ̃0� = 
 �Q�σ̄0�, then ��σ̃t	 Ỹt�	 t ∈ �0	T�� and
��σ̄t	 �Yt�	 t ∈ �0	T�� have the same finite-dimensional distributions.

In this paper our goal is to establish pathwise uniqueness for the unnor-
malized filter equation and uniqueness in joint law for both the normalized
and unnormalized filter equations. To this end we postulate the following con-
ditions on the mappings b�·�, B�·�, c�·� in (1.1), and the mapping h�·� in (1.2):

Condition 2.18. The mapping b
 �d → �d is Borel-measurable, and the
mappings B
 �d → �d×d1 and c
 �d → �d×d2 are continuous. There exists a
constant C ∈ �0	∞� such that

max
i	 j	 k

��bi�x��	 �Bij�x��	 �cik�x��� ≤ C�1 + �x�� ∀ x ∈ �d�

Condition 2.19. The mapping c
 �d → �d×d2 is such that the matrix
c�x�cT�x� is strictly positive definite for every x ∈ �d.

Condition 2.20. The mapping h
 �d → �d1 is Borel-measurable and uni-
formly bounded.

We can now state our main result.

Theorem 2.21. Suppose that Conditions 2.18, 2.19 and 2.20 hold for the
nonlinear filtering problem given by E.1, E.2 and E.3. Then


(i) The unnormalized filter equation has the property of pathwise
uniqueness.

(ii) The normalized filter equation has the property of uniqueness in joint
law.

(iii) The unnormalized filter equation has the property of uniqueness in joint
law.

Remark 2.22. Here [15] establishes pathwise uniqueness and uniqueness
in law for the normalized and unnormalized filter equations corresponding to
the following nonlinear filtering problem: the signal �Xt� is a homogeneous
Markov process with values in a complete separable metric space E and weak
infinitesimal generator 	 , the observation process is

Yt 
= Wt +
∫ t

0
h�Xu�du	 t ∈ �0	T�	

where �Wt� is an �d1 -valued Wiener process independent of the Markov pro-
cess �Xt�, and the sensor function h
 E → �d1 is uniformly bounded and
��E�-measurable. In this context, by a weak solution of the unnormalized
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filter equation is meant a pair ���̃	 �̃ 	 ��̃t�	 Q̃�	 �σ̃t	 Ỹt�� such that:

(a) ��̃	 �̃ 	 ��̃t�	 Q̃� is a complete filtered probability space.
(b) �Ỹt	 t ∈ �0	T�� is an �d1 -valued ��̃t�-Wiener process.
(c) �σ̃t	 t ∈ �0	T�� is a �+�E�-valued, cadlag (or r.c.l.l.) ��̃t�-adapted pro-

cess, the random element σ̃0 takes values in � �E�, and supt∈�0	T� ×
E��σ̃t1�2� < ∞.

(d) For each φ ∈ � �	 � (the domain of the generator 	 ) one has to within
indistinguishability that

σ̃tφ = σ̃0φ+
∫ t

0
σ̃s�	 φ�ds

+
d1∑
k=1

∫ t

0
σ̃s�hkφ�dỸk

s 	 ∀ t ∈ �0	T��
(2.21)

(See Definition IV.1 of [15].) The nice thing about (2.21) is that it includes refer-
ence to just one unbounded linear operator, namely the infinitesimal generator
	 of the signal process, and the resolvent identity can be used to eliminate
	 and rewrite (2.21) in the form

σ̃tφ = σ̃0�Ptφ� +
d1∑
k=1

∫ t

0
σ̃s�hkPt−sφ�dỸk

s ∀ t ∈ �0	T�	(2.22)

where �Pt� is the Borel semigroup with infinitesimal generator 	 . There
is complete equivalence between (2.21) and (2.23) in the sense that if the
pair ���̃	 �̃ 	 ��̃t�	 Q̃�	 �σ̃t	 Ỹt�� is subject to (a), (b), (c), then (2.23) holds for
each φ ∈ � �	 � if and only if (2.24) holds for each φ ∈ B�E� (see Théorème
IV.1 of [15]). Consequently, it is enough to establish pathwise uniqueness for
(2.24) in order to conclude pathwise uniqueness for the unnormalized filter
equation. The advantage of (2.22) is that it involves only the bounded linear
operators �Pt�, and this structure makes it possible to establish pathwise
uniqueness for solutions of (2.22) by iterating a simple integral inequality (see
Section V.2 of [15]). Comparing (2.21) with the unnormalized filter equation
(2.16) for the nonlinear filtering problem defined by (1.1) and (1.2), we see
that (2.16) includes two unbounded linear operators, namely the first-order
differential operator �k which results from dependence of the signal �Xt� on
the Wiener process �Wt� of the observation equation, as well as the second-
order differential operator 	 corresponding to the signal process �Xt�. In this
case there seems to be no clear way of adapting the elegant semigroup ideas
of [15] to remove both of these unbounded operators and get an equivalent
equation involving just bounded linear operators. Accordingly, the approach
that we shall use to establish Theorem 2.21(i) is different from that of [15]
and relies on a uniqueness theorem for measure-valued evolution equations
(see Theorem 3.6 to follow).

Remark 2.23. Uniqueness for the normalized and unnormalized filter
equations has also been studied by [1], [10] and [14] from a somewhat different
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point of view than that taken by [15] and the present work. To see this in
the context of the filtering problem given by (1.1) and (1.2), observe from
Remark 2.12 that the unnormalized optimal filter �σt� solves the Duncan–
Mortensen–Zakai equation, namely for each φ ∈ C∞

c ��d� ∪ �1� we have

σtφ = π0φ+
∫ t

0
σs�	 φ�ds

+
d1∑
k=1

∫ t

0
σs�hkφ+�kφ�dYk

s ∀ t ∈ �0	T��
(2.23)

With this in mind, the following question is natural: suppose that �ρt� is some
�+��d�-valued, cadlag, and �� Y

t �-adapted process on ��	� 	P�, such that for
each φ ∈ C∞

c ��d� ∪ �1� we have

ρtφ = π0φ+
∫ t

0
ρs�	 φ�ds

+
d1∑
k=1

∫ t

0
ρs�hkφ+�kφ�dYk

s ∀ t ∈ �0	T��
(2.24)

Does it follow that �σt� and �ρt� are indistinguishable? The works of [1],
Theorem 3.1, [10], Theorems 4.2 and 4.7 and [14], Theorem 3.1 provide con-
ditions on the nonlinear filtering problem for which the answer is in the
affirmative. Uniqueness in this sense is useful for the following reason: the
observation process �Yt� is the random data that “drives” the unnormalized
filter equation (2.23), and if we can “nonanticipatively” use the individual
paths of �Yt� as data to compute a measure-valued process �ρt� which satis-
fies (2.26) (e.g., by a numerical method) then uniqueness ensures that �ρt� is
in fact the desired unnormalized optimal filter �σt�. It should be noted that
uniqueness in this sense can be established for much more general nonlinear
filtering problems than that represented by the simple model (1.1) and (1.2).
In fact, Theorem 3.1 of [1] deals with a filtering problem in which the signal
process takes values in a complete separable metric space (not necessarily
locally compact), the sensor function h�·� need not be uniformly bounded but
only satisfy a finite-energy condition similar to (2.1), the dependence of the
signal �Xt� on the Wiener process �Wt� is more general than that given by
the explicit model (1.1), (1.2) (see (1.3) of [1]), and the joint signal–observation
process ��Xt	Yt�� is the cadlag solution of a well-posed martingale problem.

The sense of pathwise uniqueness in the preceding paragraph is different
from that established by Theorem 2.21(i), since the candidate solution �ρt� of
the filter equation (2.24) is postulated to be adapted specifically to the obser-
vation filtration �� Y

t � (in fact, the arguments used in [1], [10] and [14] rely
crucially on this restriction). In contrast, Theorem 2.21(i) establishes pathwise
uniqueness in the more general sense of Definition 2.16, where the candi-
date solutions ���̃	 �̃ 	 ��̃t�	 Q̃�	 �σ̃1

t 	 Ỹt�� and ���̃	 �̃ 	 ��̃t�	 Q̃�	 �σ̃2
t 	 Ỹt�� are

defined on an arbitrary filtered probability space, and there is no insistence
that the measure-valued components �σ̃1

t � and �σ̃2
t � of the two solutions be
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adapted to the self-filtration of �Ỹt�. The usefulness of this latter notion of
pathwise uniqueness is that, by an adaptation to the filter equations of the con-
struction of [16], it leads to uniqueness in law for the normalized and unnor-
malized filter equations [see Theorem 2.21(ii) and (iii), and recall Definitions
2.9 and 2.17]. Uniqueness in law turns out to be essential for studying weak
limits and approximations of the nonlinear filter equations by the method of
martingale problems and weak convergence.

Remark 2.24. Using the method of stochastic flows and backward
equations, [8], Theorem 6.2.8, and [7] establish a form of pathwise unique-
ness for the unnormalized filter equation. Rather restrictive boundedness and
smoothness conditions on the coefficients of (1.1) and (1.2) seem necessary for
this method to work. One should also note that the approach of [15], which is
based on the equivalence of (2.21) and (2.22), finds its inspiration in an earlier
study of pathwise uniqueness for the filter equations due to [6].

Remark 2.25. A basic property of Itô stochastic differential equations due
to [16] is that pathwise uniqueness implies uniqueness in joint law, so that
pathwise uniqueness is the stronger of the two uniqueness properties. It is
shown in [15] that the basic Yamada–Watanabe argument extends to the
measure-valued filter equations, so that pathwise uniqueness is again the
stronger property [this is how we will conclude (ii) and (iii) from (i) in
Theorem 2.21]. Linearity of the unnormalized filter equation in fact implies
the converse, so that for this equation the two uniqueness properties are actu-
ally equivalent.

Theorem 2.26. Suppose that Conditions 2.18, 2.19 and 2.20 hold for the
nonlinear filtering problem given by E.1, E.2 and E.3. Then uniqueness in joint
law implies pathwise uniqueness for the unnormalized filter equation.

3. Proofs of Theorems 2.21 and 2.26. The terminology in the next
remark will be useful for dealing with measure-valued evolution equations.

Remark 3.1. Suppose that E is a complete separable metric space, and
 
 � �� → B�E� is a mapping with domain � �� ⊂ B�E�. Then �µt	 t ∈
�0	∞�� is an �+�E�-valued solution of the evolution equation for �	� ���,
when (i) µt ∈ �+�E�, ∀ t ∈ �0	∞� and µ0 ∈ � �E�; (ii) for each % ∈ ��E�,
the mapping t → µt�%�
 �0	∞� → �0	∞� is Borel-measurable; (iii) for each
f ∈ � �� we have

∫ t
0 �µs�f�� ds < ∞	 ∀ t ∈ �0	∞�, and

µtf = µ0f+
∫ t

0
µs�f�ds ∀ t ∈ �0	∞��(3.1)

Moreover, �µt	 t ∈ �0	∞�� is a � �E�-valued solution of the evolution equation
for �	� ��� when it is an �+�E�-valued solution with µt�E� = 1	 ∀ t ∈
�0	∞�. The evolution equation for �	� ��� is said to have uniqueness in the
class of �+�E�-valued solutions over the interval �0	∞� when, for any two
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such solutions �µi
t	 t ∈ �0	∞��	 i = 1	2, with µ1

0 = µ2
0, it follows that µ1

t =
µ2
t 	 ∀ t ∈ �0	∞�� The notion of uniqueness within the class of � �E�-valued

solutions over the interval �0	∞� has an analogous formulation. Finally, the
preceding terminology adapts in an obvious way to solutions �µt	 t ∈ �0	T��
defined over the finite interval �0	T�.

Proof of Theorem 2.21(i). We shall need the following result, the proof
of which is given in Section 5.

Fact 3.2. Suppose that Conditions 2.18–2.20 hold and let ���̃	 �̃ 	 ��̃t�	
Q̃�	 �σ̃	 Ỹ�� be a weak solution of the unnormalized filter equation. Then, for
every α ∈ �1	∞� there exists a constant γ�α� ∈ �0	∞� such that

EQ̃

[
sup

0≤s≤T
�σ̃s1�α

]
≤ γ�α��(3.2)

Now fix two weak solutions ���̃	 �̃ 	 ��̃t�	 Q̃�	 �σ̃i
t 	 Ỹt��	 i = 1	2, of the

unnormalized filter equation, such that

Q̃
[
σ̃1

0 = σ̃2
0

]
= 1	(3.3)

and define product measures on ��2d	���2d�� by

µ12
t �·	 ω̃� 
= �σ̃1

t × σ̃2
t ��·	 ω̃� ∀ �t	 ω̃� ∈ �0	T� × �̃�

A simple application of the Dynkin class theorem establishes the following.

Fact 3.3. For every % ∈ ���2d�, the mapping �t	 ω̃� → µ12
t �%	 ω̃�
 �̃ ×

�0	T� → �0	∞� is measurable with respect to the ��̃t�-progressive σ-algebra.

Also put

ν12
t �%� 
= EQ̃�µ12

t �%�� ∀ % ∈ ���2d�	 t ∈ �0	T��(3.4)

It readily follows that ν12
t defines a positive measure on ��2d	���2d�� for every

t ∈ �0	T�. By Fact 3.2,

ν12
t ��2d� = EQ̃

[
�σ̃1

t 1��σ̃2
t 1�

]
≤
(

EQ̃

[
sup

0≤s≤T
�σ̃1

s 1�2
])1/2(

EQ̃

[
sup

0≤s≤T
�σ̃2

s 1�2
])1/2

≤ γ�2� ∀ t ∈ �0	T��

(3.5)

This shows that ν12
t is a positive measure on ��2d	���2d�, uniformly bounded

with respect to t ∈ �0	T�, while Fact 3.3 with Fubini’s theorem shows that
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the mapping t → ν12
t �%�
 �0	T� → � is Borel-measurable for each % ∈ ���2d�.

Next, define ν11
t 	 ν22

t ∈ �+��2d�	 t ∈ �0	T�, analogously to ν12
t by

ν11
t �%� 
= EQ̃��σ̃i

t × σ̃i
t ��%�� ∀ % ∈ ���2d�	 t ∈ �0	T�	 i = 1	2�(3.6)

In the same way as for ν12
· , we see that ν11

· are positive measures on ��2d	
���2d��, uniformly bounded with respect to t ∈ �0	T�, and the mappings
t → ν11

t �%�
 �0	T� → � are Borel-measurable for each % ∈ ���2d�	 i = 1	2.

Remark 3.4. For mappings f1	 f2 ∈ B��d� define the tensor product of f1
with f2 to be the mapping f1 ⊗ f2
 �2d → � given by

f1 ⊗ f2�x1	 x2� 
= f1�x1�f2�x2� ∀ x1	 x2 ∈ �d�

In view of (3.4) and (3.6), for each f1	 f2 ∈ B��d� we have

ν12
t �f1 ⊗ f2� = EQ̃��σ̃1

t f1��σ̃2
t f2��	(3.7)

ν11
t �f1 ⊗ f2� = EQ̃��σ̃i

t f1��σ̃i
t f2��	 i = 1	2�(3.8)

From (3.3), (3.4) and (3.6) we see that

ν11
0 	 ν22

0 and ν12
0 are probability measures on

���2d� and ν11
0 = ν22

0 = ν12
0 �

(3.9)

Using this fact, we shall establish

ν11
t = ν22

t = ν12
t ∀ t ∈ �0	T�	(3.10)

from which pathwise uniqueness follows. Indeed, if (3.10) holds, then for each
f ∈ B��d� we have

ν11
t �f⊗ f� = ν22

t �f⊗ f� = ν12
t �f⊗ f� ∀ t ∈ �0	T�	

and therefore from (3.7) and (3.8),

EQ̃��σ̃1
t f− σ̃2

t f�2� = EQ̃��σ̃1
t f��σ̃1

t f�� − 2EQ̃��σ̃1
t f��σ̃2

t f�� + EQ̃��σ̃2
t f��σ̃2

t f��
= ν11

t �f⊗ f� − 2ν12
t �f⊗ f� + ν22

t �f⊗ f� = 0�

Thus, for each t ∈ �0	T� and f ∈ B��d�, we have

Q̃�σ̃1
t f = σ̃2

t f� = 1�(3.11)

Now Ĉ��d� equipped with the supremum norm 	 · 	 is separable. Thus, from
(3.11), for each t ∈ �0	T� there is a Q̃-null event Nt ∈ �̃ such that, for each
ω̃  ∈ Nt, we have

σ̃1
t �ω̃�f = σ̃2

t �ω̃�f ∀ f ∈ Ĉ��d��(3.12)

But Ĉ��d� separates bounded positive measures on ���d� (see Problem 5.4.25
of [5]), thus (3.12) establishes Q̃�σ̃1

t = σ̃2
t � = 1 for each t ∈ �0	T�. Now

Theorem 2.21(i) follows from the fact that �σ̃i
t 	 t ∈ �0	T�� are continuous

(recall Definition 2.15).
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It therefore remains to establish (3.10) in order to prove Theorem 2.21(i).
To this end, for each x1	 x2 ∈ �d define the 2d × 2d matrix ā�x1	 x2�, the 2d
vector b̄�x1	 x2�, and the real number h̄�x1	 x2� by

ā�x1	 x2� 
=
[
ccT�x1� 0

0 ccT�x2�

]
+
[
B�x1�
B�x2�

][
BT�x1� BT�x2�

]
	(3.13a)

b̄�x1	 x2� 
=
[
b�x1� +B�x1�h�x2�
b�x2� +B�x2�h�x1�

]
	(3.13b)

h̄�x1	 x2� 
=
d1∑
k=1

hk�x1�hk�x2��(3.13c)

Observe that the matrix ā�x1	 x2� is symmetric and strictly positive definite
(see Condition 2.19), and let �	 be the second-order linear differential operator
corresponding to the matrices ā and b̄, namely

�	 φ�x� 
=
2d∑
i=1

b̄i�x�∂iφ�x� + 1
2

2d∑
i	 j=1

āij�x�∂i∂jφ�x�

∀ φ ∈ C∞��2d�	 x ∈ �2d�

(3.14)

From (3.13a), (3.13b), Conditions 2.18 and 2.20, there is a constant K ∈ �0	∞�
such that

max
i

�b̄i�x�� ≤ K�1 + �x��	 max
i	 j

�āij�x�� ≤ K�1 + �x�2� ∀ x ∈ �2d	(3.15)

and the operator �	 has the following property, which is established in
Section 4.

Lemma 3.5. Suppose that Conditions 2.18–2.20 hold. Then �ν11
t 	 t ∈

�0	T��, �ν12
t 	 t ∈ �0	T��, and �ν22

t 	 t ∈ �0	T��, given by (3.4) and (3.6),
are �+��2d�-valued solutions of the evolution equation for � �	 + h̄	 span ×
�1	C∞

c ��2d���.

It remains to show that the evolution equation for � �	 + h̄	 span�1	C∞
c

��2d��� has uniqueness in the class of �+��2d�-valued solutions over the
interval �0	T�, since this fact, along with (3.9) and Lemma 3.5, gives (3.10), as
required to establish Theorem 3.6. To this end we need the following result on
uniqueness of measure-valued solutions of the evolution equation correspond-
ing to a multiplicatively perturbed linear second-order differential operator
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on Euclidean space:

Theorem 3.6. Let � be the linear second-order differential operator on the
finite-dimensional Euclidean space �q defined by

� �� � 
= span�1	C∞
c ��q��	(3.16a)

�f�x� 
=∑
i

βi�x�∂if�x� + 1
2

∑
i	 j

αij�x�∂i∂jf�x�
∀ x ∈ �q	 ∀ f ∈ � �� �	

(3.16b)

where β
 �q → �q is Borel measurable, α
 �q → �
q×q
++ is continuous, and there

exists a constant K ∈ �0	∞� such that

�βi�x�� ≤ K�1 + �x��	 �αij�x�� ≤ K�1 + �x�2� ∀ x ∈ �q�(3.17)

If λ ∈ B��q� then the evolution equation for �� − λ	� �� �� has uniqueness in
the class of �+��q�-valued solutions over the interval �0	T�.

To complete the proof of Theorem 2.21(i) we note from (3.13) that ā�·� is
continuous on �2d, b̄�·� is Borel-measurable on �2d and h̄ ∈ B��2d�. That the
evolution equation for � �	 + h̄	 span�1	C∞

c ��2d��� has uniqueness in the class
of �+��2d�-valued solutions over the interval �0	T� now follows from (3.15)
and Theorem 3.6 with q 
= 2d, β�·� 
= b̄�·�, α�·� 
= ā�·�, and λ�·� 
= −h̄�·�. ✷

Remark 3.7. When β�·� and λ�·� in Theorem 3.6 are continuous then � is
a linear operator on �C��q�, and Theorem 3.6 is just a very special consequence
of a general theorem of Bhatt and Karandikar (see Theorem 3.4 and Remark 1
of [2]) on uniqueness of measure-valued solutions of perturbed evolution equa-
tions. However, when β�·� and λ�·� are only Borel-measurable, then �f�·� is
not continuous for f ∈ � �� �, and we cannot directly use the result of [2]. We
prove Theorem 3.6 in Section 6.

Remark 3.8. The proof just given for Theorem 2.21(i) relies on the special
structure of the unnormalized filter equation (2.16) and does not appear to
extend to the normalized filter equation (2.8). We have therefore not been
able to establish pathwise uniqueness in the sense of Definition 2.7 under
conditions comparable to those of Theorem 2.21.

Proof of Theorem 2.21(ii). Let ���̃	 �̃ 	 ��̃t�	 P̃�	 �π̃t	 Ĩt�� and ����	 �� ,
� ��t�	 �P�	 �π̄t	�It�� be two weak solutions of the normalized filter equation. By
an argument similar to that used for Proposition IX.1.4 of [12], to establish
uniqueness in joint law it is enough to show that the processes ��π̃t	 Ĩt�� and
��π̄t	�It�� are identically distributed when

π̃0 = π̄0 = µ for each µ ∈ � ��d��(3.18)
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Thus suppose (3.18) holds for some µ ∈ � ��d�. Put

χ̃t 
= �

(
−

d1∑
k=1

(
π̃hk

)
· Ĩk

)
t

and �χt 
= � �−
d1∑
k=1

(
π̄hk

)
· �Ik

)
t

∀ t ∈ �0	T�

and define the measures Q̃ and �Q on the measurable spaces ��̃	 �̃ �, and
���	 �� �, respectively, by

Q̃�A� 
= EP̃
[
χ̃T�A

] ∀ A ∈ �̃ 	(3.19)

�Q�A� 
= E
�P[�χT�A

] ∀ A ∈ �� �(3.20)

Then, with

Ỹt 
= Ĩt +
d1∑
k=1

∫ t

0
π̃uh

k du	 �Yt 
= �It +
d1∑
k=1

∫ t

0
π̄uh

k du	 t ∈ �0	T�(3.21)

and

σ̃t 
= π̃t/χ̃t	 σ̄t 
= π̄t/�χt ∀ t ∈ �0	T�	(3.22)

we see, as in Remark 2.10 and Remark 2.13, that the pairs ���̃	 �̃ 	 ��̃t�	 Q̃�,
�σ̃t	 Ỹt�� and ����	 �� 	 � ��t�	 �Q�	 �σ̄t	 �Yt�� are weak solutions of the unnormal-
ized filter equation, with

σ̃0 = σ̄0 = µ�

For a complete separable metric space E, let CE�0	T� denote the complete
separable metric space of all continuous mappings from �0	T� into E with the
usual metric giving uniform convergence over �0	T�. Define

�̂ 
= C�+��d��0	T� ×C�+��d��0	T� ×C�d1 �0	T�	
which is a complete separable metric space with the usual product metric,
and let ω̂ = �ω1	ω2	ω3� be a generic member of �̂. By the Yamada–Watanabe
construction (see Theorem IV.1.1 of [4]), there exists P̂ ∈ � ��̂� such that:

YW.1 
P̂�ω1	ω3� = 
Q̃�σ̃	 Ỹ�.
YW.2 
P̂�ω2	ω3� = 
 �Q�σ̄	 �Y�.
YW.3 If ��̂	 �̂ 	 P̂� is the completion of ��̂	���̂�	 P̂�, and �̂t is the augmen-

tation of the σ-algebra σ�ω̂�s�	 s ∈ �0	 t�� with the null events of ��̂	 �̂ 	 P̂�,
∀ t ∈ �0	T�, then �ω3

t 	 t ∈ �0	T�� is a ��̂t�-Wiener process on ��̂	 �̂ 	 P̂�.

From YW.1, YW.2 and YW.3, along with Exercise IV.5.16 of [12], it follows
that ���̂	 �̂ 	 ��̂t�	 P̂�	 �ω1	ω3�� and ���̂	 �̂ 	 ��̂t�	 P̂�	 �ω2	ω3�� are weak solu-
tions for the unnormalized filter equation with

ω1
0 = ω2

0 = µ	
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and hence, from Theorem 2.21(i),

P̂�ω1
t = ω2

t ∀ t ∈ �0	T�� = 1�(3.23)

From (3.22) we see that

π̃tφ = �σ̃tφ��σ̃t1� ∀ t ∈ �0	T�	 φ ∈ B��d�	(3.24)

and so, from (3.21),

Ĩkt = Ỹk
t −

d1∑
k=1

∫ t

0
�σ̃u1��σ̃uh

k�du ∀ k = 1	2	 � � � 	 d1	 t ∈ �0	T��(3.25)

From (3.24) and (3.25) there exists a measurable mapping 4
 C�+��d��0	T� ×
C�d1 �0	T� → C� ��d��0	T� ×C�d1 �0	T� such that

�π̃	 Ĩ� = 4�σ̃	 Ỹ��(3.26)

Now (3.24) and (3.25) continue to hold with “overbar” in place of “tilde,” and
hence

�π̄	�I� = 4�σ̄	 �Y��(3.27)

Thus, for each % ∈ ��C� ��d��0	T�×C�d1 �0	T��, we see from (3.19), (3.26) and
YW.1 that

P̃
(�π̃	 Ĩ� ∈ %

) = EQ̃
[
�σ̃T1�−1I%

(
4�σ̃	 Ỹ�)]

= EP̂
[(
ω1

T1
)−1

I%
(
4
(
ω1	ω3))]	(3.28)

and, from (3,23), (3.27) and YW.2, we similarly have

�P(�π̄	�I� ∈ %
) = E

�Q
[
�σ̄T1�−1I%

(
4�σ̄	 �Y�)]

= EP̂
[(
ω2

T1
)−1

I%
(
4�ω2	ω3�)]�(3.29)

Now (3.23), (3.28) and (3.29) show that P̃��π̃	 Ĩ� ∈ %� = �P��π̄	�I� ∈ %�, as
required.

The Proof of Theorem 2.21(iii) is an obvious simplification of the proof of
Theorem 2.21(ii) and is omitted.

Proof of Theorem 2.26. Let ���̃	 �̃ 	 ��̃t�	 Q̃�	 �σ̃i
t 	 Ỹt��	 i = 1	2 be two

weak solutions of the unnormalized filter equation. Define

σ̃3
t �·� 
=

σ̃1
t �·� + σ̃2

t �·�
2

	 t ∈ �0	T��

It then follows that ���̃	 �̃ 	 ��̃t�	 Q̃�	 �σ̃3
t 	 Ỹt�� is a weak solution of the unnor-

malized filter equation. Therefore, the postulated uniqueness in joint law
together with Fact 3.2 implies that for an arbitrary φ ∈ C∞

c ��d�∪�1� we have

2EQ̃

[(
σ̃1
t φ+ σ̃2

t φ

2

)2
]
− EQ̃

[(
σ̃1
t φ
)2]− EQ̃

[(
σ̃2
t φ
)2] = 0 ∀ t ∈ �0	T��
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Rearranging this expression gives

EQ̃
[(
σ̃1
t φ− σ̃2

t φ
)2] = 0 ∀ t ∈ �0	T��(3.30)

Since Ĉ��d� is separable (in the supremum norm), it follows that C∞
c ��d� is

likewise separable, and therefore, by Problem 5.4.25 of [5], there is a countable
determining set for �+��d� in C∞

c ��d�∪�1�. Then (3.30) shows that �σ̃1
t � and

�σ̃2
t � are modifications of each other, hence indistinguishable (since �σ̃1

t � and
�σ̃2

t � are continuous). ✷

4. Proof of Lemma 3.5. For arbitrary f1	 f2 ∈ C∞
c ��d� put

	̃ �f1 ⊗ f2� 
= f1 ⊗ �	 f2� + �	 f1� ⊗ f2

+
d1∑
k=1

[(
hkf1

)⊗ (
hkf2

)+ (
hkf1

)⊗ (
�kf2

)
+(�kf1

)⊗ (
hkf2

)+ (
�kf1

)⊗ (
�kf2

)]
	

(4.1)

where 	 and �k are given by (2.7). We need the following lemma, the proof
of which is given in Section 5.

Lemma 4.1. Suppose Conditions 2.18–2.20 hold, let ���̃	 �̃ 	 ��̃t�	 Q̃�	 �σ̃i
t ,

Ỹt��, i = 1	2	 be weak solutions of the unnormalized filter equation, and
define the �+��2d�-valued functions �ν12

t 	 t ∈ �0	T��, �ν11
t 	 t ∈ �0	T��, and

�ν22
t 	 t ∈ �0	T��, as in (3.4) and (3.6). Then, for each f1	 f2 ∈ C∞

c ��d�, we have

ν12
t �f1 ⊗ f2� = ν12

0 �f1 ⊗ f2� +
∫ t

0
ν12
u �	̃ �f1 ⊗ f2��du ∀ t ∈ �0	T�	(4.2)

with identical relations for ν11
· and ν22

· in place of ν12
· .

By direct evaluation of the right-hand side of (4.1) it is easy to establish:

Lemma 4.2. For 	̃ and �	 defined in (4.1) and (4.14), respectively, we have

	̃ �f1 ⊗ f2��x� = �	 �f1 ⊗ f2��x� + h̄�x��f1 ⊗ f2��x� ∀ x ∈ �2d	(4.3)

for each f1	 f2 ∈ C∞
c ��d�.

Define

�̃ 
= span�f1 ⊗ f2
 f1	 f2 ∈ C∞
c ��d���(4.4)

Putting Lemmas 4.2 and 4.1 together, we see that the mappings �ν12
t 	 t ∈

�0	T��, �ν11
t 	 t ∈ �0	T�� and �ν22

t 	 t ∈ �0	T��, defined at (3.4) and (3.6), are
�+��2d�-valued solutions of the evolution equation for � �	 + h̄	 �̃ �; that is,

ν12
t f = ν12

0 f+
∫ t

0
ν12
u � �	 f+ h̄f�du ∀ t ∈ �0	T�	 ∀ f ∈ �̃ 	(4.5)
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with identical relations for ν11
· and ν22

· in place of ν12
· . In order to prove Lemma

3.5, it remains to show that (4.5) holds not only for f ∈ �̃ , but for each f in the
larger domain span�1	C∞

c ��2d��. That is, it must be shown that the mappings
�ν12

t 	 t ∈ �0	T��, �ν11
t 	 t ∈ �0	T�� and �ν22

t 	 t ∈ �0	T�� are �+��2d�-valued
solutions of the evolution equation for � �	 + h̄	 span�1	C∞

c ��2d���. To this end
we need the following result, whose proof is deferred to Section 5:

Lemma 4.3. Suppose Conditions 2.18–2.20 hold. Then the closure of the
relation ��f	 �	 f�
 f ∈ �̃� in the supremum norm of B��2d�×B��2d� contains
the relation ��f	 �	 f�
 f ∈ C∞

c ��2d��.

From Lemma 4.3 and the notions of bp-closedness and bp-closure of a relation
(see foot of page 111 of [3]), we see that

��f	 �	 f�
 f ∈ C∞
c ��2d�� ⊂ bp-closure ��f	 �	 f�
 f ∈ �̃��(4.6)

Now put

S12 
=
{
�f	g� ∈ B��2d� ×B��2d�
 ν12

t f

= ν12
0 f+

∫ t

0
ν12
s �g + h̄f�ds ∀ t ∈ �0	T�

}
	

(4.7)

and observe that S12 is a linear relation. By (3.5) we have

sup
0≤t≤T

ν12
t ��2d� < ∞	

and therefore, since h̄ ∈ B��2d�, it follows from the dominated convergence
theorem that the linear relation S12 is bp-closed in B��2d� × B��2d�. Since
the �+��2d�-valued mapping �ν12

t 	 t ∈ �0	T�� solves the evolution equation
for � �	 + h̄	 �̃ �, we have ��f	 �	 f�
 f ∈ �̃� ⊂ S12, and therefore, from the
bp-closedness of S12 and (4.6), we have

��f	 �	 f�
 f ∈ C∞
c ��2d�� ⊂ S12�(4.8)

Next, observe from (3.15) and Problem 4.11.12 of [3] that the operator
� �	 	C∞

c ��2d�� is conservative, and hence (see page 166 of [3]) we have

�1	0� ∈ bp-closure ��f	 �	 f�
 f ∈ C∞
c ��2d���(4.9)

In light of (4.8), (4.9), and the bp-closedness of S12, we then get

�1	0� ∈ S12�(4.10)

Now (4.8), (4.10), and linearity of the relation S12 shows that

��f	 �	 f�
 f ∈ span�1	C∞
c ��2d��� ⊂ S12	

which, in view of (4.1) shows that �ν12
t 	 t ∈ �0	T�� is an �+��2d�-valued

solution of the evolution equation for � �	 + h̄	 span�1	C∞
c ��2d���. Defining

S11 as in (4.7), but with ν11 in place of ν12, we can similarly show that



202 V. M. LUCIC AND A. J. HEUNIS

�ν11
t 	 t ∈ �0	T�� is an �+��2d�-valued solution of the evolution equation for

� �	 + h̄	 span�1	C∞
c ��2d���, and likewise for �ν22

t 	 t ∈ �0	T��. ✷

5. Proofs of technical results.

Proof of Fact 3.2. Fix some α ∈ �1	∞�. Since σ̃0 takes values in � ��d�,
we see from (2.16) with φ ≡ 1 that

σ̃t1 = 1 +
∫ t

0

d1∑
k=1

(
σ̃sh

k

σ̃s1

)
�σ̃s1�dỸk

s �

This gives (see Exercise IV.3.10(1) of [12])

σ̃t1 = �

(
d1∑
k=1

(
σ̃hk

σ̃1
· Ỹk

))
t

	(5.1)

and hence

�σ̃t1�α = M̃t exp

(
α�α− 1�

2

d1∑
k=1

∫ t

0

∣∣∣∣ σ̃sh
k

σ̃s1

∣∣∣∣2 ds
)

≤ M̃t exp

(
α�α− 1�

2
	h	T

)
∀ t ∈ �0	T�	

(5.2)

for

M̃t 
= �

(
α

d1∑
k=1

(
σ̃hk

σ̃1
· Ỹk

))
t

and 	h	 
= sup
x∈�d

�h�x���

Now Condition 2.20 ensures that the processes ��σ̃th
k�/�σ̃t1�	 t ∈ �0	T�� are

uniformly bounded (by 	hk	), and therefore ��M̃t	 �̃t�	 t ∈ �0	T�� is a contin-
uous martingale on ��̃	 �̃ 	 Q̃�, with M̃0 = 1. Taking Q̃-expectations in (5.2)
then gives

EQ̃
[�σ̃t1�α

] ≤ exp
(α�α− 1�

2
	h	T

)
∀ t ∈ �0	T��(5.3)

Again, by (5.1) and uniform-boundedness of the processes ��σ̃th
k�/�σ̃t1�	 t ∈

�0	T�� we see that ��σ̃t1	 �̃t�	 t ∈ �0	T�� is a continuous martingale on
��̃	 �̃ 	 Q̃�, which, in light of (5.3), is Lα-bounded. Thus, by Doob’s inequal-
ity, there is some γ�α� ∈ �0	∞� such that (3.2) holds. ✷

Proof of Lemma 4.1. Fix f1	 f2 ∈ C∞
c ��d�. Since ��̃	 �̃ 	 ��̃t�	 Q̃�	

�σ̃i
t 	 Ỹt��	 i = 1	2 are weak solutions of the unnormalized filter equations,
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we have

σ̃i
t fi = σ̃i

0fi +
∫ t

0
σ̃i
u�	 fi�du

+∑
k

∫ t

0
σ̃i
u�hkfi +�kfi�dỸk

u	 i = 1	2�
(5.4)

Expand the product of semimartingales ��σ̃1
t f1��σ̃2

t f2�� by Itô’s formula, and
note that each stochastic integral in this expansion is with respect to a
Q̃-standard Wiener process ��Ỹk

t 	 �̃t��, k = 1	2	 � � � 	 d1. Fact 3.2 ensures that
these stochastic integrals are genuine Q̃-martingales, and therefore have
Q̃-expectation identically zero. Upon taking Q̃-expectations on each side of the
resulting expansion of ��σ̃1

t f1��σ̃2
t f2�� and using (4.3) and (3.7), we get (4.2).

The corresponding identities for ν11
· and ν22

· are similarly obtained. ✷

Proof of Lemma 4.3. Fix arbitrary ε ∈ �0	∞� and g ∈ C∞
c ��2d�. Put

BR 
= �x ∈ �2d
 �x� ≤ R�	 R ∈ �0	∞�	
and fix R such that supp�g� ⊂ BR. Also fix some q ∈ C∞

c ��d� such that

	q	 ≤ 1�(5.5a)

q�z� = 1 ∀ z ∈ �d with �z� ≤ R�(5.5b)

q�z� = 0 ∀ z ∈ �d with �z� ≥ R
√

2�(5.5c)

By Proposition 7.1 in Appendix 7 of [3], there exists a polynomial p
 �2d → �
such that

max
x∈B2R

�g�x� − p�x�� < ε�(5.6a)

max
x∈B2R

�∂ig�x� − ∂ip�x�� < ε ∀ i = 1	 � � � 	2d�(5.6b)

max
x∈B2R

�∂i∂jg�x� − ∂i∂jp�x�� < ε ∀ i	 j = 1	 � � � 	2d�(5.6c)

Since g�x� = 0 when x  ∈ BR, we note from (5.6a) that

sup
x∈B2R\BR

�p�x�� < ε�(5.7)

For all x ∈ �2d, put x 
= �x1	 x2�, x1	 x2 ∈ �d, and define

q̄�x� 
= q�x1�q�x2�	
f�x� 
= q̄�x�p�x��

Since q ∈ C∞
c ��d� and p�x� is a polynomial in x = �x1	 x2�, it follows that

f ∈ �̃ [recall (4.4)]. From (5.5), we have q̄�x� = 0 when x  ∈ B2R and q̄�x� = 1
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when x ∈ BR. Thus

	f− g	 = sup
x∈�2d

�q̄�x�p�x� − g�x�� = max
x∈B2R

�q̄�x�p�x� − g�x��

≤ max
x∈BR

�p�x� − g�x�� + sup
x∈B2R\BR

�q̄�x�p�x� − g�x��	

hence (5.6) and (5.7) give

	f− g	 ≤ ε+ sup
x∈B2R\BR

�p�x�� ≤ 2ε�(5.8)

Next, consider 	 �	 f− �	 g	. From (3.14) we have

�	 f�x� = q̄�x� �	 p�x� + p�x� �	 q̄�x� + �∇p�x��Tā�x�∇q̄�x��(5.9)

By the choice of R we have g�x� = 0 and therefore �	 g�x� = 0	 ∀ x  ∈ BR.
Moreover, from (5.5c), we have q̄�x� = 1, and therefore ∇q̄�x� = 0 and �	 q̄�x� =
0, ∀ x ∈ BR. Similarly, q̄�x� = 0, and therefore �	 q̄�x� = 0, ∀ x  ∈ B2R. Then,
it follows from (5.75) that

	 �	 f− �	 g	 = sup
x∈B2R

�q̄�x� �	 p�x� + p�x� �	 q̄�x�

+ �∇p�x��Tā�x�∇q̄�x� − �	 g�x��
≤ sup

x∈BR

�q̄�x� �	 p�x� + p�x� �	 q̄�x�

+ �∇p�x��Tā�x�∇q̄�x� − �	 g�x��
+ sup

x∈B2R\BR

�q̄�x� �	 p�x� + p�x� �	 q̄�x� + �∇p�x��Tā�x�∇q̄�x��

= sup
x∈BR

� �	 p�x� − �	 g�x�� + sup
x∈B2R\BR

��q̄�x� �	 p�x��

+ �p�x� �	 q̄�x�� + ��∇p�x��Tā�x�∇q̄�x����

(5.10)

Since ā and b̄ are locally bounded, we have

C1 
= sup
x∈B2R

(
2d∑
i=1

�b̄i�x�� + 1
2

2d∑
i	j=1

�āij�x��
)
< ∞�

Also let

C2 
= 	q̄	 +∑
i

	∂iq̄	 +
∑
i	j

	∂i∂jq̄	 < ∞�

Then by (5.6),

sup
x∈BR

� �	 p�x� − �	 g�x�� < C1ε�(5.11)

Similarly, by (5.6) and the fact that g�x� = 0	 ∀x ∈ B2R\BR, we obtain

�∂ip�x�� < ε	

� �	 p�x�� < C1 ε	

}
∀x ∈ B2R\BR	
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and hence, from these bounds and (5.7),

sup
x∈B2R\BR

(�q̄�x� �	 p�x�� + �p�x� �	 q̄�x�� + ��∇p�x��Tā�x�∇q̄�x��)
≤ εC1 + εC1C2 + εC1C2�

(5.12)

Now, upon combining (5.10), (5.11) and (5.12) we have

	 �	 g − �	 f	 ≤ 2ε �C1 +C1C2�	(5.13)

and the result follows. ✷

6. Proof of Theorem 3.6.

Remark 6.1. In view of Remark 1 on page 345 of [2], with no loss of
generality we suppose that λ ∈ B��q� is a nonnegative mapping, and that the
constant K in (3.17) is such that 0 ≤ λ�x� ≤ K, ∀x ∈ �q.

We first show that the evolution equation for �� −λ	� �� �� has uniqueness
in the class of �+��q�-valued solutions over the interval �0	∞�. Thus, let
�µt	 t ∈ �0	∞�� be such a solution, hence

µtf = µ0f+
∫ t

0
µs��f− λf�ds ∀ t ∈ �0	∞� ∀ f ∈ � �� ��(6.1)

Since �1	0� ∈ � , it follows from (6.1) that

µt��q� = µ0��q� −
∫ t

0
µsλds ∀ t ∈ �0	∞�

and therefore µt��q� ∈ �0	1�, ∀ t ∈ �0	∞� [since µ0 is a probability measure
and, by Remark 6.1, λ�·� is nonnegative]; that is, each µt is a subprobability
measure on ���q�.

Remark 6.2. We are going to use Theorem 6.4 (which follows) to establish
uniqueness in the class of �+��q�-valued solutions of the evolution equation
for �� − λ	� �� ��. However, Theorem 6.4 provides uniqueness in the class of
probability measure-valued solutions of an evolution equation (recall Remark
3.1), and we have seen that, for an �+�E�-valued solution �µt	 t ∈ �0	∞�� of
the evolution equation for �� − λ	� �� ��, the µt are only subprobability mea-
sures on �q. We shall therefore use an idea of Bhatt and Karandikar (see page
344 of [2]), and add a “point at infinity” to get a one-point compactification �q∗

of �q. Then the subprobability measures µt on �q are extended to probability
measures µ∗

t on �q∗ [see (6.2)], and it will be seen that the resulting func-
tion �µ∗

t 	 t ∈ �0	∞�� is a � ��q∗�-valued solution of the evolution equation
for an operator � ∗ ⊂ B��q∗� ×B��q∗� which is an “extension” of the operator
�� −λ� ⊂ B��q�×B��q� (see (6.4)]. Theorem 6.4 will then be used to establish
uniqueness in the class of � ��q∗�-valued solutions of the evolution equation
for � ∗, and this in turn will yield uniqueness in the class of the �+��q�-valued
solutions of the evolution equation (6.1), as required.
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We use < to denote the point at infinity in the one-point compactification �q∗

of �q. Also, members of B��q∗� and operators on B��q∗� will be superscripted
with “∗”, and, for f∗ ∈ B��q∗�, we write f∗��q to denote the restriction of f∗ to
the domain �q.

Using the postulated �+��q�-valued solution �µt	 t ∈ �0	∞�� of the evolu-
tion equation for �� − λ	� �� ��, define µ∗

t ∈ � ��q∗�, ∀ t ∈ �0	∞�, as follows:

µ∗
t �%� 
= µt�% ∩ �q� + �1 − µt��q��I%�<� ∀ % ∈ ���q∗��(6.2)

Next, define the linear operator � ∗:� �� ∗� ⊂ C��q∗� → B��q∗� by

� �� ∗� 
= �f∗ ∈ C��q∗�
 f∗��q − f∗�<� ∈ C∞
c ��q��	(6.3a)

� ∗f∗�x� 
= � �f∗��q − f∗�<���x� ∀ x ∈ �q	 ∀f∗ ∈ � �� ∗�	(6.3b)

� ∗f∗�<� 
= 0 ∀ f∗ ∈ � �� ∗��(6.3c)

Finally, define linear operator � ∗
 � �� ∗� ⊂ C��q∗� → B��q∗� by

� ∗f∗�x� 
= � ∗f∗�x� − λ�x��f∗�x� − f∗�<��
∀ x ∈ �q∗ ∀ f∗ ∈ � �� ∗� 
= � �� ∗��(6.4)

From (6.2) and (6.1) one easily checks that �µ∗
t 	 t ∈ �0	∞�� solves the evolution

equation for �� ∗	� �� ∗��, namely

µ∗
tf

∗ = µ∗
0f

∗ +
∫ t

0
µ∗
s�� ∗f∗�ds ∀ t ∈ �0	∞�	 ∀ f∗ ∈ � �� ∗�	(6.5)

Remark 6.3. We clearly have the following: if the evolution equation for
�� ∗	� �� ∗�� has uniqueness in the class of � ��q∗�-valued solutions over
�0	∞�, then the evolution equation for �� − λ	� �� �� must have uniqueness
in the class of �+��q�-valued solutions over �0	∞�. It therefore remains to
establish the former type of uniqueness, and for this purpose we shall use the
following special case of Theorem 2.7(c) from [9].

Theorem 6.4. Suppose that F is a compact metric space, �0
 � ��0� ⊂
�C��q∗� → �C��q∗ ×F� is a linear operator, and η is a transition function from
�q∗ to F. Define

�0
ηf

∗�x� 
=
∫
F
�0f∗�x	y�η�x	dy� ∀ x ∈ �q∗	

∀ f∗ ∈ � ��0
η� 
= � ��0��

(6.6)

Suppose also that (i) � ��0� is closed under multiplication and separates points,
(ii) �0

yf
∗ ≡ �0f∗�·	 y� is a pregenerator for each y ∈ F, and (iii) �0

η satisfies
the following separability hypothesis: there exists some countable �g∗

k� ⊂ � ��0
η�

such that the graph of �0
η is included within the bp-closure of the linear span of

��g∗
k	�

0
ηg

∗
k��. With these conditions we have the following: if uniqueness holds
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for the martingale problem for �0
η then the evolution equation for ��0

η	� ��0
η��

has uniqueness in the class of � ��q∗�-valued solutions over the interval �0	∞�.

Define the compact metric space

F 
={y=�y1	y2	y3�∈�q×q
+ ×�q×�
 �yij

1 �≤K	 �yi
2�≤K	 0≤y3≤K

}
	

and, motivated by Example 3.4 of [11], for each y ∈ F define the linear oper-
ator 
y on �C��q� by


yf�x� 
=
∑
i

�1 + �x��yi
2 ∂if�x� + 1

2

∑
i	 j

�1 + �x�2�yij
1 ∂i∂jf�x�

∀ x ∈ �q	 f ∈ � �
y� 
= C∞
c ��q��

(6.7)

Also, put � ��0� 
= � �� ∗� (see [see (6.3)] and

�0f∗�x	y� 
= 
y�f∗��q − f∗�<���x� − y3�f∗�x� − f∗�<��
∀ f∗ ∈ � ��0�	 ∀ �x	y� ∈ �q ×F	

(6.8a)

�0f∗�<	y� 
= 0 ∀ f∗ ∈ � ��0�	 ∀ y ∈ F�(6.8b)

This defines a linear mapping �0
 � ��0� ⊂ �C��q∗� → �C��q∗ ×F�. Next, fix an
arbitrary ȳ ∈ F, and define a transition function η from �q to F by

η�x	 %� 
= δ�a�x�/1+�x�2	b�x�/1+�x�	λ�x���%�	 x ∈ �q	 % ∈ ��F�	(6.9a)

η�<	%� 
= δȳ�%�	 % ∈ ��F��(6.9b)

Putting together (6.4), (6.7), (6.8) and (6.9), we get

� ∗ ≡ �0
η	(6.10)

[where �0
η is given by (6.6) in terms of the operator �0 in (6.8) and the transi-

tion function η in (6.9)]. We next check the conditions of Theorem 6.4 for �0 and
η given by (6.8) and (6.9): (i) From (6.3) it follows that � ��0� 
= � �� ∗� is closed
under multiplication and separates points. (ii) Fix y ∈ F and ν∗ ∈ � ��q∗�, and
define the linear operator 
 ∗

y on C��q∗� by � �
 ∗
y � 
= � �� ∗� and


 ∗
y f

∗�x� 
= 
y�f∗��q − f∗�<���x� ∀ x ∈ �q	 
 ∗
y f

∗�<� 
= 0 ∀ f∗ ∈ � �
 ∗
y ��

Clearly 
y given by (6.7) satisfies the positive maximum principle, thus
Theorem 4.5.4 of and [3] gives existence of a solution of the D�q∗ �0	∞�-
martingale problem for �
 ∗

y 	 ν
∗�.

Then, for the linear operator �0
y on C��q∗� given by � ��0

y� 
= � �� ∗� and

�0
yf

∗�x� 
= 
 ∗
y f

∗�x� − y3�f∗�x� − f∗�<�� ∀x ∈ �q∗	 ∀ f∗ ∈ � ��0
y�	

it follows from Theorem 4.10.2 of [3] that there exists a solution of the
D�q∗ �0, ∞�-martingale problem for ��0

y	 δx�, ∀ x ∈ �q∗, and therefore �0
y

is a pre-generator (see remark at foot of page 4 in [9]). (iii) From Remark
2.5 of [9] there is a sequence �gk� ⊂ C∞

c ��q� such that the graph of � is
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included within the bp-closure of the linear span of ��gk	�gk��. Now define
g∗
k	q�x� 
= gk�x�+q, ∀ x ∈ �q, g∗

k	q�<� 
= q, k = 1	2	 � � �, q rational. From (6.4)
it follows that the countable set �g∗

k	 q� is a subset of � �� ∗� and the graph
of � ∗ is contained in the bp-closure of the linear span of ��g∗

k	 q	�
∗g∗

k	 q��.
In view of (6.10) we have thus verified condition (iii) of Theorem 6.4. Finally,
note that uniqueness holds for the martingale problem for � ∗. Indeed, observe
from Theorem 8.1.7 of [3] that the martingale problem for � is well posed, from
which it easily follows that the D�q∗ �0	∞�-martingale problem for � ∗ is well
posed, and hence Theorem 4.10.2 of [3] shows that the D�q∗ �0	∞�-martingale
problem for � ∗ is well posed. Now it easily follows from Theorem 4.3.6 of [3]
that uniqueness holds for the martingale problem for � ∗. We thus conclude
from Theorem 6.4 and (6.10) that the evolution equation for �� ∗	� �� ∗�� has
uniqueness in the class of � ��q∗�-valued solutions over �0	∞�, and hence (see
Remark 6.3) the evolution equation for �� − λ	� �� �� has uniqueness in the
class of �+��q�-valued solutions over �0	∞�.

It finally remains to establish that the evolution equation for �� −λ	� �� ��
has uniqueness in the class of �+��q�-valued solutions over the finite interval
�0	T�. Let �µt	 t ∈ �0	T�� be such a solution. Extend µ· from �0	T� to �0	∞�
by defining

µt�%� 
=
∫
�q
Ex

[
I%�ωt� exp

(∫ t−T

0
−λ�ωs�ds

)]
µT�dx�

∀ t ∈ �T	∞�	 ∀ % ∈ ���q�	
where Px ∈ � �C�q�0	∞��, x ∈ �q, is the probability measure on the space
C�q�0	∞� (of continuous functions from �0	∞� into �q) which solves the mar-
tingale problem for �� 	 δx�, and ω· denotes a generic element of C�q�0	∞�
(existence and uniqueness of Px follow from Theorem 8.1.7 of [3]). It is easily
checked that the mapping �µt	 t ∈ �0	∞�� is an �+��q�-valued solution of the
evolution equation for �� −λ	� �� ��, and therefore the evolution equation for
�� − λ	� �� �� must have uniqueness in the class of �+��q�-valued solutions
over the finite interval �0	T�. ✷
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