The Annals of Applied Probability
1991, Vol. 1, No. 3, 462-480

A NEW CLASS OF RANDOM NUMBER GENERATORS'

By GEORGE MARSAGLIA AND ARIF ZAMAN

The Florida State University

We introduce a new class of generators of two types: add-with-carry
and subtract-with-borrow. Related to lagged-Fibonacci generators, the new
class has interesting underlying theory, astonishingly long periods and
provable uniformity for full sequences. Among several that we mention, we
recommend particularly promising ones that will generate a sequence of
21751 pits, or a sequence of 21378 32-bit integers, or a sequence of 293! reals
with 24-bit fractions—all using simple computer arithmetic (subtraction)
and a few memory locations.

1. Introduction. We describe a new class of random number generators
here. The most remarkable feature of these new generators is their ability to
generate immensely long sequences, given an initial set of r seed values
(computer words), with r typically from 20 to 50. Furthermore, with the
exception of a negligible set, every possible r-tuple of words will appear in the
sequence, a desirable uniformity feature that few generators share. Such
immense periods have become more and more necessary with ultra-fast com-
puters and exotic architectures, which might require thousands of streams of
random numbers or have thousands of processors, each using parts of a single
sequence so long that the probability of overlap is virtually zero.

This section briefly describes the most commonly used random number
generators to provide the context for the new class of generators. The new
generators can be grouped into four subclasses: two add-with-carry and two
subtract-with-borrow generators. In Section 2 we define the two add-with-carry
generators, and Section 3 describes the two subtract-with-borrow generators.
Section 4 provides an analysis of the periods of these generators; then Section
5 describes the structure of the sequences that the new generators produce.
Section 6 discusses the computational problems involved in finding parameters
that lead to practical, long period implementations of the new generators and
Section 7 gives an example of an add-with-carry generator suitable for exposi-
tory or classroom use. A summary and some recommended implementations of
the new generators are in Section 9.

Virtually all random number generators are based on theory which may be
described as follows: We have a finite set X and a function f: X — X that
takes elements of X into other elements of X. Given an initial (seed) value

Received October 1990; revised March 1991.

'Research supported by NSF Grant DMS-88-07976.

AMS 1980 subject classifications. 65C10, 10A30.

Key words and phrases. Random number generators, lagged-Fibonacci, add-with-carry, sub-
tract-with-borrow, Monte Carlo.

462

%SJ
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%
The Annals of Applied Probability . STOR

8

®

Www.jstor.org

RANDOM NUMBER GENERATORS 463

x € X, the generated sequence is

x, f(x), f3(x), f3(x),...,
where f2%(x) means f(f(x)), f3(x) means f(f*x))= f(f(f(x))) and so on.

The three most common classes of random number generators are (1) congru-
ential, (2) shift-register and (3) lagged-Fibonacci.

For congruential generators, the finite set X is the set of reduced residues
of some modulus m and f(x) = ax + b mod m. Thus, with an initial element
xo € X, the generated sequence is

Xg, X1, Xg,... with x,, ., = ax,, + b mod m.

A wide variety of choices for a, b and m have been described in the literature;
see, particularly, Knuth [2] or Marsaglia [4] for methods for finding periods and
establishing structure of congruential sequences.

For shift-register generators, the finite set X is the set of 1 X k& binary
vectors x = (by, by,...,b,) and the function f is a linear transformation,
f(x) = xT, with T a k X k binary matrix and all arithmetic mod 2. With an
initial binary vector x, the sequence is

x,xT, xT?,xT3, ...
with the matrix T chosen so that the period is long and multiplication by T is
reasonably fast in computer implementation. See Marsaglia and Tsay [7] for
methods for finding periods and establishing structure of shift-register se-
quences.

For lagged-Fibonacci generators, the finite set X is the set of 1 X r vectors
x = (x1, Xy, ..., x,) with elements x; in some finite set S on which there is a
binary operation <. The function f is defined by

F(xy,2%g,. 3 %,) = (X9, Xg, Xy ooy Xy X1 O Xy g)

Informally, we describe a lagged-Fibonacci sequence as a set of r seed values
followed by the rule for generating succeeding values:

X1, XgyerosXpy Xppq,... With x, =, _,0x,_,

but to formally define and establish the period and structure of such sequences
we view them as iterates x, f(x), f%(x),... on the set X of 1 X r vectors with
elements in the set S on which the binary operation ¢ is defined.

Various choices for S and ¢ lead to interesting sequences: for example,
when S is the set of reduced residues of some modulus m and ¢ is addition or
subtraction mod m; S is the set of reduced residues relatively prime to m and
& is multiplication; S is the set of 1 X & binary vectors and ¢ is addition of
binary vectors (exclusive-or); S is the set of floating-point computer numbers
0 < x < 1 having 24-bit fractions and x ¢y = {if x > y then x — y else x —y
+ 1}). Such generators are described in [5]-[7], where they are designated
F(r, s, o) generators. Methods for establishing periods are in [7].

While examples of generators of each of the three standard methods de-
scribed above are widely used and —for most purposes—work quite well, it is

464 G. MARSAGLIA AND A. ZAMAN

worth considering new methods. All standard generators (with the exception of
lagged-Fibonacci using multiplication) fail one or more stringent tests of
randomness such as those described in [6], and most implementations of them
have periods too short for the huge samples that current computer speeds
make possible.

Note, however, that standard generators can be made to have very long
periods: shift-register generators B, 8T, BT?2 ... with B a seed vector of
hundreds or thousands of bits; lagged-Fibonacci generators such as x, =
X, _607 — Xn_o043 mod 232 with period some 2507%32 for a set of r 32-bit seed
values; extended congruential generators of the form x, = ax,_; + ayx,_,
+ - +a,x,_, mod p exist for any prime p, with period p*. But most such
extensions have drawbacks—the problem of manipulating 8’s hundreds of bits
long for shift-register generators, or the high cost of arithmetic modulo a
prime for extended congruential generators. Lagged-Fibonacci generators us-
ing addition, subtraction or multiplication modulo 232 have few such draw-
backs, but, to put provide a comparison: the generator x, = x, _go7 — X, _243
mod 232 mentioned above will have period about 2°7*32 while an analogous
generator of the new type described below will have period about 250732,

For these reasons, we offer the class of add-with-carry and subtract-with-
borrow generators we now proceed to define.

2. The new class: Add-with-carry generators. We introduce add-
with-carry generators with a simple example. Consider the classical Fibonacci
sequence

0,1,1,2,3,5,8,13, 21, 34,55,89,...,

with each element the sum of the previous two. If we take this sequence
mod 10, we have an example of a lagged-Fibonacci sequence with lags r = 2
and s = 1 and binary operation v ¢ w = v + w mod10:

0,1,2,2,3,5,8,3,1,4,5,9,4,3,7,....

The information description of the sequence is x,, = x,_, + x,_; mod 10, but
to formally describe it and define and establish its period we need the finite set
X of 1 X 2 vectors x = (x, x,) with elements reduced residues of 10 and the
iterating function f defined by f(x, x,) = (x4, x; + x, mod m). Since [has
an inverse, for any initial vector x € X the sequence

x, f(x), f2(x), f3(x),. ..

is strictly periodic. Depending on the initial vector x, there is a longest cycle of
period 60 and shorter cycles of periods 1, 3, 4, 12 and 20. Each period is the
least common multiple (Icm) of the periods for moduli 2 and 5.

Now consider the add-with-carry version of this generator. We assign two
initial values, say 0, 1, and an initial “carry bit,” say 0. Then each new digit is
the sum of the previous two digits plus the carry bit. The result is taken
mod 10 and the next carry bit set to 1 or 0 according to whether or not the
sum exceeds 10. Using a superscript to indicate the carry bit, the sequence of

RANDOM NUMBER GENERATORS 465

digits becomes

0,1°,1° 20,39 59 8° 31 21 6° 8° 4! 3! 8° 1! 0!,2°
Formally, as before, we have a sequence of iterates x, f(x), f%(x),... . But
now our x’s come from the set X of 1 X 3 vectors x = (x, x,, ¢) With x, x,

reduced residues of 10 and ¢ the ‘“carry bit,”” 0 or 1. Then the iterating
function f is

(x9,%; + x5+ ¢,0) if x; + x5, + ¢ <10,
(x9,%; + x5 +c¢—10,1) if x; +x, + ¢ > 10.

f(xlv X, C) =

For initial vectors x = (xq, x5, 0) with x; < x5 or x = (x, x5, 1) with x; > x,
the sequence of iterates x, f(x), f%(x),... is strictly periodic with period 108.
If the initial vector x is not of those two types and not (0, 0, 0) or (9, 9, 9), then
the sequence beginning with f(x) is strictly periodic with period 108, but the
‘““seed” vector x may not reappear in the sequence. We develop rules for
finding the period and assigning seed vectors for add-with-carry generators
below.

As with lagged-Fibonacci sequences, a whole class of such generators can be
created by altering the lags from the values r = 2 and s = 1 used in the
previous example. The general add-with-carry generator has a base b, lags r
and s with r > s, a seed vector x = (x, x,, ..., X,, ¢) with elements ‘“digits” of
the base b. Then the generated sequence is x, f(x), f2(x), f3(x),... with

f(xy,...,x,,¢)
(X X X T Xy +0,0) ifx,,;_,+x;+c<b,
(Xgyeeus X, X, q_s+x;, +c—=0b,1) ifx, ,_ +x,+c=b.

With appropriately chosen base b, lags r and s and seed vector x, the
generated sequence x, f(x), f2(x),... will be periodic with period b” + b° — 2,
as well be shown in Section 4. These generators have extremely long periods.
For example, when b is near 232, each base-b “digit” is a computer word, and
with r around 20 or so, then periods of some 254° are attainable, at the cost of
only r memory locations and simple computer arithmetic. (The add-with-carry
instruction is basic to all CPU instruction sets.)

2.1. The complementary add-with-carry generator. We mention here an-
other kind of add-with-carry generator. It arose as a generator whose period
filled a gap in an otherwise complete set of rules for the new generators; see
Section 4.4. We call it the complementary add-with-carry generator, and its
rules for forming the element x, and associated carry c are

ift=x,_,+x, ;+c<b,thenx,=b—-1—-tandc=0
elsex, =2b—1—tand c=1.
In short: form x, and c as in the plain add-with-carry generator, but return

the complementary digit b — 1 — x, rather than x, itself. This rule leads to
sequences with periods b” + b°.

466 G. MARSAGLIA AND A. ZAMAN

3. The new class: Subtract-with-borrow generators. We illustrate a
subtract-with-borrow generator with a numerical example using the same
parameters as the add-with-carry generator above (base 10, lags r = 2, s = 1),
but now each new digit is a difference: the lag-1 digit is subtracted from the
lag-2 digit and the carry bit is subtracted as well. If the result is positive, it
becomes the new element with carry bit set to 0; if negative, 10 is added and
the new carry bit is set to 1. Thus, with seeds 0,1 and initial carry 0, the
sequence becomes

0,1°,91, 11,79 41, 2°,2° 0°,2°,8%,38%,4° 11,2° 9 21 6°,... .
Formally, for this generator, X is the set of 1 X 3 vectors x = (x, Xy, c),

with x,, x, reduced residues for base 10 and c € {0, 1}. But now the iterating
function f is

(xg,%; — %5 — ¢,0) ifx; —xy—c =0,

X1, %5,C) = ,
f(x1, 23) (xg,%; —%5 —c+10,1) ifx; —x, —c <O0.

This makes precise the meaning of the generator we informally describe by
X, =%X,_g—%X,_1—C.

Since the order of subtraction matters, a different generator would be
formed by x, = x,_; — x,_5 — c¢. More generally, the informal rules for sub-
tract-with-borrow generators with lags r and s are x, = x,_, — x,_, — ¢ and
x, =%, s —%,_, — c. (Here and throughout, we assume for the two lags r
and s that r >s.) To formally define the generators and establish their
periods we have the finite set X of 1 X (r + 1) vectors x = (x}, xy,...,%,,¢)
with the x’s reduced residues of some base b and the iterating function f

defined for the x, = x,_, — x,_, — c case by

n

f(x,...,%,.,¢)
B (2Xgy vy Xy X, yq_g — %1 —C,0) ifx,,i_,—x,—¢c=0,
(Xgyvo s X, X,y — %, —c+b,1) ifx, , —x;,—¢<0

and with f for the x, = x,,_, — x,,_, — ¢ case by

f(xy,...,x,.,¢)
B (Xgy-ees Xy Xy —X,y1_s — C,0) ifx; —x,,,_s —c=0,
(Xgyeees Xy Xy =%, 1_s—c+b,1) ifx; —x.; ;—¢c<O0.

With appropriately chosen base b, lags r and s and seed vector x the
generated sequence x, f(x), f%(x),... will be strictly periodic with period
b" — b° for the x, =x,_, — x,_, — c generator and period b" — b° — 2 for
xnzxn—r_xn—s_c' .

4. Periods of the new generators. The fundamental result for estab-
lishing periods comes from recognizing that these generators behave very
much like the operation of long addition with carry (that some of us in the
pre-calculator age learned in school). Once this addition is explicitly written, it

RANDOM NUMBER GENERATORS 467

is easy to recognize that the sequence of digits formed by the add-with-carry or
subtract-with-borrow operation is, in reverse order, the same as the sequence
of digits of the base-b expansion of a proper fraction k/(b" + b° + 1). Here
r,s and b are the lags and the base, respectively, and choices of + depend on
the particular generator.

4.1. Results from number theory. We need some background material
from number theory to establish periods of the new class of generators. This
elementary material has been known for hundreds of years, but it is seldom
mentioned in modern books. We summarize it here. It concerns the decimal
expansions of fractions—expansions to a base b, rather than the customary
base 10—but we illustrate with the more familiar base 10.

Let the modulus m be chosen and consider the group G of ¢(m) reduced
residues of m relatively prime to m. For £ in G we want the base-b expansion
of k/m. That expansion is strictly periodic with period the order of b in the
group G. (This requires the assumption that b € G.) The cyclic subgroup
generated by b partitions G into cosets. Two elements g and A of G are
equivalent (belong to the same coset) if g = kb’ for some j. If two elements
g, h belong to the same coset, then g/m and h/m have the same base-b
expansion with period the order of b, except that the “digits” in their periods
are cyclic permutations of one another.

ExamPLE. Modulus m = 39, base b = 10. The powers of 10 mod m gener-
ate the cyclic subgroup (1, 10, 22, 25, 16, 4}, so the order of 10 for modulus 39
is 6. Successive elements % of that subgroup have a common set of digits in the
period-6 decimal expansion of k/m, each a cyclic permutation of the previous
one:

1/39 = 0.025641025..., 10/39 = 0.256410256..., 22/39 = 0.564102564 ...,
25/39 = 0.641025641..., 16/39 = 0.410256410..., 4/39 = 0.102564102... .

Now choose an element not in the first coset, say 2. Its coset is
{2, 20,5, 11, 32, 8}, and ratios k/m with & from that coset all have the same
digits in their period-6 decimal expansions, shifted by one because of succes-
sive multiplications by the base 10:

2/39 = 0.0561282051..., 20/39 = 0.512820512..., 5/39 = 0.128205128...,
11/39 = 0.282051282..., 16/39 = 0.820512820..., 8/39 = 0.205128205... .

For our purposes, we want to choose primes m for which & is a primitive
root. Then the period is m — 1 for the base-b expansion of every proper
fraction k/m.

4.2. Periods of the new generators: Add-with-carry. We now prove that
the period of the add-with-carry sequence that produces ‘“‘digits’ of the base b
by means of the relation x,, = x,,_, + x,,_, + ¢ mod b is the period of the base-b
expansion of k/m for some kin 1 <k <mand m =b" + b° — 1.

468 G. MARSAGLIA AND A. ZAMAN

To fix ideas, consider the case r =2, s =1 for modulus b = 10: x, =
X,_g +x,_; + c mod 10, initialize with the seed digits 1,2 and initial carry
¢ = 0. The sequence is 1,2,3,5,8,3,2,6,8,4,3,8,... . Now the idea behind
the proof is that digits of the sequence that are r — s positions apart are
added, with carry, to form the next digit, moving left to right. We are all
familiar with a similar arithmetic operation when adding two large integers,
except that addition-with-carry moves right to left. To illustrate the analogy,
let I be the integer whose digits are the first twelve of our sample sequence, in
reverse order:

I = 834862385321.
Now shift I left r — s = 1 positions (form 10I) and add it to I, getting
I = 834862385321
bl = 8348623853210

I + bl = 9183486238531 .
Because of the rule for forming the sequence, there will be a substring of digits
common to each of the three levels; they are indicated in boldface. Let S be
the integer formed by those digits—in this case, S = 8348623853. The appear-
ance of S in each of the three levels of the sum enables us to develop a simple
linear equation for S:

102S + 21 + 103S + 210 = 91 x 10 + 10'S + 1,

leading to
(10% + 10 — 1) S = 91 x 10'° — 23.
Thus
91 23
=1 wo_ _
§ 0 109 109

Now S is an integer, so the fractional part of 10'°(91/109) must cancel that
of 23/109, and it follows that S is the integer part of 10°(91,/109); that is,
S’s digits are the first 10 digits of the decimal expansion of 91 /109:

91
102 + 10 — 1

We may apply such an argument to the reversed digits in an arbitrarily long
finite string formed by x, =x,_, +x,_, + ¢ mod b. The period of the se-
quence will be the period of the base-b expansion of a proper fraction of the
form k/m with m = b" + b° — 1. The integer £ will be that formed by the r
digits on the left of the string S in the third row of the sum. When % is
relatively prime to m the period will be the order of & for modulus m. Making

m a prime ensures this, of course.
Here are some other examples. In the first two the sequence is

=x, ,+%, 5+ cmodl0, seed 7493 — 74936852218305888372. ..

with initial carry ¢ = 0. Take, say, the first 20 digits of the sequence and write
them in reverse order to get the integer I. Then form 6"~ °I by shifting I left

= 0.8348623853. .. .

X

n

RANDOM NUMBER GENERATORS 469

two positions, bringing in two zeros. Then add. Because of the rule for forming
new digits, the three levels will have a common string (indicated in boldface):

I= 27388850381225863947
b2l = 2738885038122586394700

I+ b%I = 2766273888503812258647 .

Let S be the integer formed by those digits. The presence of S in each of the
three levels provides a linear equation,

b*S + 3947 + b°S + 394700 = 27665 + b2S + 47,

leading to
(b* + b2 — 1)S = 27666 — 3908,
and thus
276616 3908
T rbi-1 bt abpE-o1
Since S is an integer, the fractional part of the first term must cancel the
second, and thus S is the first 16 digits of the expansion of 2766 /(b* + b2 — 1):
2766
104 + 102 - 1
Suppose instead of 20, we take 15 digits of the above sequence and form an

integer I by writing them in reverse order. We then add " ~°I to get this
tableaux with the digits of S in boldface:

I= 850381225863947
b%I = 85038122586394700

I + b1 = 85888503812258647 .
The linear equation in S that results from this sum is

b1S + 3947 + b85S + 394700 = 85885b'3 + b2S + 47,
from which, because S is an integer, we conclude that S = 85885 /(b* +
b2 — 1); that is, the digits of S are the first 11 digits in the expansion of
8588 ,/10099:

= 0.2738885038122586.. . . .

8588
10* + 102 — 1
Finally, here is one more tableaux with base b = 6 and lags r = 6 and
s=3:
X, =%,_g+%,_5+cmod6, seed 153024 — 153024112230442.. .,
I= 244032211420351
b31 = 244032211420351000
I + 31 = 244320244032211351 ,
244320
6*+6°—1

= 0.85038122586. .. .

= 0.244032211... base 6.

470 G. MARSAGLIA AND A. ZAMAN

4.3. Periods of the generators: Subtract-with-borrow. For sequences gen-
erated by x, = x,_, — x,_, — ¢ mod b, the period is also the period of a proper
fraction k/m, where this time m = b” — b° — 1. This may be established in a
manner similar to that for add-with-carry sequences: Choose r starting values
and generate a sequence of arbitrary length. As before, let I be the integer
formed by putting those digits in reverse order. For example, with b = 10,
r=2>5, s =3 and starting values 5,9,7,7,7 the reversed string of 15 digits
yields I = 304285901877795. Shift I left by s positions (multiply by 4°) and
add to get

I= 304285901877795
b°I = 304285901877795000

I+ b°I = 304590187779672795 .

The boldface string S = 59018779 appears in each line. Cancel the leading 304
and the trailing 5 to get a simplified equation for S:

30428b° + S + 28b'2 + b3S + 500 = b5S + 67279.
Thus
58428b° — 64779 = (b° — b®> - 1)S
and, with m = b® — b2 — 1 = 98999,

, 08428 66779

S=10 .
98999 98999

Since S is an integer, it must be the integer part of the first term; that is,
the digits of S are the leading nine digits of the decimal expansion of
58428 /98999: S = 590187779.

We may apply such an argument to the reversed string of an arbitrary
length sequence with r initial values and, for n > r, x, =x,_, —x,_, — ¢
mod b. Its period will be the period of the base-b expansion of a proper fraction
k/m, with m = b" — b° — 1. (The particular value of %k changes with the
length of the string used to form I. It is of no particular importance—the
actual value is that of the trailing 5 digits of J + b°J, where J is the integer
formed by the leading r digits of I. The important point is that the linear
equation always has S with coefficient b%m, for some d and m = b" — b* — 1,
so that the solution for the integer S is the first d digits of a proper fraction
k/m for some k.)

For the case x, =x,_, —x,_, — ¢ with r > s a similar derivation holds,
except that I is added to 6"I. The common string S has a solution of the form
S =b%(k/m)+ 0 with m =b" — b* + 1and 0 < 8 < 1. Then the base-b digits
of S are again obtained from the leading digits of the base-b expansion of a

RANDOM NUMBER GENERATORS 471

proper fraction k/m. We illustrate with*a final tableaux:

X, =%,_3—%,_5 —cmod 10,

n

seed 26479 — 264792155124662426791534 . ..,
I = 97624266421551297462
b1 =9762426642155129746200000
I+ b1 =9762524266421551297497462 ,
(b° — b% + 1)S = 240245 — 6102538,
24024
105 - 102 + 1
The rule for forming 2 may be deduced by noting that 24024 = 25000 — 976.

= 0.242664215512974

4.4. Periods: The complementary add-with-carry generator. We have three
kinds of generators whose periods are those of the base-b expansions of proper
fractions k/m, with m =b" +b6° -1 for x, =x,_, +x,_,+c modb; m =
b" —b°—-1for x,=x, ,—%,_—c modb; and m =b"—-b°+1 for x, =
%X,_s — %,_, — ¢ mod b. Thus all possible forms m = b" + b° + 1 occur, except
m = b" 4+ b° + 1. With faith in the beauty and completeness of mathematics,
we thought there should be a generator for that case as well, and it turned out
that there is—the complementary add-with-carry generator described in 2.1.

This generator provides sequences with periods that of the base-b expansion
of proper fractions of the form k/m with m = b" + b° + 1. Readers seeking to
verify this may construct tableaux as above: Form I as the digits of a sequence
in reverse order, add 671 to get a third row. Then the complement of the third
row (replace a digit d by b — 1 — d) will have a string S in common with the
first two rows. This will provide a linear equation in S with coefficient
b4(b" + b* + 1), and thus the integer S will be the first d digits of the base-b
expansion of some k/(b" + b° + 1).

Because of its slightly more complicated generating procedure, the compli-
mentary add-with-carry generator does not seem as desirable as the other
three. However, it does have the redeeming feature that primes of the form
m =b" + b° + 1 make factoring m — 1 easier. Such factoring is essential in
establishing that b is a primitive root.

4.5. Summary for periods and periodic seed vectors. The periods estab-
lished above for the four kinds of generators are always those of the base-b
expansion of a proper fraction &/m. Indeed, the base-b ‘‘digits’’ generated are
those of the expansion of k£/m in reverse order. Here m = b + b + 1. When
implementing these generators, we will always choose r,s so that m is a
prime. Then the period of the base-b expansion of & /m is the order of b in the
group of residues of m, and that order is m — 1 if b is a primitive root. So we
seek primes of the form &” + b° + 1 with b a primitive root. Occasionally, for

472 G. MARSAGLIA AND A. ZAMAN

particularly desirable b’s such as b = 2,28,216 232 we will have to settle for
primes m for which the order of b is nearly, but not quite, m — 1.

Any starting (seed) vector of r digits and initial carry ¢ will produce a
sequence that is ultimately periodic, but it may not be strictly periodic: After a
few iterations (at most r), the periodic cycle begins. We say that a seed vector
is “periodic” if it produces a strictly periodic sequence: The first vector to be
repeated in the sequence x, f(x), f(x),... is the seed vector x itself. Finding
conditions which ensure that a seed vector is periodic is pretty much an
academic exercise, done out of curiosity. We emphasize that whatever the seed
vector, except for the two trivial seeds, the add-with-carry and subtract-with-
borrow sequences become periodic after a few iterations of the generating
function, and the periods are the order of the base b for the appropriate
modulus m = b" + b° + 1.

The question of whether a seed vector produces a strictly periodic sequence
or one that becomes periodic after a few ‘stabilizing” iterations, is of no
significance for practical applications of the new generators. But the puzzle of
exactly which seed vectors produce strictly period sequences is an interesting
challenge that we undertook to solve. The following listing summarizes rules
we found for periodic seed vectors and periods for subtract-with-borrow and
add-with carry generators, with base b, lags r and s, r > s. If r and s are
chosen so that m is prime and b is a primitive root of m, the (long) period of
the sequence will be m — 1. [There are two short periods, each of length 1, for
the trivial seed vectors (0,...,0,0) and (b — 1,...,b6 — 1, 1).] Periodic seed
vectors have the form (x, x,, ..., x,, ¢) with rules for their formation given for
each method. When we write a succession of symbols such as xgx, -+ x; we
mean the integer for which that is the base-b representation.

Metuop 1. x,=x,_,—x,_,—cmodb; m =b" —b° + 1.

n—r

c=0andx, -~ x,,; <x,_, " Xy,

c=landx, - x,,; >x,_, " X

— — — . = h" — hS —
METHOD 2. %x,=x,_,—%,_,—cmodb;, m =b" —b° — 1.
c=0andx, ---x,,, tx,_, - x, <O T -1,
c=landx, - x,,; +x,_ x>0 - 1.

METHOD 3. %, =%,_,+%,_,+cmodb;, m =b" +b°— 1.

c=0andx, -~ x,, [, =x,_, """ %,

n
c=landx, ~--x,,,<x,._, """ x;.
MEerHOD 4. Form x, and carry as in Method 3, but replace x, by its

complement, b — 1 —x_; m =b" + b° + 1.
c=0andx, ~--x,,, tx,_, - x;, <671,

n’

c=landx, -~ x,, tx,_, " x; =2b"7° -1,

RANDOM NUMBER GENERATORS 473

We conclude this section with examples of rules for periodic starting vectors
(x4, %4, X3, X4, X5, ¢) for the particular case b = 10 and r = 5, s = 2. In order
that the sequence be strictly periodic, the seed vector must have one of two
possible forms:

1. For the generator x, = x,_, — x,,_, — ¢ mod 10,

n—r
(x4, xg, X3, X4, X5, 0) with integers x5x,x5 > x3x5%1,
(%, X9, X5, X4, X5, 1) with integers xx,205 < x5205%;.

2. For the generator x, = x,_, — x,,_, — ¢ mod 10,

n—r n—s
(%4, X9, X3, X4, X5, 0) with integers x5x,205 + x505,x; < 999,
(x4, X9, X3, X4, X5, 1) with integers x5x,05 + x3x,x; > 999.
(a) For the generator x,, = x,_, + x,_, + ¢ mod 10,
(%, x5, X3, X4, X5, 0) with integers x5x,x5 < x3x5%1,
(%, X9, X3, X4, X5, 1) with integers x5x,05 > x3x0%;.
(b) For the generator x, =9 —x,_, — x,_, — ¢ mod 10,
(%, X9, X3, X4, X5, 0) with integers x5x, x5 + x3x92; < 999,
(x4, xq, x5, X4, X5, 1) with integers xzx, x5 + x32052, = 999.

If the sequence starts with any other seed vector, the sequence will not be
strictly periodic, but a rho sequence: an initial string of a few elements
followed by the cyclic part. The cycles will always be those of the base-b
expansion of some proper fraction k/m, in reverse order.

5. Structure of the sequences. In this section we clarify what we
meant by ‘ provable uniformity for full sequences,” mentioned in the abstract.
We begin with comments on seed values and periods. An ideal generator
should have period as great as the number of possible choices for seed values.
Then, if the seed values are x4, x,, ..., x,, and the sequence is strictly periodic,
every possible r-tuple of x’s will appear in the full sequence—a desirable
uniformity property. Except for trivial cases of little interest, the lagged-
Fibonacci generators—the current record holders for long periods—do not
have this property. The lagged-Fibonacci generators F(r,s, — mod 232),
F(r,s,* mod2®) or F(r,s, — mod1) have periods on the order of
232+r 930+r 924+ far short of the ideals of 2327, 23" or 224" that are the
number of possible choices of seed values. [Nonetheless, their periods are still
far longer than those for F(r,s, ®) generators using exclusive-or, for which
the period is at most 2", whatever the word size.]

The new generators developed here require r seed digits from a base b, and
their periods differ by an insignificant fraction (6°/6") from b”, the set of all
possible r-tuples. Thus, for example, the subtract-with-borrow generator de-
veloped in the next section, x, =x, 5, — X,_43 — ¢ mod23 — 5, has base
b =23 -5 and period b*® — 5?2, It requires 43 seed values, each a 32-bit

474 G. MARSAGLIA AND A. ZAMAN

integer in the range 0 to b — 1. Every possible 43-tuple of base-b digits will
appear in a full period, except for the missing fraction 1,/62! = 10722 of the
possible 43-tuples.

Because any set of 43 seed values can be used to initiate the sequence, it
follows that every 42-tuple of digits will appear b times in the full period,
except for those associated with the insignificant fraction of missing 43-tuples,
and so on: All k-tuples for 2 = 43,42,...,2,1 will appear in a full period with
frequencies consistent (indeed, foo consistent) with uniformity. But, of course,
it is impossible to use any but a small portion of such immense periods.
Presumably, the frequencies will have local departures from uniformity that
are consistent with randomness; only tests can verify that.

Rather than dealing with such immense periods, it is sometimes helpful to
examine all of the elements from one of the new generators with a more
modest period. Consider the prime 10° — 102 + 1 = 99901, for which 10 is a
primitive root. The subtract-with-borrow sequence x, =x,_ o —%,_5—¢
mod 10 has period 99900. It will be strictly periodic if, and only if, the seed
vector is one of the two types:

(%4, X9, X3, X4, X5, 0) with integers x5x,%5 > x3%0%1,
(%q, X9, X5, X4, X5, 1) with integers x5x,05 < x53%5%;.

There are 10° = 100,000 possible 5-tuples x;x,x5x,%5, but only 99,900 of
them appear in the full-period sequence. Which ones are missing? Evidently
the 5-tuples which cannot be used to form a periodic seed vector; that is,
5-tuples with xzx,x; = x3x5%,. These have the form xyxyx, 100 in number.
Other than those 100 exceptions, every 5-tuple appears exactly once in the full
period of 99,900 5-tuples. Thus the sequence has nearly full-period uniformity,
in that virtually all of the possible 5-tuples appear exactly once, and only a few
—those of the form xyxyx—do not appear. Furthermore, except for those that
could arise from 5-tuples of that form, every 4-tuple appears the right number
of times in the full cycle, and so on for 3-tuples, 2-tuples and individual digits.

6. Choosing the base b and lags r and s. We begin this section with a
specific choice for one of the new generators. It is one of the best we have
found. It has already been implemented in a widely used generator called
RANMAR advocated by James [1] and in a generator specifically tailored for
PC’s [9].

Discussion of the method for finding suitable parameters and proving that b
is a primitive root will illustrate what must be done to find good, practical
subtract-with-borrow or add-with-carry generators.

For this generator we have b = 232 — 5. The ‘“digits” for base b are then
integers that account for virtually all 32-bit computer words. (Even better
would be b = 232, so that the digits are exactly the set of 32-bit integers, but
for reasons developed below, there are no primes of the required form for
which 232 is a primitive root.) The choice & = 232 — 5 arose from an extensive
search for parameters b, r,s meeting these conditions: b near 232, r and s

RANDOM NUMBER GENERATORS 475

such that m = b" — b° + 1 is a prime with b a primitive root, r not too small
and s not too close to r.

Such searches lead to formidable computing problems. For given b near 232
and with r some 20 or more, one must first find primes of the form m = 5" —
b® + 1 and then see if b is a primitive root. Such m’s might be in the range
2000 to 2'890 Testing for primality is feasible, using Monte Carlo tests, but
establishing whether b is a primitive root is much more difficult. That requires
factoring m — 1. However, hundreds of hours of computing produced this
promising subtract-with-borrow generator:

X, =X, 90— %, 45 —cmodb, b=2%—5=4294967291.

Given 43 seed values, each a 32-bit integer less than 232 — 5, the generated
sequence will have period m — 1 = 5% — 22 = 21376 To establish this im-
mense period we must prove that m = b** — b** + 1 is prime and b = 232 — 5
is a primitive root of m. So we factor m — 1, which has 17 prime factors: Let
g be that factor set:

g =1{b,2,5,19,43,421,883,7057,9829, 46681, 3650221, 22605091,

447526613551, 1152964457, 7192358279,
17603680453543143795603788392916017993, p'}.

Here p'is a prime of 99 digits requiring two lines for display:
p' = 36964737049079490962774762893967802680434669317822

4186677750022102445220940696162576134304437648517.

Since 5” ' =1 mod m and 5" '/? = 1 mod m for each prime p that
divides m — 1, it follows that m is prime and b is a primitive root.

6.1. Bases a power of 2. For computer implementation of the new genera-
tors, the most desirable bases are powers of 2. Choosing b = 232 makes each
digit of the base b a full computer word, a 32-bit integer. Choosing b = 2
allows generation of a stream of bits in a single-bit processor or bits 16 or 32 at
a time by means of the integer addition or subtraction available in 16- or 32-bit
processors with built-in bit-to-bit carry. (It was in response to a request for a
random number generator for the Connection Machine, with its 65536 one-bit
processors that the methods of this article were developed.)

Unfortunately, there is no prime m = 27 + 2° + 1 for which 2 is a primitive
root, unless the shorter lag s is 1 or 2. The reason for this is that 2 is always a
quadratic residue of primes m = 2"+ 2° + 1 if s > 2, since m = +1 mod8,
and of course a quadratic residue cannot be a primitive root.

Furthermore, if 2 is a quadratic residue of m, then 2 has a square root
mod m and thus so have 2%4, 2% and all the powers of 2. So we must give up
hope of full-period add-with-carry or subtract-with-borrow generators for bases
2,256,224 2% and so on unless we are willing to let the shorter lag s be 1 or 2.
However, there are good choices for r and s for those bases where the period
is almost the maximum possible. We give a few of them now for base b = 22%.

476 G. MARSAGLIA AND A. ZAMAN

6.2. Base b = 2?*, This base is particularly attractive for use with the
subtract-with-borrow generators because it makes possible the generation of
floating-point numbers directly, without the usual method of generating an
integer and then dividing by the modulus. This feature was exploited in the
“universal”’ generator described in [9]. The choice b = 22* allows direct gener-
ation of computer reals with 24-bit fractions—the most frequent size for single
precision.

Since b = 2%* cannot be a primitive root of any m =b" + b° + 1 except
when s = 1 or 2, we can have no useful generators with full period m — 1. But
if m is prime and the order of & is (m — 1)/j for small j, then we may still
have a useful generator with immensely long periods. Here are three examples
for b=2% m=b*-5b0+1 m=06%-0"+1 m=>5%—-5% + 1. For
these primes m we are able to factor m — 1 and show that the order of b is
not significantly smaller than m — 1. Here is how to do it: For each of these
primes m, the prime factors of m — 1 are

2,3,5,7,13,17,29,43,97,113,127, 241, 257,337, 673, 1429, 2017, 3361,
5153, 5419, 14449, 15790321, 25629623713, 88959882481,
54410972897, 1538595959564161.

[Since, in each case, m — 1 = b*(b7 — 1)(b” + 1), we “only” need the prime
factors of 2168 — 1 and 268 + 1, listed, with 2, above.] With these prime factors
of m — 1 we may find the order of 5 = 22* for modulus m. In none of these
cases does b have order m — 1, but the order is large enough to provide
sequences with extremely long periods. These three generators are among
those recommended in Table 2 in the summary, Section 9. They are:

1. r=24,s5 =10, b = 2%, m = b%* — b'° + 1. The order of b for modulus m
is (m — 1)/48. For any k in 1 < k < m the base-b expansion of k/m has
period (m — 1)/48, with “digits” in the period a cyclic permutation of one
of 48 possible sets of (m — 1)/48 digits—in this case, about 2572/3.

2. r=25s=11,b= 2% m = b% — b + 1. The order of b for modulus m
is (m — 1)/336. For any k in 1 < k < m the base-b expansion of k/m has
period (m — 1)/336, with “digits” in the period a cyclic permutation of one
of 336 possible sets of (m — 1)/336 digits—in this case, about 2°% /21.

3. r=239,5s=250b=2% m=0% - 5% + 1. The order of b for modulus m
is (m — 1)/672. For any % in 1 < k < m the base-b expansion of k/m has
period (m — 1)/672, with “‘digits” in the period a cyclic permutation of one
of 672 possible sets of (m — 1)/672 digits— in this case, about 293! /21.

In the above cases, each ‘‘digit’ is a 24-bit integer or the 24-bit fraction of a
floating point number, and only 24 or 25 or 39 seed values are required to
initiate sequences of such lengths.

6.3. Choices r,s when b = 2. We conclude this section with some poten-
tially useful pairs r,s for which m = 2" — 2° + 1 is prime. It is, in general,
very difficult to find the order of 2 mod m when m is on the order of 2%%° or
more, since it requires factoring m — 1. But if we take advantage of primes of

RANDOM NUMBER GENERATORS 477

TABLE 1
Pairs r and s for which m = 2" — 2% + 1 is prime

3,1 23,20 57,38 123,120 193,190 323, 320 467,436
4,2 25,12 59, 28 125,18 201,182 325,198 477,446
5,2 25,18 61, 54 145,140 203,201 329, 222 481,374
7,4 29,26 65, 60 149, 42 211,209 349, 242 487,468
7,5 31,24 68, 66 153,122 217,110 355,353 511,504
8,6 32,30 69,8 161,72 221,214 361, 300 536, 534
9,2 33,20 73,68 161,142 221,216 393, 390 537,476
9,6 37,18 79,72 165, 38 251,232 410, 408 553, 492
10,8 38,36 95,92 169, 138 253,192 421,416 565, 558
13,8 41,10 101,70 177,174 263, 232 425,412 589, 558
14,12 43,41 103, 84 183,180 269, 208 435,432 629, 522
17,14 49,30 105,74 185,58 271,144 440, 438 785,178
19,12 53,34 109, 78 187, 180 278,276 441, 380 847,240
20,18 53,50 117,56 191,64 293, 290 451,324 1751, 472
23,4 55,52 121,114 191, 189 309, 248 457,368

the form 27 — 1 (Mersenne primes) we narrow our search to primes of the
form m = 2" — 2° + 1 with r = p + s. For in such cases m — 1 = 25(2? — 1)
so that factoring m — 1 and determining the order of 2 mod m is easy. The
results of the search are in Table 1. A few r, s with s close to r are included in
the table for completeness; they are not likely to produce satisfactory random
sequences.

7. A practical example for classroom or textbook use. Computer
implementations of add-with-carry or subtract-with-borrow generators have
immensely long periods and the ‘‘digits”’ for the base b are usually computer
words. For expository purposes, it is desirable to have examples with more
manageable periods, using more familiar bases b. The example b = 10 and
X, =%,_g —%,_5 —c mod10 was used above. Its period is 10° — 102 short
enough for examining the full period, but not long enough to apply many tests
of randomness. We have found the following add-with-carry generator useful
for demonstrations. It uses base b = 6 and thus simulates throws of a die:

X, =X, _9; +X,_o+ cmod6
Because 62! + 62 — 1 is a prime for which 6 is a primitive root, this generator
will have period 62! + 62 — 2 = 21,936,950,640,377,890 for any set of 21 seed
digits and initial carry c, except for 21 0’s and ¢ = 0 or 21 5’'s and ¢ = 1.

So, given an initial set of 21 digits for base 6 and an initial carry c, this
generator, using very simple arithmetic, will produce a string of some 21 x 1015
“throws”’ of a die. Every possible set of 21 successive throws will appear in the
sequence, with frequencies for shorter strings consistent with uniformity for
the full period. To see if the sequence behaves locally as a series of independent
throws, one must apply tests.

478 G. MARSAGLIA AND A. ZAMAN

In addition to all of the tests of randomness mentioned in the next section,
which it passed beautifully, we applied a test related to the use of dice for
gambling—the craps test. In the craps test one plays, say, one million games of
craps, using pairs of digits to provide the total on a pair of dice. Counted are:
the number of wins (probability 244 /495), the number of throws needed to
complete the game, the number of ‘“ passes” (successive wins) and the frequen-
cies of individual and paired totals on the dice.

The results were indistinguishable from what would be expected from a
million games of craps with true dice, consistent with the probabilities for the
various aspects of the game—number of wins, duration of the game, frequency
of consecutive ‘““‘passes’” and values on the dice. The die was ‘“thrown”
6,747,174 times. There are plenty more throws available; however, the period
is6%' + 6% — 1 = 21,936,950,640,377,890 for the x, = x,, 5, + X, , + ¢ mod 6
generator, so it could easily run Las Vegas for 10,000 years with no one (but
us) the wiser.

8. Tests of randomness. Easily understood examples such as that above
for dice serve to illustrate how a simple deterministic process can produce
numbers that for many purposes can be taken as random—indeed, for most
purposes, for it is often very difficult to find applications for which a good
random number generator fails to produce results consistent with the underly-
ing probability theory. Any number of tests of randomness may be applied. In
the early 1960’s, MacLaren and Marsaglia [3] proposed a number of tests for
random number generators, and these were taken up and added to by Knuth
[2] to become a sort of standard set of tests.

Most generators pass these tests, but several of the standard generators
were found to give bad results on more stringent tests such as those described
in [6] and [9]. Our research group has a battery of tests called DIEHARD that
includes all the standard and the additional tests mentioned in [6] and [9]. The
add-with-carry and subtract-with-borrow generators developed here have so
far passed all these tests. We will not report specific test results here, but,
based on the results we have observed, we think these new methods produce
“randomness’ at least as well as any other generators. With their simple
generating procedures, modest memory requirements and immense periods,
they merit consideration for serious Monte Carlo work.

9. Summary and recommendations. We have described new kinds of
generators: add-with-carry and subtract-with-borrow. They produce exception-
ally long sequences of ‘“‘digits’” x;, x,,... of a base b. Informally, the genera-
tors are of four types:

l.x,=x,_ ,—x,_,—cmodb, m=5b"—5b°+ 1.
2. x,=x,_,—%,_,—cmodb m=>b"-b"~-1.
3. x,=x,_,+x, +cmodb, m=>b"+b"—-1.
4. x,=b-1-x,_ ,—x, ,—cmodb m=>5b"+5b°+1.

n

n—s

n—s

If r > s are chosen so that the designated value m is prime, then the sequence

RANDOM NUMBER GENERATORS 479

TABLE 2
Some recommended subtract-with-borrow generators x,, = x, _; — %, _, — ¢ mod b

Number of seeds Base Lags Number of Period of

and type b r s cycles™® each cycle
847 bits 2 847 240 2 2846 _ 9239 5 10255
1751 bits 2 1751 472 2 21750 _ 2471 = 10527
43 32-bit integers’ 2325 43 22 1 b* — 22 = 10414
37 32-bit integers 232 37 24 64 21178 _ 2762 5 10354
24 32-bit integers 232 24 19 1536 (2759 — 2599) = 10228
21 32-bit integers 232 21 6 192 1(2666 — 2186) =~ 10200
48 31-bit integers 231 48 8 210 1as(21487 — 2247) = 10445
39 reals? 2% 39 25 672 (2931 — 259%) = 10270
28 reals? 22 28 8 144 1(2668 — 9188) < 10200
25 reals* 22 25 11 336 57(2596 — 2260) < 10178
24 reals* 224 24 10 48 2(2572 — 2236) = 101!

*Not counting the two trivial cycles of period 1.

"Not exceeding 2°2 — 6.

Reals with 24-bit fractions. The floating-point version of the mod 22 operation takes three inputs
x, y and ¢ and then produces a new value z and new carry c: (z,¢) = {if x —y — ¢ > 0 then
(x—y—c,0else(x—y—c+ 1,272}

of x’s are the digits, in reverse order, of the base-b expansion of £/m for some
1 < k£ < m. Formally, the sequence is x, f(x), f%(x),..., where x is an initial
vector of r seed digits and an initial “carry’” bit c¢. Rules for f’s that
transform x into a new sequence of r digits and an associated carry bit are in
Sections 2 and 3, with examples.

Various choices of b, r and s provide for long sequences of bits, bytes, 16-,
31- or 32-bit integers or floating point numbers with 24-, 48- or 64-bit
fractions. The extremely long periods of the generators, their small memory
requirements and the simple computer operations required, taken with excel-
lent performance on stringent tests of randomness, make subtract-with-bor-
row and add-with-carry generators worth considering for general Monte Carlo
use.

We conclude with Table 2, which gives good choices of r and s for various
bases b. Only subtract-with-borrow generators are listed. Add-with-carry gen-
erators of equally long periods surely exist, but the periods are so long that
only for primes of the form m = b" — ° + 1 are we able to factor m — 1, a
necessary step in establishing the period.

REFERENCES

[1] James, F. (1990). A review of pseudorandom number generators. Comput. Phys. Commun. 60
329-344.

[2] KnuTH, D. E. (1981). The Art of Computer Programming: Volume 2: Seminumerical Algo-
rithms, 2nd ed. Addison-Wesley, Reading, Mass.

480 G. MARSAGLIA AND A. ZAMAN

[3] MACLAREN, M. D. and MaRrsaGLIA, G. (1965). Uniform random number generators. J. Assoc.
Comput. Mach. 12 83-89.

[4] MarsacLIA, G. (1972). The structure of linear congruential sequences. In Applications of
Number Theory to Numerical Analysis (Z. K. Zaremba, ed.). Academic, New York.

[5] MARsAGLIA, G. (1983). Random number generation. In Encyclopedia of Computer Science and
Engineering (A. Ralston, ed.) 1260-1264. Van Nostrand Reinhold, New York.

[6] MARsAGLIA, G. (1985). A current view of random number generators, keynote address. In
Proceedings, Computer Science and Statistics: 16th Symposium on the Interface.
North-Holland, Amsterdam.

[7] MarsaGLIA, G. and Tsay, L. H. (1985). Matrices and the structure of random number se-
quences. Linear Algebra Appl. 67 147-156.

[8] MaRrsaGLIA, G., NARASIMHAN, B. and ZaMaN, A. (1990). A random number generator for PC’s.
Comput. Phys. Commun. 60 345-349.

[9] MarsaGLIA, G., ZaMAN, A. and Tsang, W. W. (1990). Toward a universal random number
generator. Statist. Probab. Lett. 9 35-39.

SUPERCOMPUTER COMPUTATIONS RESEARCH INSTITUTE
AND DEPARTMENT OF STATISTICS

THE FLORIDA STATE UNIVERSITY

TALLAHASSEE, FLORIDA 32306

