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LARGEST WEIGHTED DELAY FIRST SCHEDULING:
LARGE DEVIATIONS AND OPTIMALITY

By Alexander L. Stolyar and Kavita Ramanan
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We consider a single server system with N input flows. We assume
that each flow has stationary increments and satisfies a sample path large
deviation principle, and that the system is stable. We introduce the largest
weighted delay first (LWDF) queueing discipline associated with any given
weight vector α = �α1� � � � � αN�. We show that under the LWDF discipline
the sequence of scaled stationary distributions of the delay ŵi of each flow
satisfies a large deviation principle with the rate function given by a finite-
dimensional optimization problem. We also prove that the LWDF discipline
is optimal in the sense that it maximizes the quantity

min
i=1� ����N

[
αi limn→∞

−1
n

logP�ŵi > n�
]
�

within a large class of work conserving disciplines.

1. Introduction.

1.1. Quality of service requirements and the LWDF discipline. A very
important and challenging problem in the design of high-speed communica-
tion networks is that of providing quality of service (QoS) guarantees, usually
specified in terms of loss probabilities or delays of packets in the network. The
control of delays is often of crucial importance, especially for real-time appli-
cations like video. For example, the QoS requirements for each traffic flow
(customer class) can be specified in terms of a deadline Ti and an allowed
violation probability δi. More precisely, if there are N classes of users and
ŵi is the stationary customer delay of the ith class, then one would like to
determine if there exists a policy that would meet the given QoS constraints

P�ŵi > Ti� ≤ δi for i = 1� � � � �N�(1.1)

In this paper we restrict ourselves to a single node and address a related
asymptotic question. Suppose a set of positive constants (weights) α1� α2� � � � �
αN is fixed. For a nonnegative random variable X, let us use the notation

β�X� =̇ lim
n→∞ − 1

n
logP�X > n��
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assuming the limit exists. We ask the following question. Is there a discipline
G such that the asymptotic QoS requirements

β�ŵGi � ≥ α−1
i for i = 1� � � � �N(1.2)

are satisfied, where ŵGi is the stationary delay for class i with discipline G?
[Observe that when Ti is large and δi is small, the problem (1.2) can be related
to (1.1) by setting αi = −Ti/ log δi for all i.] We address the problem (1.2) by
considering the following equivalent optimization problem:

max
G

min
i=1� ����N

αiβ�ŵGi ��(1.3)

The problems are equivalent in the sense that (1.2) has a solution if and only
if the maximum in (1.3) is greater than or equal to 1.
We introduce the largest weighted delay first (LWDF) queueing (schedul-

ing) discipline, which is parametrized by a weight vector �α1� � � � � αN�. Roughly
speaking, this discipline always chooses for service the longest waiting cus-
tomer from the queue i for which the current weighted delay ŵi�t�/αi is max-
imal. Under the assumption that the input flows have stationary increments
and satisfy a sample path large deviation principle, and the system is sta-
ble, we prove that LWDF is an optimal solution to the problem (1.3). This
implies that if there is any disciplineG which solves problem (1.2), then LWDF
does so.
Note that if all weights αi are equal, LWDF reduces to the simple FIFO

discipline. Also note that LWDF is invariant with respect to the stochastic
structure of the input flows, in the sense that the algorithm itself relies only
on the weights αi which characterize the QoS requirements of the flows, and
not on the structure of the input flows.
To provide some intuition behind our result, note that if for a given disci-

pline G all β�ŵGi � are well defined, then

min
i=1� ����N

αiβ
(
ŵGi

) = β

(
max

i=1� ����N
ŵGi
αi

)
�(1.4)

Thus the problem (1.3) is reduced to that of maximizing (over all disciplines
G) the rate of decay of the tail of the stationary distribution of the maximal
weighted delay r̂G =̇ maxi=1� ����N ŵ

G
i /αi. We solve this problem using large

deviations techniques. First, we establish a large deviations principle (LDP)
for the sequence of scaled stationary maximal weighted delays under the
LWDF discipline. In particular, we characterize J∗, defined to be the quantity
in (1.4) with G equal to the LWDF discipline, in terms of a finite-dimensional
optimization problem. Then we establish optimality of the LWDF discipline
by showing that the value of (1.4) for any other discipline G is bounded above
by J∗.
The same technique used to establish the LDP for the maximal weighted

delay can also be used to derive the LDP for each sequence of scaled sta-
tionary delays ŵi under the LWDF discipline. Also it is clear that a Priority
discipline can be viewed as the “limit” of the LWDF discipline with parameters
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αi = εN−i� ε ↓ 0. (The lower flow index means higher priority.) This allows a
derivation of the LDP for the priority discipline from that of LWDF. We present
the corresponding results in Section 6.4.
In addition, in Section 7 we state an analogous result for the unfinished

work processes. In this case an optimal discipline is the largest weighted
(unfinished) work first (LWWF), which is defined in Definition 7.1. These
results can be obtained analogously (and in fact more easily) than the results
for the delays.
The QoS criterion we consider is expressed in terms of probabilistic bounds

on delays of packets within the network. The performance of delays in a queue-
ing system is often harder to analyze than that of queue lengths due to the fact
that systems with delays often do not admit a finite Markovian state repre-
sentation. However, as mentioned earlier, delays are often the crucial measure
of performance, especially for real time traffic like video, and also in certain
wireless settings [1]. In [11, 15] it was shown that the earliest deadline first
(EDF) discipline is optimal in the context of deterministic QoS guarantees (or
worst case delay bounds) for a single node. It is generally believed that deter-
ministic QoS requirements lead to an overly conservative admission policy,
and a consequent decrease in system throughput [8]. This motivates our con-
sideration of probabilistic QoS guarantees, which provide a very advantageous
trade-off of a little quality of service for a large capacity gain.
There is a vast body of literature on QoS guarantees in communication net-

works (see [3, 7, 13, 17, 19, 20, 22] for just a few examples). In much of the
work just cited, a policy is fixed a priori and the focus is then on performance
analysis. Our perspective is different. We fix the desired performance objec-
tive, and then try to determine the policy that is best suited to achieve it.
Other work that takes this perspective includes [12, 14, 18]. However these
papers focus on optimality in the heavy traffic regime. In contrast, this paper
provides a proof of optimality with respect to a large deviations criterion in
a queueing context. Previous analyses of optimization with respect to a large
deviations criteria have concentrated more on unconstrained diffusion pro-
cesses [6, 9]. Analysis of queueing processes, and in particular analysis of their
large deviation properties, is usually further complicated by the discontinu-
ities introduced by the state space constraints. Our optimality proof entails
a large deviations analysis of the LWDF discipline. Although the existence of
large deviation principles for sequences of scaled queue length processes have
been established for a relatively large class of queueing networks [5], the
problem of determining the rate function and characterizing optimal paths
has remained elusive for the vast majority of cases where there are multiple
classes, even for a single node. Most of the results in the single node case
have been limited to two classes [20, 19], where the analysis relies heavily on
the relative simplicity of planar geometry, with the multidimensional results
being rather few and restricted to queue lengths [7].
The outline of the paper is as follows. The basic notation used through-

out the paper is provided in Section 1.2. In Section 2.1 we state our basic
assumptions on the input flows and the class of disciplines considered, and
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then formulate the main result in Theorem 2.2. In Section 2.2 we introduce
some basic queueing operators that are used throughout the paper. The LWDF
discipline is defined and analyzed in Section 3. It is first defined for discrete
inputs in Section 3.1 and then extended in Sections 3.2 and 3.3 to include fluid
inputs. In Section 4 we analyze the infinite-dimensional variational problem
that characterizes the rate function for the sequence of scaled stationary max-
imal weighted delays under the LWDF discipline, although the proof of the
LDP is not given till Section 6. Theorem 4.4 shows that the variational prob-
lem can be reduced to a finite-dimensional one using the fact that the optimal
paths have a very simple structure. In Section 5 we prove a result which is not
used directly in the derivation of the main results of the paper, but neverthe-
less provides key insight into the optimality property of the LWDF scheduling
discipline. In Section 6 we present the proof of the main theorem, and derive
some important corollaries. Section 7 contains a result similar to our main
result, Theorem 2.2, that is valid for unfinished work processes. We conclude
in Section 8 with discussions of some open problems, future work and some
practical implications of our results.

1.2. Basic notation and definitions. Let � [respectively �+] be the space of
RCLL functions (i.e., right continuous functions with left limits) on �−∞�∞�
[respectively, [0, ∞)]. Unless otherwise specified, we assume � and �+ are
endowed with the topology of uniform convergence on compact sets (u.o.c.).
For any s ≥ 0 and f ∈ �N, we define the norm

�f�s =̇ max
i=1� ����N

sup
−s≤t≤s

�fi�s���

For f ∈ �N
+ the norm �f�s is defined similarly with −s replaced by 0 in the

above display. Thus convergence in �N or �N
+ is equivalent to convergence in

the corresponding norm � · �s for all s > 0. For f ∈ �N we use f�t−� to denote
the left limit limu↑t f�u� of the function f at the point t. As measurable spaces,
we always assume that � and �+ are endowed with the σ-algebra generated
by the cylinder sets. We now define some subspaces of � and �+ that will
be used often in the sequel. Let �+�0 be the subset of functions h in �+ such
that h�0� = 0. Let � be the space of functions in � which are nondecreasing,
piecewise constant, and have only a finite number of jumps on any finite time
interval, and let �+ (respectively, �+�0) be the subset of nonnegative functions
in �+ (respectively, �+�0) which are nondecreasing, piecewise constant, and
have only a finite number of jumps on any finite time interval. We use � to
denote the subset of nondecreasing functions in � , and�+ (respectively,�+�0)
the subset of nonnegative nondecreasing functions in �+ (respectively, �+�0).
Let � be the subset of continuous functions in�+�0, and let �a be the subset of
absolutely continuous functions in � . We assume that the subspaces inherit
the topology and σ-algebra of the original space. Given any space � �� N

represents the N times product space with the product topology and product
σ-algebra defined in the natural way. We define �N+ =̇ �x ∈ �N� xi ≥ 0� for
i = 1� � � � �N�.
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In this paper we use the notation

hn ⇒ h as n → ∞�
for h�hn ∈ �+ to denote convergence at every point of continuity of h. Although
we do not use this fact, we note that (since all hn and h are nondecreasing) this
convergence is equivalent to convergence in the SkorohodM1-topology [23].
Let� =̇ ���� �P� be a probability space. We assume that� is large enough

to support all the independent random processes that we use in the paper. We
denote by P∗�B� the inner measure (with respect to the probability P) of an
arbitrary subset B ⊂ �. If B ∈ � , then P∗�B� = P�B�. Given any subset
B of a topological space, we use B and B◦ to denote its closure and interior,
respectively. The infimum of a function over an empty set is interpreted as ∞.
We use � to denote the set of rational numbers. We let a ∧ b denote the
minimum of the scalars a and b.
We follow the convention of using bold font for stochastic processes and

roman font for deterministic processes.
We now give the definition of a large deviation principle ([4], page 5). Let 	

be a topological space and 
 a σ-algebra on 	 . Note that 
 is not necessarily
the Borel σ-algebra.

Definition 1.1 (LDP). A sequence of random variables �Xn� on � taking
values in a topological space �	 �
� is said to satisfy the LDP with rate func-
tion I if for all  ∈ 
,

lim sup
n→∞

1
n
logP�Xn ∈  � ≤ − inf

x∈ ̄
I�x�

and

lim inf
n→∞

1
n
logP�Xn ∈  � ≥ − inf

x∈ ◦
I�x��

where I� 	 → � ∪ �∞� is a function with compact level sets.

We define the scaling operator !c� c > 0, for elements Y ∈ �N (or �N
+ ) as

follows:

�!cY��t� =̇ 1
c
Y�ct��(1.5)

For a scalar b !cb =̇ b/c and for the pair �b�Y�� !c�b�Y� =̇ �b/c� !cY�. Given
an operator A� S → S′, where S and S′ belong to the function spaces defined
above, we say that A is scalable if for every f ∈ S and c > 0,

!cA�f� = A�!cf��(1.6)

2. Basic model. In Section 2.1 we state our assumptions and the main
result, and in Section 2.2 we introduce some basic operators that will be used
throughout the paper.
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2.1. Assumptions and main results. We consider a multiclass single server
queueing system with N input flows that satisfy the following assumptions.

Assumption 2.1 (Input flows).

(i) Each flow fi is a random process on � with stationary increments that
takes values in � .

(ii) The flows fi� i = 1� � � � �N, are mutually independent.
(iii) For each i, and every T < ∞, the sequence of processes �fni − fni �0�,

n = 1�2� � � �� restricted to �0�T� satisfies a LDP with rate function JiT given by

JiT�f� =̇
{∫ T

0
Li

(
ḟ�s�)ds� if f ∈ �a,

∞� otherwise,
(2.1)

where fn = !nf is the scaled version of f as defined in (1.5), Li is a convex
function taking values in �0�∞� such that Li�λi� = 0 for some λi ∈ �0�∞�,
Li�x� > 0 for x �= λi, and limx→∞Li�x�/x = ∞.

(iv) The server is not overloaded. In other words,

N∑
1

λi < 1�

The process fi�t� represents the cumulative amount of work of class i (mea-
sured in terms of the required service time) that has entered the system by
time t. A jump in fi�·� at time t corresponds to a “customer” arrival, with the
“service time” of that customer equal to the size of the jump fi�t� − fi�t−�.
Consider the class � of queueing (or scheduling) disciplines G such that:

1. G is work conserving.
2. Scheduling decisions at any time t are independent of both the future of the

process and the history of the process before the beginning of the current
busy period.

Let G be an arbitrary discipline in � . Given an input flow sample path
f ∈ � N, let τ̂Gi �t� be the arrival time of the “longest waiting” class i cus-
tomer present in the system at time t, including the customer(s) being served
at time t. [We will show later that this function is well defined for almost
all sample paths of the input flow process f = �f1� � � � � fN�.] By convention
we assume that τ̂Gi is right continuous, and set τ̂Gi �t� = t if there is no class
i customer in the system at time t. We refer to τ̂Gi =̇ �τ̂Gi �t��−∞ < t < ∞� as
the class i backlog process. Suppose we are given the set of positive weights,

0 < α1 ≤ α2 ≤ · · · ≤ αN�

Then we define the class i delay ŵGi and weighted delay r̂Gi processes and the
maximal weighted delay r̂G process in terms of the class i backlog process as
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follows. For t ≥ 0 and i = 1� � � � �N,

ŵGi �t� =̇ t− τ̂Gi �t��(2.2)

r̂Gi �t� =̇ ŵGi �t�/αi�(2.3)

r̂G�t� =̇ max
i
r̂Gi �t��(2.4)

We are interested in identifying a discipline that is optimal in the sense that
it maximizes the exponential decay rate of the stationary distribution of the
maximal weighted delay r̂G�·�. Our main result is that the largest weighted
delay first (LWDF) discipline introduced in Section 3 is optimal in a large
deviations sense as formulated below in Theorem 2.2.

Theorem 2.2. There exists J∗ < ∞ such that the following hold.

(i) For the LWDF scheduling discipline defined in Section 3, the upper
bound

lim sup
n→∞

1
n
logP

(
1
n
r̂�0� > 1

)
≤ −J∗(2.5)

holds, where r̂�0� is the stationary maximal weighted delay associated with the
LWDF discipline.

(ii) For any G ∈ � , we have the lower bound

lim inf
n→∞

1
n
logP∗

(
1
n
r̂G�0� > 1

)
≥ −J∗�(2.6)

where r̂G�0� is the stationary maximal weighted delay associated with the
discipline G.
(iii) Moreover, J∗ solves the following finite-dimensional optimization

problem:

J∗ = min
j x1� ����xj

1
γ

j∑
i=1

�1 − αiγ�Li�xi��(2.7)

subject to

j ∈ �1� � � � �N�� xi > 0�
j∑
i=1
xi > 1

and

1
αj+1

< γ =
∑j
i=1 xi − 1∑j
i=1 αixi

≤ 1
αj
�

with αN+1 =̇ ∞ by convention.
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Remark. A rigorous definition of the stationary maximal weighted delay r̂G

for an arbitrary discipline G ∈ � , and the proof of the theorem is presented in
Section 6. As we will see in Section 6, r̂G�·� need not in general be a measurable
function on the probability space. To allow for this generality, we use the notion
of inner measure in the lower bound [Theorem 2.2(ii) above].

2.2. Operators associated with a queueing discipline. Consider a fixed dis-
cipline G ∈ � . Suppose the server is empty at time 0, which means that
the left limit of the unfinished work in the system is equal to 0. Let a path
f ∈ � N

+ describe the input process starting at time 0. [If fi�0� > 0, it means
that a type i customer arrived at time 0 requiring a service time fi�0�.] By
assumption (2) in the definition of the class � , for each i� τ̂Gi �0� = 0 and the
“evolution” of τ̂Gi �·� from time 0 onwards depends only on the path f, and not
on the system behavior before t = 0. Given discipline G, we define ÂG to be
the operator

ÂG� � N
+ !→ �N

+�0

that maps f into the corresponding τ̂G =̇ ��τ̂Gi �t�� t ≥ 0�� i = 1� � � � �N�. It is
clear that for any f ∈ � N

+ � τ̂
G = ÂGf is such that for i = 1� � � � �N,

τ̂Gi �0� = 0 and τ̂Gi �t� ≤ t for t ≥ 0�

Once again by assumption (2) in the definition of the class � , the discipline
G is completely characterized by its “behavior” within a busy period. However
the points in time when new busy periods of the system start do not depend
on the queueing discipline, since all disciplines in � are work conserving. Thus
the operator ÂG associated with a discipline G completely characterizes the
evolution of all τ̂Gi �t� for all t ∈ �−∞�∞�. Moreover, if the discipline G ∈ � is
nonpreemptive, then the operator ÂG completely characterizes the discipline
itself.
We also introduce a related operator,

R̂G� � N
+ !→ �+�0�

which maps an input flow path f ∈ � N
+ into the corresponding maximum

weighted delay r̂G =̇ �r̂G�t�� t ≥ 0�. Clearly, each operator R̂G is uniquely
determined by the corresponding operator ÂG.

3. The largest weighted delay first discipline. In this section we
define the largest weighted delay first (LWDF) discipline. In Section 3.1 we
define the LWDF discipline for discrete input paths taking values in � N

+�0. In
Section 3.2 we introduce the notion of a virtual backlog process, which is then
used in Section 3.3 to extend the definition of LWDF to fluid input flow paths
f ∈ �N.
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3.1. The LWDF discipline for discrete inputs. In Section 2.1 we introduced
the backlog, delay, weighted delay and maximal weighted delay associated
with any queueing disciplineG and input flows in � N

+ . Recall that a discipline
is said to be nonpreemptive if the service of a customer cannot be interrupted
before its service has been completed. We now define the largest weighted
delay first (LWDF) discipline for input flows in � N

+ .

Definition 3.1 [The largest weighted delay first (LWDF) discipline]. The
LWDF discipline is a nonpreemptive, work conserving discipline that always
chooses for service the longest waiting (i.e., head-of-the-line) customer of the
flow i which has the maximal weighted delay r̂i�t� = r̂�t�. In case of a tie, by
convention the LWDF discipline chooses the class with the highest index.

Note that LWDF is first-in-first-out within each class. We drop the subscript
G for the LWDF discipline and denote the operators ÂG and R̂G associated
with the LWDF discipline simply by Â and R̂, respectively.

3.2. Virtual delays for LWDF. In the last section we introduced the oper-
ator Â that characterizes the LWDF discipline. We now introduce the related
operator

A� � N
+ !→ �N

+�0�

which maps f ∈ � N
+ (i.e., input flows starting at time 0) into the virtual back-

log process τ ∈ �N
+�0 defined below. The main reason for introducing the virtual

backlog process is that it enables one to extend the definition of the LWDF
discipline to continuous input sample paths f ∈ �N, as shown in the next
section. To define the operator A, as in the definition of the operator Â we
first assume that the system is empty at time 0– and consider a fixed f ∈ � N

+
which describes the input flows starting at time 0. Consider τ̂ =̇ Âf, and the
corresponding processes ŵi�·�� r̂i�·� for i = 1� � � � �N, and R̂f = r̂ = maxi r̂i.
We define the virtual backlog �τi�t�� t ≥ 0� for the flow i as follows. At any

time t when the system is empty, τi�t� = τ̂i�t� = t. Within a busy period of the
system, let

t0 < t1 < · · · < tk
be a (finite) sequence of time instants when a new customer arrival or a service
completion occurs. Then within this busy period the functions τi�·� are nonde-
creasing piecewise constant (namely, constant in each interval [tm� tm+1]) and
are defined by the following recursion. For every i = 1� � � � �N, let

τi�t0� =̇ τ̂i�t0� = t0�(3.1)

τi�tm+1� =̇ max
{
τi�tm�� tm+1 − αir̂�tm+1�

}
�(3.2)

We will refer to the recursion (3.2) as the “discrete system jump rule” (for the
LWDF discipline). It simply describes how far ahead each τi�·� is moved after
a service of a customer is completed.
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We defined the virtual delay, virtual weighted delay and the virtual maximal
weighted delay in the natural way as follows. For t ≥ 0 let

wi�t� =̇ t− τi�t��(3.3)

ri�t� =̇ wi�t�/αi�(3.4)

r�t� =̇ max
i
ri�t��(3.5)

We let R denote the operator which maps f ∈ � N
+ into r ∈ �+�0.

The backlog τ̂i�·� and the virtual backlog τi�·� are clearly closely related.
The following lemma summarizes the relation between the two.

Lemma 3.2. The virtual delay process τ satisfies the following properties:

(a) For all t ≥ 0,

τi�t� ≤ τ̂i�t� for i = 1� � � � �N�(3.6)

which implies that wi�t� ≥ ŵi�t� and ri�t� ≥ r̂i�t�. In addition, we have

r1�t� ≥ r2�t� ≥ · · · ≥ rN�t��(3.7)

and

τ1�t� ≥ τ2�t� ≥ · · · ≥ τN�t��(3.8)

(b) If the service of a customer of type i starts at time t, then

τi�t� = τ̂i�t��(3.9)

and consequently wi�t� = ŵi�t� and ri�t� = r̂i�t�. Moreover,

ri�t� = r�t� = r̂�t� = r̂i�t��(3.10)

r1�t� ≥ r2�t� ≥ · · · ≥ rN�t��(3.11)

τ1�t� ≥ τ2�t� ≥ · · · ≥ τN�t��(3.12)

k̂�t� = argmax
j
r̂j�t� ⊆ k�t� = argmax

j
rj�t��(3.13)

with the set k�t� having the form

k�t� = �1�2� � � � � i��(3.14)

Proof. Property (3.6) of statement (a) follows directly from (3.2). As far
as the proof of statement (b) is concerned, we only need to prove it within a
system’s busy period, which is easily done by induction of the “event” time
instants tm�m = 0�1� � � � � using again the recurrence (3.2). Then we get (3.7)
and (3.8) from (3.11) and (3.12). ✷
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3.3. Extension of operator A to fluid inputs. We now extend the domain
of the operator A (characterizing the LWDF discipline) that was defined on
� N

+ in the last section to include the space of continuous (or “fluid”) input
flows f ∈ �N. As shown in Theorem 3.3, the operator is naturally extended
to the space �N by continuity in the product topology induced by the “at the
continuity points” (⇒) convergence.

Theorem 3.3. Given f ∈ �N, there exists a unique

τ = ��τi�t�� t ≥ 0�� i = 1� � � � �N� ∈ �N
+�0

such that the following statements hold:

(a) For any sequence �f�n�� f�n� ∈ � N
+ � n = 1�2� � � �� such that

f�n� ⇒ f�(3.15)

we have

τ�n� =̇ Af�n� ⇒ τ�(3.16)

(b) Each function τi�·� is nondecreasing, right continuous, with
τi�0� = 0 and τi�t� ≤ t for t ≥ 0�(3.17)

(c) Define

τ̂i�t� =̇ sup
(
ξ �fi�ξ� = fi�τj�t−��) ∧ t

and let wi�·�� ri�·�� r�·� be defined in terms of τ, and ŵi�·�� r̂i�·� and r̂�·� in
terms of τ̂ as for the discrete system by the set of equations (2.2)–(2.4) and
(3.3)–(3.5). Then τ satisfies the following additional conditions:

(i) For i = 1� � � � �N and all t ≥ 0,

τi�t� ≤ τ̂i�t��(3.18)

(ii) The following “conservation law” holds for any t ≥ 0,

N∑
i=1
fi�τi�t�� = t+

[
inf
0≤ξ≤t

(
N∑
i=1
fi�ξ� − ξ

)]
∧ 0�(3.19)

(iii) If t ∈ argmin0≤ξ≤t�
∑N
i=1 fi�ξ� − ξ� and ∑N

i=1 fi�t� − t ≤ 0 �i.e., the fluid
system at time t is empty�� then for every i = 1� � � � �N,

τi�t� = t�(3.20)

(iv) If for some t� ri�t� < rj�t� and τj�t� = τ̂j�t�, then there exists ε > 0
such that for any θ ∈ �t� t+ ε�,

τi�θ� = τi�t��(3.21)

(v) The following “fluid system jump rule” holds for any t ≥ 0, and any
i ∈ �1� � � � �N�,

ri�t� = ri�t−� ∧ r̂�t��(3.22)
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(vi) For any t ≥ 0,

r1�t� ≥ r2�t� ≥ · · · ≥ rN�t��(3.23)

τ1�t� ≥ τ2�t� ≥ · · · ≥ τN�t��(3.24)

and for any t ≥ 0, there exists j such that

r�t� = rj�t� = r̂j�t� = r̂�t��(3.25)

Theorem 3.3 is a direct consequence of the following two propositions.

Proposition 1. Consider f ∈ �N and any sequence �f�n�� f�n� ∈ � N
+ � such

that

f�n� ⇒ f�

Then there exists a subsequence �f�nl�� ⊆ �f�n�� and τ ∈ �N
+�0 satisfying prop-

erties (3.17)–(3.25) such that

τ�nl� ⇒ τ�(3.26)

where τ�nl� =̇ Af�nl�.

Proposition 2. Given f ∈ �N, an element τ ∈ �N
+�0 satisfying proper-

ties (3.17)–(3.25) is unique.

Proof of Proposition 1. Given f ∈ �N and a sequence �f�n�� f�n� ∈ � N
+ �

such that f�n� ⇒ f, let τ�n� =̇ Af�n�. Since each function τ�n�
i �·� is nondecreas-

ing, and for any fixed t satisfies

τ
�n�
i �t� ≤ t�(3.27)

there exists a subsequence �nl� ⊆ �n� such that

τ
�nl�
i �q� → τ̄i�q�� q ∈ �� q ≥ 0�(3.28)

where recall that � is the set of rational numbers. Clearly τ̄i�·� is a nonde-
creasing function since each τ�nl�

i �·� is. We extend the definition of τi�·� to all
reals by right-continuity, that is for t ≥ 0 we set

τi�t� =̇ inf
q> t� q∈�

τ̄i�q��(3.29)

It follows immediately that τi�·� is nondecreasing, and
τ

�nl�
i �t� → τi�t�

at each point of continuity t of τi�·�, and thus we obtain
τ�nl� ⇒ τ�(3.30)

It remains to show that τ so defined satisfies (3.17) to (3.25). Property (3.18)
follows trivially from the definition of τ̂. Properties (3.23) and (3.24) of τ follow
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from the construction of τ and the corresponding properties (3.7) and (3.8) of
the prelimiting functions τ�nl�.
Before we proceed, let us notice that property (3.19) (along with all the

properties described in Lemma 3.2) holds with f and τ replaced by every
prelimit pair of functions f�nl� and τ�nl�, for any time t when the service of a
customer starts or, trivially, when the (fluid) system is empty. It is easy to see
that the set of such time points is asymptotically dense as nl → ∞, in the
sense that the following property holds. For any nl and t ≥ 0, we define s�nl��t�
to be the first time instant in �t�∞� at which either a new service of a customer
starts or the system is empty. Then

lim
nl→∞ s

�nl��t� = t ∀t ≥ 0�(3.31)

Indeed, if this were not true, there must exist ε > 0 such that for all suffi-
ciently large nl, nowhere in �t� t + ε� does a new service start or the system
become empty. This would mean that for all sufficiently large nl a single cus-
tomer is served in that interval, which implies that for all sufficiently large nl
at least one of the functions f�nl�

i �·� has a jump of size at least ε in the interval
[0, t]. This contradicts the u.o.c. convergence

f
�nl�
i �·� → fi�·� for every i�

This proves property (3.31).
For notational convenience, let us denote by V̂ the “completed work” map-

ping which maps each f ∈ �N
+�0 into the function V̂f ∈ �+ defined by the

right-hand side (RHS) of (3.19). It is well known that V̂f ∈ � for any f ∈ �N
+�0,

and the mapping V̂ is continuous on the elements f ∈ �N.
We now prove property (3.19). Using the fact that the RHS of (3.19) is equal

to V̂f and is therefore a continuous function, and using property (3.31), we
infer that (3.19) holds at every time twhere all τi�·� are continuous. Then using
right-continuity of all τi�·�, and again the continuity of the RHS of (3.19), we
get (3.19) for all t ≥ 0.
We introduce some more notation to prove the remaining properties. For

a nondecreasing function h ∈ �+ a time t ≥ 0 will be called a right point of
growth of h if

h�t� < h�ξ� for all ξ > t�

The proof of property (3.20) is by contradiction. Suppose, at some fixed time t
the fluid system is empty, but τi∗�t� < t for some i∗. If t is not a right point of
growth of any of the functions fi�·�, then it is easy to see that for any ε > 0, for
all sufficiently large nl, there exists a time x�nl� ∈ �t� t+ ε� when the prelimit
system with index nl must be empty, which means τ�nl�

i �x�nl�� = x�nl�� ∀ i.
This would imply τ�nl�

i �t + ε� ≥ t� ∀ i, and therefore τi�t + ε� ≥ t� ∀ i. By
right-continuity of each τi�·� we get τi�t� ≥ t�∀ i, a contradiction.
Now suppose t is a right point of growth of at least one function fi�·�.

Notice that for every i� fi�τi�t�� = fi�t� due to the conservation law and the
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fact that the (fluid) system is empty at time t. From the latter observation
and the conservation law we see that for at least one fixed k, and any ε > 0,
we have τk�t + ε� > t [and τk�t + ε� ≤ t + ε, of course]. On the other hand
for any small δ1 > 0, there exists δ > 0 such that for any ξ ∈ �t� t + δ�,
τi∗�ξ� ≤ τi∗�t� + δ1. This means that the sequence of prelimit systems is such
that for all large nl, there exists a time y�nl� ∈ �t� t+ ε� such that the service
of a type k customer (that arrived after time t) starts, and yet τ�nl�

i∗
�y�nl�� ≤

τi∗�t� + 2δ1. Since for a fixed small δ1 > 0 (and the corresponding δ > 0), we
can choose ε ∈ �0� δ� arbitrarily small, this leads to a contradiction with the
LWDF scheduling rule, namely with the property (3.10) saying that if (in a
prelimit system with index nl) a type k customer is chosen for service at time
ξ, then r�nl�

k �ξ� = maxi r
�nl�
i �ξ�. This completes the proof of property (3.20).

We now prove property (3.22). First, let us observe that if at time t the fluid
system is empty; that is, we are in the conditions of statement (c)(iii) of the
theorem, then (3.20) holds and therefore (3.22) holds trivially. So we only need
to consider the case when the fluid system is nonempty at time t, that is,∑

fi�τi�t�� = V̂�f��t� <∑
fi�t��

Then it follows from the definition of the operator V̂ that t is a right point of
growth of V̂�f�. This in turn implies that for at least one m�τm�t+ ε� > τ̂m�t�
for any ε > 0; which means that τm�t� ≥ τ̂m�t� by the right-continuity of τm�·�.
Thus we get the existence ofm such that τm�t� = τ̂m�t�. Next, we observe that
this m can be chosen such that

r̂m�t� = max
i
r̂i�t� = r̂�t��

[If this were not true, we would get a contradiction to the LWDF scheduling
rule similar to the one we got in the proof of property (3.20).]
We show below that for every i = 1� � � � �N,

ri�t� ≤ r̂�t� ∀ i�(3.32)

Indeed, for any ε > 0, for all large nl there exists a time point y�nl� ∈ �t� t+ ε�
such that the service of a class m customer starts at y�nl�, and therefore

r
�nl�
m �y�nl�� = r�nl��y�nl���

which implies that for any i,

τ
�nl�
i �y�nl�� ≥ t− r�nl��y�nl��αi�

Since ε > 0 can be arbitrarily small, we see that for any δ > 0,

τi�t+ δ� ≥ lim inf
nl→∞ τ

�nl�
i �t+ δ� ≥ t− r̂�t�αi�

Since δ > 0 is arbitrary, we get

τi�t� = lim
δ↓0
τi�t+ δ� ≥ t− r̂�t�αi�

which proves (3.32).
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It remains to show that

if ri�t−� ≥ r̂�t� then ri�t� ≥ r̂�t�(3.33)

and

if ri�t−� < r̂�t� then ri�t� = ri�t−��(3.34)

Property (3.33) for i ≤ m is trivial because (3.23) implies

ri�t� ≥ rm�t� = r̂�t��
To prove (3.33) for i > m, we will need the following property of a prelimit
system (with index nl) which follows from the discrete system “jump rule” (3.2).
Suppose for some fixed i and m� i > m, and for a fixed t ≥ 0, there is a

class i customer which arrived at some time ξ < t, has not started service by
time t, and r�nl�

i �t� > �t− ξ�/αm. Then for any time n ≥ t,

τ
�nl�
m �η� ≤ ξ implies τ

�nl�
i �η� ≤ t− αi

t− ξ
αm

�

Returning to the proof of (3.33) for i > m, we observe that if ri�t−� ≥ r̂�t� for
some i > m, then for any small ε > 0, and for all sufficiently large nl and
η ≥ t,

τ
�nl�
m �η� ≤ t− αmr̂�t��1 − ε� implies τ

�nl�
i �η� ≤ t− αir̂�t��1 − 2ε��

Let us fix a small ε > 0. Then we can choose δ > 0 small enough so that for
all large nl,

τ
�nl�
m �t+ δ� ≤ t− αmr̂�t��1 − ε��

which means that

τ
�nl�
i �t+ δ� ≤ t− αir̂�t��1 − 2ε��

that is,

r
�nl�
i �t+ δ� ≥ r̂�t��1 − 2ε��

This in turn implies ri�t� ≥ r̂�t��1 − 2ε�. Since ε > 0 is arbitrary, we get
ri�t� ≥ r̂�t�, and the proof of (3.33) is complete.
To prove (3.34) we first observe that

ri�t−� < r̂�t� = rm�t�
is only possible if i > m. Arguing very similarly to the proof of (3.33), we
can see that for a sufficiently small fixed ε > 0, the prelimit system for all
large nl must be such that τ�nl�

i �·� is constant in the interval �t − ε� t + ε�
[because, in this interval, there always will be typem customers which accord-
ing to the LWDF scheduling rule must be served before τ�nl�

i �·� can “move”
forward]. This means that τi�·� is constant in �t− ε� t+ ε�, and therefore ri�·�
is continuous at t. This completes the proof of property (3.22).
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We now show that (3.21) holds. First notice that ri�t� < rj�t� is only possible
if i > j and there is nonzero unfinished work in the fluid system. The proof
then uses almost exactly the same argument as that used above to prove (3.34).
Finally (3.25) follows directly from (3.22). ✷

Proof of Proposition 2. Given f ∈ �N, suppose there exist two distinct
τ and τ∗ satisfying all the listed conditions, and define the process 7 =̇ τ∗ − τ.
Then we claim that the following two observations are true.

Observation 1� For any t ≥ 0, if 7N�t� > 0 then there exists ε > 0 such
that the difference 7N�·� is nonincreasing in the interval �t� t+ ε�.
Observation 2� For any t ≥ 0, if 7N�t−� > 0, then

0 ≤ 7N�t� ≤ 7N�t−��(3.35)

Likewise, for any t ≥ 0, if 7N�t−� ≤ 0, then

7N�t−� ≤ 7N�t� ≤ 0�(3.36)

We now show by contradiction that the two observations imply that 7N�·�
must be zero everywhere, and relegate the proofs of the observations to the
end. Note that 7N�0� = 0. Suppose the function 7N�·� is positive somewhere
on [0, ∞), then there must exist a > 0 and t ∈ �0�∞� such that either 7N�t�
or 7N�t−� is equal to

a =̇ sup
0≤ξ≤t

7N�ξ� > 0�

and for all ξ < t

7N�ξ� < a�(3.37)

Now Observation 2 implies that one cannot have 7N�t−� < a, since this would
imply that 7N�t� = a > 0, which contradicts (3.36) if 7N�t−� < 0, and contra-
dicts (3.35) if 0 ≤ 7N�t−� < a. Thus we infer that

7N�t−� = lim
s↑t
7N�s� = a�(3.38)

Along with (3.37), this implies that there exists δ > 0 and b < a such that
7N�t− δ� = b, and 7N�ξ� > 0 for ξ ∈ �t− δ� t�. From Observations 1 and 2 it
follows that 7N�t� is nonincreasing on �t− δ� t�. Indeed, let

s =̇ sup�u ∈ �t− δ� t�� 7N�·� is nonincreasing on �t− δ�u���
Then s > t−δ by Observation 1, and by Observation 2 7N�·� is nonincreasing
on �t−δ� s� [since 7N�·� cannot jump up at s]. From this we deduce that s = t,
since if s < t the fact that 7N�s� > 0 along with Observation 1 contradicts the
definition of s as the supremum. This implies that 7N�t−� ≤ b, which leads
to a contradiction due to (3.38). Thus we have established that 7N�·� must be
nonpositive everywhere on �0�∞�. By symmetry (interchanging the roles of τ
and τ∗), it is clear that in fact 7N�·� ≡ 0 or, equivalently, for all t ≥ 0,

τN�t� = τ∗
N�t��(3.39)
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It is easy to verify that the same argument can now be used inductively to
establish that τi�t� = τ∗

i �t� for i = N − 1�N − 2� � � � �1, which establishes the
theorem. It only remains to prove the two observations.

Proof of Observation 1. Suppose there exists t ≥ 0 such that

τN�t� < τ∗
N�t��(3.40)

or equivalently

rN�t� > r∗
N�t��(3.41)

By the conservation law (3.19) it follows that

N∑
i=1
fi�τi�t�� =

N∑
i=1
fi�τ∗

i �t���

Thus if τi�t� < τ∗
i �t� for every i = 1� � � � �N, then there exists ε > 0 such that

fi�τi�t� + u� = fi�τi�t�� for all i = 1� � � � �N and u ∈ �0� ε�. However, since
by (3.25) there exists some i for which τi�t� = τ̂i�t�, this would contradict the
definition of τ̂i. Thus there must exist j < N such that

rj�t� ≤ r∗
j�t��(3.42)

The ordering property (3.23) then dictates that

rN�t� ≤ rj�t��(3.43)

From the last four displays and the definition of r∗ we conclude that

r∗
N�t� < r∗

i�t� ≤ r∗�t��(3.44)

Observation 1 then follows from (3.25), (3.21) and the fact that τN is non-
decreasing. ✷

Proof of Observation 2. If both τN�·� and τ∗
N�·� are continuous at time t,

then Observation 2 is trivial. The rest of the proof relies on the following two
basic properties of the backlog process, which were established in Theorem 3.3.
First, if τ∗

N jumps, then due to (3.22), (3.25) and the ordering property (3.23),
it follows that

r∗
N�t� = r∗

N−1�t� = · · · = r∗
1�t��(3.45)

Second, since by (3.25) there always exists one component i such that τi�t�
is a right point of growth for fi, one can never have τi�t� < τ∗

i �t� for every
i = 1� � � � �N, as this would imply that

N∑
i=1
fi�τi�t�� <

N∑
i=1
fi�τ∗

i �t���

which violates the conservation law (3.19). These properties clearly also hold
with τi’s interchanged with τ

∗
i ’s.
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We now proceed with the proof of (3.35). First consider the case when τ∗
N

jumps at time t. Then τN must jump at t as well because if not, by the ordering
property, (3.45) and the assumption that 7N�t−� ≥ 0, it follows that

r∗
1�t� = r∗

2�t� = · · · = r∗
N�t� < r∗

N�t−� ≤ rN�t−� = rN�t� ≤ rN−1�t� · · · ≤ r1�t��
This implies that for every i = 1� � � � �N,

τ∗
i �t� > τi�t��

which is impossible as argued above. So τN must also jump at t, which implies
that (3.45) also holds with r∗ replaced by r. If rN�t� < r∗

N�t�, then once again
the last display holds, and if r∗

N�t� < rN�t� then the last display holds with
> replaced by <. Since both these cases contradict the conservation law, we
deduce that 7N�t� = 0, which proves (3.35).
Now suppose τ∗

N does not jump at t, but τN does. Then since τN is nonde-
creasing, 7N�t� ≤ 7N�t−�. Moreover, if τN�t� > τ∗

N�t� then
r1�t� = r2�t� = · · · rN�t� < r∗

N�t� < · · · r∗
1�t��

which leads to a contradiction as above. This implies that 7N�t� ≥ 0, which
establishes (3.35). The property (3.36) follows from symmetry. This concludes
the proof of Observation 2, and therefore of the proposition. ✷

Having established Theorem 3.3, we can now define the operators A and R
for input flows in �N.

Definition 3.4. Given f ∈ �N, let Af be equal to the unique τ described
in the statement of Theorem 3.3. [Note that by Theorem 3.3, τ = Af if and only
if τ satisfies (3.17)–(3.25).] In addition, we define the operator R� �N → �+�0
in the natural way by setting for t ≥ 0,

Rf�t� =̇ max
i

t− �Af�i�t�
αi

�

Remark 3.5. (i) Note that in Section 3.2 we defined the operators A and
R on � N

+ , and in this section we defined the operators on the domain �N.
Since � N

+ ∩ �N is the zero function, for which both definitions can be seen to
coincide, the operators A and R are well defined on � N

+ ∪ �N.
(ii) It is easy to verify from the definition that the operators A and R are

scalable [see definition (1.6)].

We end this section with a result that is essentially a corollary of
Theorem 3.3. Even though it is not used in the proofs of our main results,
it is important since the result can be used directly to derive the LDP (via the
contraction principle [4, 21]) for the maximal weighted delay process r for a
system with random fluid input flows.



LARGEST WEIGHTED DELAY FIRST SCHEDULING 19

Theorem 3.6. The mapping

A� �N !→ �N
+�0

is continuous in the product topology induced by the “⇒” convergence.

Proof. Consider f ∈ �N and let �fk�� fk ∈ �N, be a sequence such that

fk ⇒ f as k → ∞�
Let τ =̇ Af and τk =̇ Afk. We need to prove that

τk ⇒ τ�(3.46)

If (3.46) were false, then we could choose a subsequence �fkl� such that

τKl ⇒ τ∗ �= τ�(3.47)

For each τkl , by the definition of A, there exists a sequence �fkl� n� fkl� n ∈
� N

+ � n = 1�2� � � �� such that

fkl� n ⇒ fkl and lim
n→∞Af

kl�n = τkl�

where recall that here A is defined on discrete input paths via equations (3.1)
and (3.2). Then using Cantor’s diagonal procedure (similarly to the way it is
done in [24]), we can construct a sequence �fkl�m�� n�m�� m = 1�2� � � �� such that

fkl�m�� n�m� ⇒ f but Afkl�m�� n�m� ⇒ τ∗ �= τ�

However, this contradicts the definition of τ as the unique limit of Afm for
any fm ⇒ f. ✷

4. Most likely paths for large stationary delays under the LWDF
discipline. It is well known that large deviations techniques can be used to
convert the problem of characterizing asymptotic limits of probabilities into
that of solving variational problems. The optimal solutions of the variational
problems shed insight into the most probable way in which rare events occur.
In Section 6 we show that the optimal decay rate J∗ of the tail of the stationary
maximal weighted delay process associated with the LWDF discipline (see
Theorem 6.8) is given by the following variational problem:

J∗ = inf
s>0� f∈�Na � Rf�s�≥1

Js�f��(4.1)

where for every s ≥ 0,

Js�f� =̇
N∑
i=0
Jis�fi��(4.2)

and Jis is defined in (2.1). In this section we characterize the optimal path f of
the variational problem that achieves the cost J∗. We use this characterization
in Section 6 to prove the LD lower bound (2.6) of our main result Theorem 2.2.
In the next three lemmas we show that the infimization in (4.1) can without
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loss of generality be restricted to successively simpler sets. In Theorem 4.4 we
show that the infimization is actually attained on a “simple element” (whose
definition is given below), and characterize J∗ in terms of a finite-dimensional
optimization problem.

Lemma 4.1. Let J∗ be as defined in �4�1�. Then
J∗ = inf

s>0� f∈�Na
Js�f��(4.3)

subject to

Rf�s� = 1

and
N∑
i=1
fi�t� > t for t ∈ �0� s��(4.4)

Proof. As stated in Remark 3.5, the operator R is scalable. Thus given
any path f ∈ �Na such that Rf�s� = c > 1 for some s > 0, there exists a scaled
down path of no greater cost for which equality holds. Specifically, consider
the path f̃ =̇ !cf. Then f̃ ∈ �Na , Rf̃�s/c� = 1 by the scalability of R, and

Js/c�f̃� =
N∑
i=1

∫ s/c
0
Li� ˙̃fi�u��du = 1

c

N∑
i=1

∫ s
0
Li�ḟi�u��du = 1

c
Js�f��

Thus we can restrict the infimization in (4.1) to the set of paths for which
Rf�s� = 1. Now given any path f ∈ �Na with Rf�s� = 1, we can without any
increase in cost replace it by the increments of f after the queue is empty for
the last time. More precisely, replace f by the path f̃ defined by

f̃i�t� =̇
{
fi�t+ s1�� for t ∈ �0� s− s1�,
fi�s− s1� + λi�t− s+ s1�� for t ∈ �s− s1�∞��

for i = 1� � � � �N, where

s1 =̇ max
{
ξ ≤ s� ∑

i

fi�ξ� = ξ +
[
inf

0≤η≤ξ

( N∑
i=1
fi�η� − η

)]
∧ 0

}
�

and recall that λi is the mean input rate for flow i that was introduced in
Assumption 2.1.
It can be easily verified that Rf̃�s − s1� = 1 and Js−s1�f̃� ≤ Js�f�, which

establishes (4.3). ✷

Now consider any f ∈ �Na such that Rf�T� = 1 for some T > 0 and
condition (4.4) is satisfied with s = T. Let r =̇ Rf. For i = 1� � � � �N define

Ti =̇ sup�t ≤ T� ri�t� = r�t���(4.5)

Due to the ordering property,

r1�t� ≥ r2�t� ≥ · · · ≥ rN�t� for t ≥ 0�(4.6)
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proved in Theorem 3.3, these time instants are well defined and satisfy

TN+1 =̇ 0 ≤ TN ≤ TN−1 ≤ · · · ≤ T1 = T�

The property (3.22) that ri�t� = r�t� if r�·� jumps at t in fact shows that the
supremum in (4.5) is attained, and therefore that an equivalent definition of
Ti is

Ti = min�t ≤ T� τi�t� = τi�T���(4.7)

We define the piecewise linearization f∗ of f as follows. Let τ =̇ Af. Then for
j = 1� � � �N, we set

f∗
j�t� =̇



�t− τj�Ti+1��fj�τj�Ti�� + �τj�Ti� − t�fj�τj�Ti+1��
τj�Ti� − τj�Ti+1�

�

if t ∈ �τj�Ti+1�� τj�Ti��� i ≥ j�

fj�τj�Tj�� + λj�t− τj�Tj��� if t ∈ �τj�Tj��∞��

(4.8)

Lemma 4.2. Consider any f ∈ �Na such that Rf�T� = 1 for some T > 0
and condition �4�4� is satisfied with s = T. Let f∗ be its piecewise linearization
defined above. Moreover, define τ∗ =̇ Af∗ and r∗ =̇ Rf∗. Then the following
properties hold:

(i) For every j� i ∈ �1� � � � �N+ 1�,
τ∗
j�Ti� = τj�Ti��(4.9)

and for each i ∈ �1� � � � �N� such that Ti+1 < Ti, and t ∈ �Ti+1�Ti�, the
functions

r∗
1�t� = · · · = r∗

i�t� = r∗�t�(4.10)

are equal and linear with derivative

γi =̇ r�Ti� − r�Ti+1�
Ti −Ti+1

> 0�(4.11)

(ii) Furthermore

JT�f∗� ≤ JT�f��(4.12)

Proof. By construction for each j ∈ �1� � � � �N�
f∗
j�τj�Ti�� = fj�τj�Ti�� for i = N+ 1� � � � � j�(4.13)

and the function f∗
j�·� is linear in each interval �τj�Ti+1�� τj�Ti�� for i =

N� � � � � j. Given j ∈ �1� � � � �N�, let the process τ∗
j�·� ∈ �N

+�0 be such that

τ∗
j�Ti� = τj�Ti� for i = N+ 1�N� � � � � j�(4.14)
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τ∗
j is linear in each interval �Ti+1�Ti� for i = N� � � � � j, and for t ∈ �Tj�T�,

τ∗
j�t� = τj�Tj� = τj�T��(4.15)

We now show that τ∗ defined above satisfies conditions (3.17)–(3.25), which by
Definition 3.4 automatically establishes that τ∗ = Af∗� Property (3.17) follows
trivially from the corresponding property for τ. Let r∗

i�t� = �t − τ∗
i �t��/αi for

t ≥ 0 and i = 1� � � � �N. We claim that for t ∈ �Ti+1�Ti�,
r∗
1�t� = · · · = r∗

i�t� = r∗�t��(4.16)

and if j > i and Tj < Ti, then for t ∈ �Ti+1�Ti�,
r∗
j�t� < r∗�t��

The above two properties clearly hold for t = Ti+1 and t = Ti, and so by the
linearity of r∗

j�·� it also holds for all t ∈ �Ti+1�Ti�. This establishes proper-
ties (3.20)–(3.25). For every i = 1� � � � �N, the fact that fj is nondecreasing
and τj�Ti� ≤ Ti, shows that

N∑
j=1
f∗
j�Ti� ≥

N∑
j=1
f∗
j�τj�Ti�� =

N∑
j=1
fj�τj�Ti�� = Ti�

Thus the linearity of τ∗
j�·� on �Ti+1�Ti� dictates that
N∑
j=1
f∗
j�t� ≥ t for t ∈ �Ti+1�Ti�(4.17)

and

N∑
j=1
f∗
j�τ∗

j�t�� = t�(4.18)

Properties (4.17) and (4.18) verify the conservation law (3.19).
Finally, we note that (4.12) follows from the definitions of f∗ and J and the

fact that the functions Li, i = 1� � � � �N are convex. ✷

Consider f ∈ �Na as defined in Lemma 4.2, and let f∗ be its piecewise
linearization as defined above. For k ∈ �1� � � � �N� such that Tk+1 < Tk, and
i ≤ k, let d∗

i�k� = ḟ∗
i�τi�Tk�−� and let γi be as in (4.11). Then for k such

that Tk+1 < Tk the unit cost ck of raising the maximal weighted delay within
the time interval �Tk+1�Tk� is

1
r�Tk� − r�Tk+1�

N∑
i=1

∫ τi�Tk�

τi�Tk+1�
Li�ḟ∗

i�s��ds

= 1
r�Tk� − r�Tk+1�

k∑
i=1

�τi�Tk� − τi�Tk+1��Li�d∗
i�k���
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where we have used the fact that ḟ∗
i�s� = λi for s > τi�Ti� and Li�λi� = 0.

Using (4.10) and the last display, we see that the unit cost ck is given by

ck =̇


1
γk

∑
i≤k

�1 − αiγk�Li�d∗
i�k��� if Tk+1 < Tk,

∞� otherwise (by convention).
(4.19)

Note that ck represents the unit cost of raising r in the time interval
�Tk+1�Tk�, in which only the first k flows are served. If j is such that cj
is the minimum among all the unit costs, then it is intuitively believable that
f∗ can be replaced by another trajectory f0, such that only the first j classes
are served while the maximal weighted delay attains level 1, and the cost of
f0 does not exceed that of f∗. This is the content of Lemma 4.3, and is a con-
sequence of the fact that the parameters γj� d

∗
j�k�, and αj that characterize

the piecewise linearizations f∗ satisfy certain useful relations derived below.
Define r∗ =̇ Rf∗. Then for j such that Tj+1 < Tj, from definitions (4.11), (4.9)
and (4.7) it follows that for t ∈ �Tj+1�Tj�,

ṙ∗
j+1�t� < ṙ∗

j�t� = γj

and

τ̇∗
j+1�t� = 0�

This implies that ẇ∗
j+1�t� = 1, or equivalently ṙ∗

j+1�t� = 1/αj+1, which when
substituted to the last but one display yields

1/αj+1 < γj�(4.20)

which in turn means that for all i ≥ j,
1/αi+1 < γj�(4.21)

Obviously for every i = 1� � � � �N and t ≥ 0 such that the derivative τ̇∗
i �t�

exists,

τ̇∗
i �t� ≥ 0�(4.22)

which implies that for all i ≤ j,
1
αi

≥ γj�(4.23)

Finally from (4.10), (4.11), and the conservation law (3.19), we see that in each
interval �Tj+1�Tj� such that Tj+1 < Tj,∑

i≤j
�1 − αiγj�d∗

i�j� = 1�(4.24)

We now state and prove Lemma 4.3.
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Lemma 4.3. Given f ∈ �Na as defined in Lemma 4�2, let f∗ be its piecewise
linearization and let ck be the associated unit costs defined in �4�19�. Let j =
argmink=1� ����N ck (where the maximum index is chosen in case of a tie), let
γ =̇ γj and xi =̇ d∗

i�j� for i = 1� � � � �N. Define the trajectory f0 by

f0i �t� =̇


λit� for i > j� t ∈ �0�∞�,
xit� for i ≤ j� t ∈ �0�T0

i �,
f0i �T0

i � + λi�t−T0
i �� for i ≤ j� t ∈ �T0

i �∞�,
(4.25)

where T0 =̇ 1/γ and for i = 1� � � � � j, T0
i =̇ �1 − αiγ�T0. Then τ0 =̇ Af0 and

r0 =̇ Rf0 satisfy

τ0i �t� = 0 for t ∈ �0�T0� and i > j�(4.26)

r01�t� = · · · = r0j�t� = r0�t� = γt for t ∈ �0�T0��(4.27)

r0�T0� = 1 and JT0�f0� ≤ JT�f∗� ≤ JT�f��(4.28)

Proof. By Definition 3.4 it suffices to show that any τ0 satisfying prop-
erties (4.26) and (4.27) satisfies conditions (3.17)–(3.25). From (4.21), (4.24)
and (4.23) it follows that

j∑
i=1
xi > 1�(4.29)

1
αj+1

< γ =̇
∑
i≤j xi − 1∑
i≤j αixi

≤ 1
αj
�(4.30)

with 1/αN+1 = 0 convention. Now if τ0 satisfies (4.26) and (4.27), then due to
the above relations we obtain for t ∈ �0�T0�,

ṙ0i �t� = 1/αi < γ = ṙ0�t� for i > j(4.31)

and

ṙ0i �t� = γ = ṙ0�t� and τ̇0i �t� ≥ 0 for i > j�(4.32)

which establishes (3.17) and (3.20)–(3.25). Moreover the conservation
law (3.19) holds since

N∑
i=1
ḟ0i �τ̇0i �t�� =

j∑
i=1
xiτ̇

0
i �t� =

j∑
i=1
xi�1 − αiγ� = 1�(4.33)

where the last equality follows from (4.30). This establishes that τ0 = Af0.
Finally, to prove (4.28) we write

JT0�f0� = cj ≤ cj
∑

1≤i≤N
0 ∧ �r∗�Ti� − r∗�Ti+1��

≤ ∑
1≤i≤N

0 ∧ ci�r∗�Ti� − r∗�Ti+1��

≤JT�f∗� ≤ JT�f�� ✷
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In summary, together the last three lemmas in this section show that given
any f ∈ �Na for which the maximal weighted delay exceeds one at some finite
time, we can find a “simple element” of no greater cost for which the maximal
weighted delay attains the level 1. Moreover, Lemma 4.3 also shows that the
backlog τ0 = Af0 associated with any such “simple element” f0 has the simple
structure dictated by (4.26) and (4.27). This motivates the following definition.
Definition. A simple element f0 is a function defined by (4.25) for some

parameters �j� x� j ∈ �1� � � � �N�� x ∈ �
j
+�, which satisfy the constraints (4.29)

and (4.30).
We conclude this section with Theorem 4.4, which shows that the varia-

tional problem (4.1) is minimized by a simple element.

Theorem 4.4. The infimum J∗ of the variational problem defined in �4�1�
is the solution to the following finite-dimensional optimization problem:

J∗ = min
j x1� ���� xj

1
γ

j∑
i=1

�1 − αiγ�Li�xi��(4.34)

subject to

j ∈ �1� � � � �N�� xi > 0�
j∑
i=1
xi > 1

and
1
αj+1

< γ =
∑j
i=1 xi − 1∑j
i=1 αixi

≤ 1
αj
�

where αN+1 =̇ ∞ by convention.
Moreover, the infimum in �4�1� is attained on simple elements f0 associated

with parameters �j� x1� � � � � xj� that solve �4�34�.
Remark. The structure of a simple element f0 is illustrated by Figure 1.

(The picture is for the case N = 3 and j = 2.) For a subset of flows of the
form �1� � � � � j� for some j�1 ≤ j ≤ N, the input rate has a value xi > λi in
the time interval �0�T − αi� where T = 1/γ; and after time T − αi the rate
switches to the mean λi. The remaining flows �j + 1� � � � �N� (if any) always
have the mean input rate λi. The flows from the latter subset are not served
at all.

Proof of Theorem 4.4. Without loss of generality assume that all αj are
distinct. We proved in Lemma 4.3 that any element f ∈ �Na such that r�T� =̇
Rf�T� ≥ 1 for some T < ∞ can be replaced by a simple element f0 such that
the cost of r0 =̇ Rf0 reaching 1 does not exceed the cost of r = Rf to reach
1. Moreover there is a one-to-one correspondence between simple elements
and parameters �j� x� j ∈ �1� � � � �N�� x ∈ �

j
+� satisfying (4.29) and (4.30).

Furthermore, the unit cost of increase of r for a simple element is given by

c = c�x1� � � � � xj j� = 1
γ

j∑
i=1

�1 − αiγ�Li�xi��(4.35)
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Fig. 1. The structure of the simple element f0�N = 3� j = 2�.

Thus, to show that the infimum of the variational problem (4.1) is attained
on a simple element it suffices to show that there exists j ∈ �1� � � � �N� and
x ∈ �

j
+ satisfying (4.29) and (4.30) which minimize the cost c defined in (4.35).

We claim that for every vector x = �x1� � � � � xN� such that

xi ≥ 0 for i = 1� � � �N(4.36)

and

N∑
i=1
xi > 1�(4.37)

there exist a unique j = j�x� and corresponding γ = γ�x� such that (4.29)
and (4.30) are satisfied. To prove the claim, we rewrite (4.30) as

αj

αj+1
< z =̇

∑
i≤j xi − 1∑
i≤j

αi
αj
xi

≤ 1�

and notice that z = z�j� satisfies

z�j� < 1 for j = min
{
k�

k∑
1

xi > 1
}
�(a)

z�j� ≤ αj

αj+1
implies z�j+ 1� ≤ 1�(b)
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z�j� > αj

αj+1
implies z�j+ 1� > 1�(c)

Now for each x described by (4.36) and (4.37), we define

c�x� =̇ c�x1� � � � � xj j�(4.38)

with j = j�x� and the RHS defined in (4.35). Let us denote

c∗ =̇ inf
x∈�N+ � ∑N

i=1 xi>1
c�x��(4.39)

and consider a sequence �x�l�� l = 1�2� � � � � � such that

lim
l→∞

c�x�l�� = c∗�(4.40)

It is easy to see from (4.35) and (4.37) that γ�x�l�� remains uniformly bounded
away from both 0 and infinity, that is, there exist ε1� ε2 such that for l = 1� � � � �

0 < ε1 < γ�x�l�� < ε2 < ∞�(4.41)

Let us choose a subsequence (we will keep the same notation �x�l�� for it) such
that

�1� γ�x�l�� → γ∗ > 0�

�2� j�x�l�� = j̄ is fixed�

Then it is easy to see that for any i ≤ j̄� x
�l�
i must stay bounded away from

infinity. Let us choose a further subsequence which we continue to denote by
x�l� such that

x
�l�
i → x∗

i for i = 1� � � � � j̄�(4.42)

We see that conditions (4.29) and (4.30) are satisfied for x∗
i � i = 1� � � � � j∗,

where

j∗ =
{
j̄� if γ∗ > 1/αj̄+1,
j̄+ 1� if γ∗ = 1/αj̄+1,

x∗
j∗ = x∗

j̄+1 = λj∗ if j∗ = j̄+ 1�

and also

c�x∗
1� � � � � x

∗
j∗  j∗� = c∗�

The proof is complete. ✷
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5. Optimality of LWDF for a system with fluid inputs. In this section
we show that in a system with fluid inputs, the LWDF discipline is optimal in
the class of work-conserving disciplines. Namely, LWDF maximizes the (mini-
mal) cost of r�t� reaching level 1. The result is very simple, and although it is
not used directly to prove the lower bound (2.6) in our main result Theorem
2.2, it provides the key intuition without invoking all the technical machin-
ery required to prove it in full generality. New definitions introduced in this
section are confined to this section only, and not used in the rest of the paper.
Consider the class of operators �AG� (with G being a queueing discipline

defined for a “fluid” input system only) such that each operator AG maps a
fluid input f ∈ �N into a virtual backlog path τG = AGf ∈ �N

+�0, that satisfies
for t ≥ 0,

τGi �t� ≤ t for i = 1� � � � �N�

and the “work conservation” condition∑
i

fi
(
τGi �t�) = t+

[
min
0≤ξ≤t

(∑
i

fi�ξ� − ξ
)]

∧ 0�

Let us denote

'J�AG� =̇ inf
s>0� f∈�N� RGf�s�≥1

Ĵs�f��(5.1)

where Ĵs�f� is an arbitrary nonnegative “cost function,” and

RGf�t� =̇ max
i

t− τGi �t�
αi

�

Lemma 5.1. Suppose there exists an operator A0 from the class defined
above, and T0 > 0 such that the minimum cost 'J�A0� is attained on the path
f0 ∈ �N such that R0f0�T0� = 1,∑

i

f0i �t� > t for t ∈ �0�T0��

all functions f0i �·� are strictly increasing in �0�T0�, and for some subset K ⊆
�1�2� � � � �N�,

T0 − τ0i �T0� = αi for i ∈ K�
τ0i �T0� = 0 for i �∈ K�

Then for any operator AG in the class,

'J�AG� ≤ 'J�A0��

Proof. Consider the minimal cost element f0, and let τ0 =̇ A0f0 and
r0 =̇ R0f0. Consider any other operator AG in the class, and let τG =̇ AGf0

and rG =̇ RGf0. We now show that rG�T0� ≥ 1 irrespective of the particular
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discipline G chosen. By assumption, each function f0i is continuous, strictly
increasing in �0�T0� and satisfies the inequality∑

i

f0i �t� ≥ t for t ∈ �0�T0��

Then by the work conservation condition,

∑
i∈K

f0i
(
τGi �T0�) ≤

N∑
i=1
f0i
(
τGi �T0�) = T0 =

N∑
i=1
f0i
(
τ0i �T0�) = ∑

i∈K
f0i
(
τ0i �T0�)�

where the last equality follows from the definition of f0. Since each f0i �·� is
nonnegative and strictly increasing on �0�T0�, we conclude that for at least
one i ∈ K it must be that

τGi �T0� ≤ τ0i �T0��
Therefore,

rG�T0� ≥ rGi �T0� ≥ r0i �T0� = r0�T0� = 1�

In other words, for any operator AG the minimal cost of rG�·� reaching level
1 is at most 'J�A0�. ✷

If we replace the cost function Ĵs by the cost function Js defined in (4.2),
then it is clear from Theorem 4.4 and Lemma 4.3 that the conditions of
Lemma 5.1 are satisfied with A◦ being the operator A associated with the
LWDF discipline andK = �1�2� � � � � j� for some j ∈ �1� � � � �N�. If the class of
queueing disciplines � were restricted to disciplines for which the same exten-
sion procedure carried out in Theorem 3.3 can be used to obtained a unique
and well-defined operator AG on the fluid inputs (as is the case for LWDF,
FIFO, LIFO, processor sharing, generalized processor sharing, priority, and
most other “non-pathological” disciplines), then we could use Lemma 5.1 in
the proof of Theorem 2.2 (ii) directly. However, our class � , and therefore the
result of Theorem 2.2, is more general. As a consequence the proof of the lower
bound in Theorem 2.2 is more involved, even though its key idea is the simple
argument used in the proof of Lemma 5.1.

6. Rigorous statement and Proof of Theorem 2.2. In this section we
make precise the statement of the main result given in Theorem 2.2 and then
prove it. In Section 6.1 we introduce the stationary state process of the sys-
tem, which is independent of the particular work-conserving discipline used.
This, along with the operator R̂G defined earlier, is then used in Section 6.2
to rigorously define the stationary maximal weighted delay r̂G�0� associated
with any queueing discipline G ∈ � and stochastic input flows f that satisfy
Assumption 2.1. Since we allow for arbitrary disciplines G ∈ � , which are not
necessarily even scalable, r̂G�0� need not always be measurable. This neces-
sitates the use of the inner measure in the statement of the lower bound in
Theorem 2.2. For the LWDF discipline however, the stationary process r̂�0�
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is measurable, and in Section 6.3 we show that the asymptotic rate of decay
of its tails is indeed characterized by the variational problem considered in
Section 4. The main result Theorem 2.2 follows directly from Theorems 6.8
and 4.4. We derive some important corollaries of Theorem 2.2 in Section 6.4.

6.1. The stationary state process. In this section we introduce an operator
H that associates to any input path f ∈ �N the state of the queueing system.
The state is defined in such a way that it depends only on the input path
f and is independent of the particular work conserving queueing discipline
G ∈ � used. Roughly speaking, the state of the system at time t is the his-
tory of the input flows from the beginning of the current busy period. Using
measurability properties of the operator H and the fact that the stochastic
input flows satisfy Assumption 2.1, and therefore have stationary increments,
we then use a Loynes-type construction to define the stationary state process
� =̇ Hf . Finally, in Lemma 6.6 we also formulate a “kind of large deviation
principle” for a sequence of scaled state distributions.
We introduce the space of system states,

< =̇ �ψ = �b�g�� b ∈ �+� g ∈ � N
+ ��

We endow < with the natural topology generated by u.o.c. convergence,
and with the σ-algebra generated by cylinder subsets. Let  be the space of
RCLL functions on �−∞�∞� taking values in <. We define the deterministic
mapping H� � N →  that takes input flow paths f ∈ � N to the system
state sample paths as follows. Given any f ∈ � N, for each t ∈ �−∞�∞�,
Hf�t� =̇ �b�t�� g� ∈ <, where

b�t� =̇ t− sup
{
s ≤ t�

( N∑
i=1
fi�s−� − s

)
= z�t�

}
�(6.1)

z�t� =̇


inf
s≤t

( N∑
i=1
fi�s� − s

)
� if inf

s≤t

( N∑
i=1
fi�s� − s

)
> −∞,

N∑
i=1
fi�t−� − t� otherwise

(6.2)

and

gi�s� =̇
{
fi�s+ t− b�t�� − fi��t− b�t��−�� 0 ≤ s ≤ b�t�,
fi�t� − fi��t− b�t��−�� s > b�t�.(6.3)

When f is the realization of an input flow to a single server queueing system
(with service rate 1), b�t� represents the time elapsed from the start of the
busy period in progress at time t, and g captures the history of the input flows
from the start of the current busy period. Note that b and g have this intuitive
interpretation only when inf s≤t�

∑N
i=1 fi�s�−s� is finite for all t. However, since

(as we show in Lemma 6.2) this is true almost surely for a sample path of the
input flows f satisfying Assumption 2.1, this does not pose a problem in the
definition of the process Hf given below.
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Remark 6.1. Note that the expressions (6.1), (6.2) and (6.3) are in fact well
defined for f ∈ �N, and hence can be used to define a more general mapping,

H�t�� �N → �+ × �N
+ �

H�t� = �b�t�� g�, where b�t� and g have the same interpretation as above.
Thus the results of this subsection are valid for a system with more gen-
eral input processes that take values in �N rather than just � N. This more
general interpretation of the mapping H is used in Appendix B to prove its
measurability.

In the following lemma we show that the pathwise mapping H defined
above makes � = Hf a well-defined stationary process.

Lemma 6.2. Let H be the operator introduced above and let f satisfy
Assumption 2.1. Then the following properties hold:

(i) The mapping H is measurable.
(ii) � =̇ Hf is a stationary RCLL process taking values in <.

The proof is relegated to Appendix B.

For any t ≥ 0 we define the operator H+�t�� � N
+�0 → < in a natural way

so that is maps the input flows f ∈ � N
+�0, after time 0 into H+�t�f ∈ <, the

state of the system at time t given that the system is empty at time 0. In
other words, this mapping is defined by the same expressions (6.1), (6.2) and
(6.3), with the additional constraints t ≥ 0 and s ≥ 0. Note that just as for
the mapping H�t�, the definition of H+�t� can also be generalized to yield a
mapping H+�t�� �N

+�0 → R+ × �N
+ .

Lemma 6.3. The mapping H+�t� is measurable for any t ≥ 0.

Proof. Measurability of the operatorH+�t� follows from measurability of
the operator H. The details are provided in Appendix B.

We now introduce some definitions required to formulate a kind of large devi-
ation principle for the sequence of scaled distributions �!n��0�� n = 1�2� � � ��,
where ��0� = Hf�0� and !n is the scaling operator defined in (1.5).

Definition 6.4. Given any f ∈ �Na and r ≥ 0, we define its r-modification
fr to be such that for i = 1� � � � �N,

fri �t� =̇
{
λit� for 0 ≤ t ≤ r,
λir+ fi�t− r�� for t > r.(6.4)

Definition 6.5. Given any subset B ⊂ < and any s > 0, we define the set

?s�B� =̇ �f ∈ �Na � for every r > 0� there exists δ > 0 such that
if h ∈ Ur+s

δ � then �H+ �r+ s��h ∈ B�(6.5)
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where

U
�r+s�
δ =̇ �h ∈ � N

+�0� �h− fr�r+s < δ��(6.6)

and fr is as defined in (6.4).

Note that in the above definition B ⊂ < need not be measurable.

Lemma 6.6. Let Js be as defined in �4�2�.
(i) For any measurable subset B ⊂ <,

lim sup
n→∞

1
n
logP�!n��0� ∈ B� ≤ − inf

s>0� f∈H−1+ �s�B
Js�f��(6.7)

(ii) For any �not necessarily measurable� subset B ⊂ <,

lim inf
n→∞

1
n
logP∗�!n��0� ∈ B� ≥ − inf

s>0� f∈?s�B�
Js�f��(6.8)

where P∗ denote inner measure with respect to the probability P.

The proof is given in Appendix A.

Remark 6.7. We call Lemma 6.6 a “kind of LDP,” because formally it is not
a LDP. The upper bound is (almost) the usual large deviation upper bound.
However, the lower bound is more general than usual large deviations lower
bounds, in particular due to the use of the inner measure. As mentioned ear-
lier, the reason we need this generality is because we apply this lower bound in
Section 6.3.2 to the case when the discipline G ∈ � is arbitrary, and therefore
the associated subset B may be non-measurable.

6.2. Stationary Maximal Weighted Delay r̂G�0�. We are now in a position
to define precisely the stationary maximal weighted delay r̂G�0� that was used
in the statement of our main result, Theorem 2.2.
Consider a discipline G ∈ � and the associated operators ÂG and R̂G. The

stationary maximal weighted delay r̂G = �r̂G�t��−∞ < t < ∞� is defined by
r̂G�t� =̇ �R̂Gg��b�t���

where �b�t��g� = ��t� = �Hf��t� ∈ <.
Note that we do not refer to r̂G as a stationary “process” because although

r̂G is a well-defined function on the probability space (and with probability
1 defines the process that corresponds intuitively with our notion of the sta-
tionary maximal weighted delay), it need not be measurable. If the function
is measurable, the r̂G is indeed a stationary random process. As shown in
Appendix B, the operator Â (and therefore R̂) associated with the LWDF dis-
cipline is measurable, r̂ is a measurable function and thus the probability
P�r̂�0�/n > 1� is well defined.
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The following connection between the operators R̂G andH+ is quite straight-
forward andwill be useful later in the paper. For any f ∈ � N

+�0 and any t ≥ 0,

�R̂Gf��t� = �R̂Gg��b�t���(6.9)

where �b�t�� g� = H+�t�f.
We now introduce another pair of “unfinished work” operators V and V+

which are, like H and H+, discipline independent. For f ∈ �N are define

Vf�t� =̇
N∑
i=1
fi�t� − t− inf

−∞<u≤t

[ N∑
i=1
fi�u� − u

]
�(6.10)

to be the “unfinished work” in the system. Similarly, we define the operator
V+� �N

+ → �+ by

V+f�t� =̇
N∑
i=1
fi�t� − t− inf

0≤u≤t

[ N∑
i=1
fi�u� − u

]
∧ 0�(6.11)

Let v =̇ V�f�, where f is an input process satisfying Assumption 2.1. Note
that v�t� depends only on the system state ��t� = �Hf��t�. Therefore,

�Vf��t� = �V+g��b�t���
where for each t ∈ �−∞�∞�, �b�t��g� = ��t�. Thus v = �v�t�, t ∈ �� is a
stationary process.

6.3. Proof of main result. In this section we state and prove Theorem 6.8,
which establishes the LDP for and proves optimality of the LWDF discipline.
As shown in the theorem, the variational problem studied in Section 4 char-
acterizes the exponential rate of decay of the tails of the stationary maximal
weighted delay r̂�0�. In Section 6.3.1 and 6.3.2 we prove the upper and lower
bounds, respectively.

Theorem 6.8. Let

J∗ =̇ inf
s>0� f∈�Na � Rf�s�≥1

Js�f��(6.12)

Suppose r̂�0� and r̂G�0� is the stationary maximal weighted delay associated
with the LWDF scheduling discipline, and with a discipline G ∈ � respectively.
Then the following three properties hold:

(i)

lim sup
n→∞

1
n
logP

(
1
n
r̂�0� > 1

)
≤ −J∗�(6.13)

(ii) For any G ∈ � ,

lim inf
n→∞

1
n
logP∗

(
1
n
r̂G�0� > 1

)
≥ −J∗�(6.14)

(iii) Moreover, J∗ solves the finite-dimensional optimization problem �4�34�.
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6.3.1. Proof of upper bound in Theorem 6.8. The upper bound follows quite
easily by substituting the set

B =̇ �ψ = �b�g� ∈ <� �R̂�b���g� > 1�
into the upper bound in Lemma 6.6, where R̂ is the maximal weighted delay
operator associated with the LWDF queueing discipline. Note that the set B
is measurable due to Lemma 10.4 Furthermore,

H−1
+ �s�B = �f ∈ � N

+�0� �R̂f��s� > 1� ⊆ �f ∈ � N
+�0� �Rf��s� > 1��

where the second inclusion is a consequence of the fact that for all s ≥ 0,
Rf�s� ≥ R̂f�s�, which follows from the definition of R given in (3.1), (3.2) and
(3.5). Using properties of the operator A defined on � N

+ and extended to �N

(see Lemma 3.2 and Theorem 3.3), which imply corresponding properties for
the operator R, it can be easily verified that for any s ≥ 0,

�f ∈ � N
+�0� �Rf��s� > 1� ∩ �Na ⊆ �f ∈ �Na � lim

t↑s
�Rf��t� ≥ 1��

We denote the set on the right-hand side by 
 �s�. We now show that for any
s > 0 the infimum of Js�·� over trajectories f in 
 �s� is equal to its infimum
over a smaller set 
1�s� defined below. Consider an element f ∈ 
 �s� such
that Rf�s−� ≥ 1, but Rf�s� < 1. Then we claim that f can be replaced by
another element f̃ ∈ 
 �s� such that the function r̃�·� =̇ R�f̃��·� is continuous
at s; that is,

r̃�s� = r̃�s−� ≥ 1(6.15)

and

Jsf̃ ≤ Js�f��(6.16)

As shown below, this follows from the properties of the operator R, which are
in turn implied by the properties of A. From (3.22) it follows that r�·� can only
jump down. In addition, the definition of r̂ implies that if r�·� jumps at that
time s, then there exist i and εi > 0 such that fi�·� does not increase (and is
hence constant) in the time interval �τi�s−�� τi�s−� + εi�. Let � be the subset
of �1� � � � �N� for which the above property holds, and let ε be the minimum
of εi, i ∈ � . Now we define a new function f̃ as follows. For i ∈ � ,

f̃i�t� =̇
fi�t�� for t ∈ �0� τi�s−��,
fi�τi�s−�� + λi�t− τi�s−��� for t ∈ �τi�s−�� τi�s−� + ε�,
fi�t� + λiε� for t ∈ �τi�s−� + ε�∞�

and f̃i�·� =̇ fi�·� for i �∈ � . Then it is easy to check that f̃ satisfies properties
(6.15) and (6.16).
Now define


1�s� =̇ �f ∈ �Na � �Rf��s� ≥ 1� ⊆ 
 �s��
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and note that the construction above implies that

inf
s>0

inf
f∈
 �s�

Js�f� = inf
s>0

inf
f∈
1�s�

Js�f� = J∗�

The last display, along with the large deviation upper bound (6.7) for the state
process, yields

lim sup
n→∞

1
n
logP

(
1
n
r̂�0� > 1

)
= lim sup

n→∞
1
n
logP�!n��0� ∈ B�

≤ − inf
s>0� f∈H−1+ �s�B

Js�f�

≤ − inf
s>0� f∈
 �s�

Js�f�(6.17)

= − inf
s>0� f∈
1�s�

Js�f�

= −J∗�

This establishes the upper bound. Note that in Section 4 we already charac-
terized J∗ and found the optimal path f0 on which the minimum cost J∗ is
attained. Thus part (iii) of Theorem 2.2 follows from Theorem 4.4.
6.3.2. Proof of lower bound in Theorem 6.8. Consider an arbitrary work-

conserving discipline G ∈ � . Consider the set

B =̇ �ψ = �b�g� ∈ <� for every c > 0� �!cR̂G!1/cg��b� > 1��(6.18)

Note that this set may or may not be measurable depending on the particular
discipline G chosen. Given G ∈ � , if the operator ÂG (and consequently R̂G) is
scalable [see definition (1.6)], then the above definition reduces to the simpler
form

B = �ψ = �b�g� ∈ <� �R̂Gg��b� > 1��
The scaling property holds for disciplines like LWDF, FIFO, LIFO, priority,
GPS and most other conventional disciplines. However, since we want to con-
sider any arbitrary discipline G ∈ � which may not be scalable, we use the
more complicated expression (6.18).
Let f0 be an optimal path for the variational problem (6.12). As described in

Section 4, this path is a simple element characterized by parameters j� x� j ∈
�1� � � � �N�� x ∈ �

j
+�, subject to the constraints (4.29) and (4.30). As in

Section 4 here too we denote T0 = 1/γ, where γ is defined in terms of x
by (4.30). Fix c > 1 arbitrarily close to 1, and define f∗ =̇ !1/cf0 ∈ �Na . Then

f∗
i�t� =


λi�t�� for i > j� t ∈ �0�∞�,
xit� for i ≤ j� t ∈ �0� cT0

i �,
xicT

0
i + λi�t− cT0

i �� for i ≤ j� t ∈ �cT0
i �∞��

where for i ≤ j,
T0
i =̇ �1 − αiγ�T0�
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Moreover, note that by Lemma 4.3 for the input flow f∗� τ∗ =̇ Af∗ satisfies for
t ∈ �0� cT0�,

τ∗
i �t� =

{
t�1 − γαi�� for i ≤ j,
0� for i > j,

or alternatively that the delay satisfies

w∗
i�t� =

{
γαit� for i ≤ j,
t� for i > j.

We now claim that

f∗ ∈ ?cT0�B��(6.19)

where ?s is defined in (6.5). Recall the queueing discipline independent map-
ping V+ defined in (6.11), which maps input flows after time 0 to the unfin-
ished work, given the system is empty at time 0−. It is well known that for
f ∈ �N� V+f is a continuous function of time t, and if f�n� → f� f�n� ∈ �N

+ ,
then V+f�n� → V+f (where convergence is u.o.c.). For f∗ defined above, let
v∗ =̇ V+f∗. Then we see that

v∗�cT0� =
[∑
i≤j
λiγαi + ∑

i>j

λi

]
cT0 = ∑

i≤j
λiαic+ ∑

i>j

λicT
0�(6.20)

Now consider a sequence �f�n�� f�n� ∈ � N
+�0� n = 1� � � � � � such that f�n� → f∗,

and for G ∈ � let �ŵG��n�� n = 1� � � � � � be the sequence of delays determined
by the corresponding sequence of backlog paths ÂGf�n�. Then it follows from
(6.20), properties of the mapping V+ and the fact that f∗ is continuous and
strictly increasing, that for every G ∈ � there exists at least one flow i ∈
�1� � � � � j� such that

lim sup
n→∞

ŵ
G��n�
i �cT0� ≥ cαi�

which implies that

lim sup
n→∞

r̂G��n��cT0� ≥ c�(6.21)

where r̂G��n� = R̂Gf�n�. Let s = cT0. Then the above display implies that for
r = 0, there exists δ > 0 such that if

h ∈ Ur+s
δ =̇ �h ∈ � N

+�0� �h− �f∗�r�r+s < δ��
then

H+�r+ s�h ∈ B�
The generalization of the above property for r ≥ 0 is quite straightforward.
This proves the claim (6.19).
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We now apply the lower bound in Lemma 6.6 to infer that for any G ∈ � ,

lim inf
n→∞

1
n
logP∗

(
1
n
r̂G�0� > 1

)
= lim inf

n→∞
1
n
logP∗�!n���0�� ∈ B�

≥ − inf
s>0� f∈?s�B�

Js�f�

≥ −JcT0�f∗�
= −cJ∗�

Since c > 1 can be chosen arbitrarily close to 1 we obtain part (ii) of
Theorem 6.8. ✷

6.4. Corollaries of the main theorem. The following three theorems are
essentially just corollaries (or by-products of the proof) of Theorem 6.8. How-
ever, we formulate them as separate theorems because of the importance of
their results.

Theorem 6.9. Let ŵm be the stationary class m delay associated with the
LWDF discipline. Then there exist J�m�

∗ ∈ �0�∞� such that for m = 1� � � � �N,

lim
n→∞

1
n
logP�ŵm�0� > n� = −J

�m�
∗
αm

�

Moreover, there exists k ∈ �1� � � � �N� such that
0 < J∗ = J

�1�
∗ = · · · = J

�k�
∗ < ∞(6.22)

and if k < N,

J
�k�
∗ < J

�k+1�
∗ ≤ · · · ≤ J�N�

∗ < ∞�(6.23)

where J�m�
∗ is the optimal value of the following optimization problem �which

is the problem �4�34� with the additional constraint j ≥ m� �

J
�m�
∗ = min

j x1� ���� xj

1
γ

j∑
i=1

�1 − αiγ�Li�xi��(6.24)

subject to

j ∈ �m� � � � �N�� xi > 0�
j∑
i=1
xi > 1

and

1
αj+1

< γ =
∑j
i=1 xi − 1∑j
i=1 αixi

≤ 1
αj
�

�Recall that αN+1 =̇ ∞ by convention.�
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Outline of Proof. First, ŵm�t��m = 1� � � �N, and r̂�t� are measurable
random variables for any t. Therefore the inner measure P∗ in the lower
bound (6.14) can be replaced by the probability P.
The optimal path f0 used in the proof of upper and lower bounds in Theorem

6.8 can be directly used to get upper and lower bounds for the tail of the
distribution of ŵ1�0�, namely, to show the existence of

lim
n→∞

1
n
logP�ŵm�0� > n� = −J�m�

∗ /αm(6.25)

for m = 1, and to establish that J�1�
∗ = J∗. However, the asymptotics of

1
n
logP�ŵm�0� > n�

for each m could be analyzed analogously to the way

1
n
logP�r̂�0� > n�

was analyzed in Section 4, by finding the form of the optimal (fluid) path for
each m. It is not hard to show that the optimal path for flow m is a simple
element satisfying the constraint j ≥ m. This yields the existence of the limit
(6.25) for each m, and the characterization of J�m�

∗ as described above. This
characterization implies the “ordering” inequalities (6.22) and (6.23). ✷

Theorem 6.10. Suppose for some work-conserving discipline G ∈ � , for
i = 1� � � � �N, there exists J�i�

∗ �G� ∈ �0�∞� such that

lim
n→∞

1
n
logP�ŵG

i �0� > n� = −J
�i�
∗ �G�
αi

�

Then

min
i=1� ����N

J
�i�
∗ �G� ≤ J∗�

where J∗ is defined in Theorem 6.8.

The proof follows directly from Theorem 6.8.

As mentioned in the Introduction, the priority discipline can be viewed
as the “limit” of the LWDF discipline with parameters αi = εN−i� ε ↓ 0. (The
lower flow index means higher priority.) This allows a derivation of the LDP for
the priority discipline from that of LWDF, as shown in the following theorem.
Note that for the priority discipline one can without loss of generality consider
just the case of two flows. (For the case of Markov input flows this theorem can
also be derived as a special case of the results of [20] for the two-flow system
with the generalized processor sharing discipline. Notice that our assumptions
on the input flows are more general.)
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Theorem 6.11. Consider a priority system with two input flows 1 and 2 sat-
isfying Assumption 2�1� with flow 1 having nonpreemptive priority over flow 2�
Then the limit

lim
n→∞ − 1

n
logP�ŵ2�0� > n�(6.26)

exists and is equal to the optimal value of the following optimization problem:

min
x1� x2

x2L1�x1� + �1 − x1�L2�x2�
x1 + x2 − 1

�

subject to

1 ≥ x1 > 0� x2 > 0� x1 + x2 > 1�

The statement of the above result can be derived formally from Theorem 6.9
by setting N = 2� α2 = 1, and letting α1 ↓ 0. However, rather than rigorously
justifying the limit transition, it would probably be easier to derive the result
directly using the same approach we used to prove Theorem 6.9 for the LWDF
discipline.

7. Analogous result for the unfinished work. A result analogous to
Theorem 2.2 holds for the stationary unfinished work processes qi. We only
formulate the result below in Theorem 7.2 without the proof, because the
analysis leading to this result is very similar and much simpler since the
fluid process for the unfinished work is continuous. The only significant dif-
ference between the results for the unfinished work and the corresponding
results for the delays, is that the property analogous to the “ordering prop-
erty” (3.23) for the weighted delays [and the consequent ordering property of
the rate functions (6.23)] does not hold for the unfinished work. This difference
is reflected in the form of the corresponding finite dimensional optimization
problem (7.3).
Let the positive weights α1� � � � � αN be fixed. Denote by qGi the stationary

unfinished work process for class i, under the discipline G ∈ � . Also, denote
by � =̇ maxi q

G
i /αi the stationary maximal weighted unfinished work.

Definition 7.1 [The largest weighted (unfinished) work first (LWWF) disci-
pline]. The LWWF discipline is a nonpreemptive, work-conserving discipline
that always chooses for service the longest waiting (head-of-the-line) customer
of the flow i for which the weighted unfinished work is maximal, that is,
qi�t�/αi = ��t�. In case of a tie, by convention the LWWF discipline chooses
the class with the highest index.

Theorem 7.2. There exists Jq∗ < ∞ such that the following holds:

(i) For the LWWF scheduling discipline

lim sup
n→∞

1
n
logP

(
1
n
��0� > 1

)
≤ −Jq∗ �(7.1)
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where ��0� is the stationary maximal weighted unfinished work associated with
the LWWF discipline.

(ii) For any G ∈ � ,

lim inf
n→∞

1
n
logP∗

(
1
n
�G�0� > 1

)
≥ −Jq∗ �(7.2)

where �G�0� is the stationary maximal weighted unfinished work associated
with the discipline G.
(iii) Moreover, Jq∗ solves the following finite-dimensional optimization

problem:

Jq∗ = min
K⊆�1� ����N� �xi� i∈K�

1
γ

∑
i∈K

Li�xi��(7.3)

subject to

xi > 0� i ∈ K� ∑
i∈K

xi > 1�

1
γ

[ ∑
i∈K

xi − 1
]

= ∑
i∈K

αi

and

λi/αi < γ� i �∈ K�

8. Conclusions. In this paper we introduce a new scheduling discipline
called largest weighted delay first (LWDF) and prove that it is optimal in
the sense that it maximizes the asymptotic rate of decay of the tails of the
stationary maximal weighted delay within a rather general class � of schedul-
ing disciplines. Even the two restrictions imposed on the class � appear to
be mainly technical. For instance, it is only natural to expect any optimal dis-
cipline to be work conserving. We also state an analogous optimality result
for the stationary maximal weighted unfinished work and the corresponding
discipline LWWF.
Our results suggest that for large delays and small allowed violation prob-

abilities, the LWDF discipline with weights αi = −Ti/ log δi would be a nearly
optimal discipline to use in order to satisfy the QoS constraints (1.1). Thus,
whenever it is feasible to satisfy these constraints, one would expect that
LWDF would do so. However, in cases when it is not feasible, the LWDF policy
will most likely violate the QoS constraints of most users. This has significant
implications for flow admission control. Most importantly, LWDF allows one to
detect “in real time” the infeasibility of satisfying QoS requirements. In addi-
tion even when the QoS constraints are infeasible, LWDF has the property of
fairness, in that it tries to equalize for all users the ratio of the logarithm of
actual violation probability to the logarithm of the desired probability. How-
ever, this notion of fairness may or may not be desirable. In certain cases,
it may be preferable to satisfy the QoS for as many users as possible, while
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penalizing the rest. In such situations, one may want to use LWDF for only a
subset of flows, while giving lower priority to other flows.
Note that our result concerns the stationary delays, rather than the sta-

tionary waiting times of individual customers. Nevertheless, one would expect
that the asymptotics of the tails of stationary distributions of both these pro-
cesses typically coincide. Indeed, we believe that similar results for the waiting
times can be derived from our results.
An interesting and very challenging open problem is that of determining

optimal disciplines in the network context.

APPENDIX A

In this section we outline the key steps used to prove Lemma 6.6. These
follow the approach used in �16�17��
A straightforward adaptation of the argument in [17], Proposition 7.2, yields

the following lemma. Consider the unfinished work process v =̇ Vf . (Recall the
definition of the unfinished work mapping V given in Section 6.2.)

Lemma A.1. The unfinished work v�0� has exponential tail; that is,

lim sup
n→∞

1
n
logP

(
v�0�
n

> 1
)

= −c < 0�

The following lemma can be proved in the same way as [17], Proposition 8.1.

Lemma A.2. Consider a system with zero initial state �at time 0� ��0� =
�0 0�, and let the input flow h be the increment of the original input flow f
after time 0, so that for t ≥ 0 and i = 1� � � � �N,

hi�t� = fi�t� − fi�0��(A.1)

Then for every s ≥ 0 and any measurable subset B ⊂ <,

lim sup
n→∞

1
n
logP�!n���ns�� ∈ B� ≤ − inf

h∈H−1+ �s�B
Js�h��

and for every s ≥ 0 and any �not necessarily measurable� subset B ⊂ <,

lim inf
n→∞

1
n
logP∗�!n���ns�� ∈ B� ≥ − inf

h∈?s�B�
Js�h��

Finally, the following lemma can be established using an adaptation of the
proof of Theorem 8.2 in [17].

Lemma A.3. Let the random initial state ��0� of the process � be such that
the distribution of the unfinished work v�0� has exponential tail, and let h be
as defined in �A�1�. Then for any measurable subset B ⊆ <,

lim sup
s→∞

lim sup
n→∞

1
n
logP�!n���ns�� ∈ B� ≤ − inf

s>0� h∈H−1+ �s�B
Js�h��
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and any �not necessarily measurable� subset B ⊆ <,

lim inf
s→∞ lim inf

n→∞
1
n
logP∗�!n���ns�� ∈ B� ≥ − inf

s>0� h∈?sB
Js�h��

Lemma 6.6 follows from Lemma A.3 and the fact that � is stationary.

APPENDIX B

Recall the notation that � �S� refers to the σ-algebra generated by the cylinder
subsets of the function space S, and that � is the set of rational numbers. It
is well known that � ∈ � �� � and �+, �+�0 ∈ � ��+�. The following lemma
is quite straightforward, but since we could not find a direct reference, we
include it here for the sake of completeness.

Lemma B.1. Recall the definition of the spaces � ��+, � ��+ and �+�0
given in Section 1�2� Then

� ∈ � �� �� �+ ∈ � ��+�� �+�0 ∈ � ��+��(B.1)

Proof. Given any positive q� ε� δ ∈ � and l ∈ �1�2� � � ��, we define the set
M�q� ε� δ� l� ∈ �2l by

M�q� ε� δ� l� =̇



m = ��m11�m12� �m21�m22� � � � � �ml1�ml2���
−q < m11 < m12 < · · · < ml1 < ml2 < q�

mi2 −mi1 < δ for i = 1� � � � � l�

and mi+1�1 −mi�2 > ε for i = 1� � � � � l− 1


Let

K�q� ε� δ� l� =̇ � ∩
[ ⋃
m∈M�q�ε�δ�l�

�h ∈ � � h�−q� = h�m11−��
]

∩�h ∈ � � h�ml2� = h�q−��
∩
[ ⋂
i=1� ����l−1

�h ∈ � � h�mi2� = h�mi+1�1��
]
�

Clearly K�q� ε� δ� l� ∈ � �� �. Thus since
� = ⋂

q>0� q∈�

⋃
ε>0� ε∈�

⋂
δ>0� δ∈�

⋃
l=1�2����

K�q� ε� δ� l��

it follows that � ∈ � � . The measurability of �+ and �+�0 can be proved
analogously. ✷

We remarked in Section 6 that the mappings

H�t�� � N → < and H+�t�� � N
+�0 → <
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can be considered more generally as the mappings

H�t�� �N → �+ × �N
+ and H+�t�� �N

+�0 → �+ × �N
+ �

respectively, defined by the same expressions (6.1), (6.2) and (6.3). Due to
Lemma B.1, to prove the measurability of the former mappings it obviously
suffices to prove measurability of the latter ones. In the following lemma we
do just that.

Lemma B.2. For any fixed t ∈ �, the mappings

H�t�� �N → �+ × �N
+ and H+�t�� �N

+�0 → �+ × �N
+

are measurable.

Proof. For a fixed t, the mappingH�t� maps an element f = �f1� � � � � fN�
∈ �N into an element ψ = �b�t� g1� � � � � gN� ∈ �+ ×�N

+ . Define the mappings
h� �N → � and z� �N → � by

�hf��s� =̇
N∑
i=1
fi�s� − s

and

�zf��s� =


inf
u≤s�hf��u�� if inf

u≤s�hf��u� > −∞,

N∑
i=1
fi�s−� − s� otherwise.

Then both h and z are measurable mappings. For a fixed u ≥ 0,

�f ∈ �N� b�t� > u� = ⋃
δ2>δ1>0� δ1� δ2 ∈�

{
inf

s≤t−u−δ2
�hf��s� < inf

t−u−δ1≤s≤t
�hf��s�

}
�

where each subset in the union is measurable because for a fixed f� �hf��·� is
a RCLL function. Thus for each t the mapping of f into b�t� is measurable.
Now fix t > 0 and i and consider gi = �gi�u�� u ≥ 0�. (Recall that although

not explicitly notated, the function g itself depends on the time parameter,
which is fixed to be t here.) For fixed u ≥ 0 and c ∈ �,

�gi�u� < c� = {
u ≥ b�t�� fi�t� − fi��t− b�t��−� < c}
∪ {
u < b�t�� fi�u+ t− b�t�� − fi��t− b�t��−� < c}�

However, for any fixed s ∈ � both fi�s− b�t�� and fi��s− b�t��−� are measur-
able. Indeed, for any c1 ∈ �,

�fi��s− b�t��−� > c1� = ⋃
q≥0� q∈�

�fi�s− q� > c1� b�t� < q��

and similarly,

�fi�s− b�t�� < c1� = ⋃
q≥0� q∈�

�fi�s− q� < c1� b�t� ≥ q��

This proves the measurability of gi�u� for any fixed u ≥ 0 and i, which auto-
matically implies the measurability of �g1� � � � � gN�. Thus we have shown that
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H�t� is measurable for each t ≥ 0. Since H+�t� can be identified with the
restriction of H�t� to the measurable subset �f ∈ �N� fi�u� = 0� u ≤ 0� i =
1� � � � �N�, For each t ≥ 0 the measurability ofH+�t� follows from that ofH�t�.
This also establishes the measurability of H and H+ since we consider the
σ-algebra generated by the cylinder sets. ✷

We now consider the operator Â defined on � N
+ (for the LWDF discipline)

in Section 3 and denote

Â�t�f =̇ �Âf��t��

Lemma B.3. For any t ≥ 0, the mapping

Â�t�� � N
+ → �N+

is measurable.

Proof. Let f = �f1� � � � � fN� ∈ � N
+ .

Step 1. Consider fi ∈ �+. By the definition of �+, the function fi is
uniquely defined by the two sequences,

xi =̇ (
xi1� x

i
2� � � �

) ∈ �∞
+ and yi =̇ (

yi1� y
i
2� � � �

) ∈ �∞
+ �

where xi1� x
i
2� � � � are the strictly positive jump sizes ordered by increasing time

of the jumps, yi1 ≥ 0 is the time to the first jump and yi2� � � � are strictly positive
time intervals between consecutive jumps. [We adopt the convention that if
fi has a jump at time zero, then xi1 = fi�0� and yi1 = 0.] It is easy to see
that the mapping Xi� �+ → �∞

+ × �∞
+ that takes fi to �xi� yi� is measurable.

We drop the fixed superscript i in the sequences xi and yi in the rest of
this paragraph. Then for any c > 0, �y1 > c� = �fi�c� = 0� and so y1 is
measurable. Consequently,

x1 = fi�0�1�y1=0� + �fi�y1� − fi�y1−��1�y1>0�

is measurable. Similarly, since

�y1 + y2 > c� = �fi�c� ≤ x1��
y2 is measurable, and the fact that

x2 = fi�y1 + y2� − fi��y1 + y2�−�
establishes the measurability of x2. Proceeding iteratively we see that the
mapping Xi is measurable. Consequently the mapping

X� � N
+ → ��∞

+ ��2N�

that maps f ∈ � N
+ into

�x�y� = ((
x1� x2� � � � � xN

)
�
(
y1� y2� � � � � yN

))
is measurable.
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For future use, we define

ȳij =̇
j∑
k=1
yik

to be the time of arrival of the jth class i customer. From the above argument,
it easily follows that for j = 1� � � � and i ∈ �1� � � � �N�, ȳij is measurable.

Step 2. Now we consider the mapping Y which maps f ∈ � N
+ into Yf =̇

�m�ξ� ∈ �1� � � � �N�∞ × �∞
+ as follows. Denote m = �m1�m2� � � �� and ξ =

�ξ1� ξ2� � � ��. Then mj represents the class of the jth customer to be served,
and ξj ≥ 0 the time at which the service of that customer starts. Note that
Y is well defined for the LWDF discipline. We now use induction to prove
that the mapping Y is measurable by showing that �mj� ξj� is measurable for
j = 1�2� � � �. Let �x�y� = Xf. First note that �m1� ξ1� is measurable because
for any i ∈ �1� � � �N� and time s ≥ 0,

�m1 = i� ξ1 < s� = ⋂
l>i

{
yi1 < s�y

i
1 < y

l
1

} ⋂
l<i

{
yi1 ≤ yl1

}
�

Now suppose that �mj� ξj� are measurable for j = 1� � � � � k. We will show that
then �mk+1�ξk+1� are also measurable. We first introduce some notation. Let
īk = �i1� � � � � ik� denote a generic element of �1� � � � �N�k (used to represent the
vector of the classes of the first k customers that departed the system). Then
define the functions η� �1� � � � �N� × �1� � � � �N�k → Z+ and z� �1� � � � �N�k →
�+ by

η�i� īk� =̇
k∑
j=1

1�ij=i�

and

z�īk� =̇ x
ik
η�ik� īk��

Observe that η�i� īk� represents the number of class i customers among the
first k customers that departed the system, and z�īk� represents the service
time of the kth customer departed the system. Then for any i ∈ �1� � � � �N�
and s ≥ 0 we can write

�mk+1 = i� ξk+1 < s� = ⋃
īk∈�1�����N�k

Kīk�

where

Kīk =̇
[⋂
j≤k

�mj = ij�
]

∩ �ξk < s− z�īk�� ∩ �M1 ∪M2��
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with

M1 =̇ �ȳi
η�i� īk�+1 ≤ ξk + z�īk��

⋂⋂
l>i

{ξk + z�īk� − ȳi
η�i� īk�+1

αi
>
ξk + z�īk� − ȳl

η�l� īk�+1
αl

}
⋂
l<i

{ξk + z�īk� − ȳi
η�i� īk�+1

αi
≥
ξk + z�īk� − ȳl

η�l� īk�+1
αl

}
and

M2 =̇
{
ȳi
η�i� īk�+1 > ξk + z�īk�

}
⋂
l>i

{
ȳi
η�i� īk�+1 < ȳ

l
η�l� īk�+1

}
⋂
l<i

{
ȳi
η�i� īk�+1 ≤ ȳl

η�l� īk�+1
}
�

Since Kīk is measurable for any īk ∈ �1� � � � �N�k, this proves the induction
step, and therefore the measurability of �m�ξ� = Yf.

Step 3. We now prove the measurability of τ̂i�t� for fixed i and t ≥ 0. Let
�x�y� = Xf and �m�ξ� = Yf. Let χi�t� denote the number of class i customers
that have departed the system by time t. The function χi�t� is measurable,
because

�χi�t� = j� = ⋃
k≥1� īk∈�1�����N�k� η�i� īk−1�=j

[�ξk + z�īk� > t�

∩ �ξk−1 + z�īk−1� ≤ t�]�
The observation that for any s ≥ 0,

�τ̂i�t� < s� =
� N

+ � if s > t,⋃
j=0�1� ���

�χi�t� = j� ȳij+1 < s�� if s ≤ t�

then completes the proof. ✷

Lemma B.4. For any a > 0, the subset

B =̇ �ψ = �b�g� ∈ <� �R̂�b���g� > a�

is measurable. �Recall that R̂ is the mapping associated with the LWDF
discipline��



LARGEST WEIGHTED DELAY FIRST SCHEDULING 47

Proof. Note that for any fixed g ∈ � N
+ , the subset �b ≥ 0��R̂�b���g� > a�

is open, because R̂g is a nonnegative piecewise linear RCLL function with
finite number of linear “pieces” in any finite interval, and this function can
only jump down; that is,

�R̂g��t� ≤ �R̂g��t−��
Then we can write

B = ⋃
0<q1<q2 q1� q2∈�

× �q1� q2�
[ ⋃
ε>0� ε∈�

⋂
q1<q<q2� q∈�

{
g ∈ � N

+ � [R̂g]�q� > a+ ε}]�
Since each subset under the first union is measurable, we get the

measurability of B. ✷

Acknowledgments. We thank our colleagues Matthew Andrews, Debasis
Mitra, Anwar Elwalid, Krishnan Kumaran, Marty Reiman, Alan Weiss and
Phil Whiting at Bell Labs for very useful discussions during the course of this
work.

REFERENCES

[1] Andrews, M., Kumaran, K., Ramanan, K., Stolyar, A. and Whiting, P. (1999). Data rate
scheduling algorithms and capacity estimates for the CDMA forward link. Bell Labs
Technical memorandum.

[2] Andrews, M. and Zhang, L. (1999). Minimizing end-to-end delay in high-speed networks
with a simple coordinated schedule. IEEE INFOCOM’99 380–388.

[3] Chang, C.-S. (1994). Stability, queue length and delay of deterministic and stochastic queue-
ing networks. IEEE Trans. Automat. Control 39 913–931.

[4] Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications, 2nd ed.
Springer, New York.

[5] Dupuis, P. and Ellis R. S. (1997). A Weak Convergence Approach to the Theory of Large
Deviations. Wiley, New York.

[6] Dupuis, P. and Kushner, H. (1989). Minimizing escape probabilities: a large deviation
approach. SIAM J. Control Optim. 2 432–445.

[7] Dupuis, P. and Ramanan, K. (1998). A Skorokhod problem formulation and large deviation
analysis of a processor sharing model. Queueing Systems Theory Appl. 28 109–124.

[8] Elwalid, A. andMitra, D. (1999). Design of generalized processor sharing schedulers which
statistically multiplex heterogeneous QoS classes. IEEE INFOCOM’99 1220–1230.

[9] Fleming, W. H. and Souganidis, P. E. (1986). PDE-viscosity solution approach to some
problems of large deviations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 171–192.

[10] Freidlin, M. I. and Wentzell, A. D. (1998). Random Perturbations of Dynamical Systems,
2nd ed. Springer, New York.

[11] Georgiadis, L., Guerin, R. and Parekh, A. (1997). Optimal multiplexing on a single link:
delay and buffer requirements. IEEE Trans. Inform. Theory 43 1518–1535.

[12] Harrison, J. M. (1998). Heavy traffic analysis of a system with parallel servers: asymptotic
optimality of discrete review policies. Ann. Appl. Probab. 8 822–849.



48 A. L. STOLYAR AND K. RAMANAN

[13] Kelly, F. P. (1991). Effective bandwidths at multi-class queues. Queueing Systems Theory
Appl. 9 5–16.

[14] Kushner, H. J. Control of trunk line systems in heavy traffic. SIAM J. Control Option 33
765–803.

[15] Liebeherr, J., Wrege, D. and Ferrari, D. (1996). Exact admission control for networks
with a bounded delay service. IEEE/ACM Trans. Networking 4 885–901.

[16] Loynes, R. M. (1962). The stability of a queue with non-independent inter-arrival and
service times. Proc. Cambridge Philos. Soc., 58 497–520.

[17] Majewski, K. (1996). Large deviations of feedforward queueing networks. Ph.D. thesis,
Univ. Münich.

[18] Martins, L. F. and Kushner, H. J. (1990). Routing and singular control for queueing
networks in heavy traffic. SIAM J. Control Optim. 28 1209–1233.

[19] O’Connell, N. (1996). Large deviations for queue lengths at a multi-buffered resource.
Technical report HPL-BRIMS-96-010, BRIMS Hewlett-Packard Labs, Bristol, England.

[20] Paschalidis, I. C. (1996). Large deviations in high speed communication networks. Ph.D.
dissertation, MIT.

[21] Ramanan, K. and Dupuis, P. (1998). Large deviation properties of data streams that share
a buffer. Ann. Appl. Probab. 8 1070–1129.

[22] Shwartz, A. and Weiss, A. (1995). Large Deviations for Performance Analysis: Queues,
Communication and Computing. Chapman and Hall, New York.

[23] Skorohod, A. V. (1956). Limit theorems for stochastic processes. Theory Probab. Appl. 1
261–290.

[24] Stolyar, A. L. (1995). On the stability of multiclass queueing networks: a relaxed sufficient
condition via limiting fluid processes. Markov Process. Related Fields 1 491–512.

Bell Labs
Lucent Technologies
600 Mountain Avenue, 2C-322
Murray Hill, New Jersey 07974
E-mail: stolyar@research.bell-labs.com

Bell Labs
Lucent Technologies
600 Mountain Avenue, 2C-319
Murray Hill, New Jersey 07974
E-mail: kavita@research.bell-labs.com


