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ON THE FUNCTIONAL CENTRAL LIMIT THEOREM FOR
THE EWENS SAMPLING FORMULA
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and University of Southern California

The Ewens sampling formula arises in population genetics and the
study of random permutations as a probability distribution on the set of
partitions (by allelic type in a sample, or according to cycle structure,
respectively) of the integer n for each n. It may be embedded naturally in
the familiar linear birth process with immigration. One consequence of this
is another proof of the functional central limit theorem for the Ewens
sampling formula.

1. Introduction. For each natural number r, the Ewens sampling for-
mula defines a distribution on the set II, of partitions of n. It is conventional
to represent such a partition in the form = = 1*12%2 - - - n*» where «; is the
number of parts of size i, i = 1,2,...,n. The Ewens sampling formula with
parameter @ > 0 assigns probability

n! n g%

B(Il) i1=1 iaiai!

(1.1)

to the partition 1*12%2 --- n* of n, where we have written 6, = 6(6 + 1)
-++(6 + n — 1) for the ascending factorial of 6.

The distribution (1.1) originally arose in genetics [Ewens (1972)] as a robust
description of the random partition (according to the allelic type) of a sample of
n genes taken from a stationary, neutral, infinitely many alleles model. Note
that it also arises, for 8 = 1, as the description of the cycle lengths of a
uniformly distributed random permutation of n objects.

In many settings, interest centers on aspects of the distribution (1.1) for
large n. Our particular concern here is with the number of parts of the
partition of various sizes. Specifically, define the (step) functions K ,: [0, 1] X
IT, - R by

K, (u,m) = the number of parts in 7 of length at most n*

for 7 € II,,. Our purpose here is to use a Poisson embedding argument to
prove the following functional central limit theorem for K, due originally to
Hansen (1990).
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THEOREM 1.1 [Hansen (1990)]. If #, has distribution given by the Ewens
sampling formula (1.1), then as n — « the random element
K, (u,7,) — 6ulogn

Vélogn

of DI[0, 1] converges weakly to Brownian motion on [0, 1].

(12) Yn(u’ﬁn) =

REMARK 1. As Hansen notes, the theorem contains the central limit theo-
rem for the number of parts of a partition with distribution (1.1), and, when
6 = 1, a functional central limit theorem for the cycle lengths of a random
permutation, due originally to DeLaurentis and Pittel (1985).

REMARK 2. There are at least two other limiting regimes which are of
interest for the Ewens sampling formula. For completeness we note that when
normalized by n, the sizes of the parts, written in decreasing order, of a
partition with distribution (1.1) have a distribution which converges to the
Poisson-Dirichlet distribution with parameter 6 [Kingman (1977, 1978)]. Other
labelings of the parts also have nontrivial limiting distributions when normal-
ized by n. Also, if 7, has distribution (1.1), the joint distribution of the

number of parts of 7, of sizes 1,2, ..., &, for any fixed %, converges to that of
independent Poisson random variables with means 0,60/2,...,0/k, respec-
tively.

2. The embedding. Recall the (linear) birth process with immigration,
which we denote by {I(¢); ¢ > 0}: at the points T; < T, < --- of a homoge-
neous Poisson process Z(-) on [0, ») of rate 6, individuals (“ migrants’’) arrive
and initiate families, each of which grows (independently of all other events) as
a linear birth process of rate 1. If X,(-) denotes the birth process started by

the kth immigrant, then X,(0) = 1, and for i # j,
imh~ i ; , ifj=i+1
lim k.~ P(X,(¢ + h) = jIX,(t) = ={l» if j
hl?‘l) (Xl ) =JIX(0) = 1) 0, otherwise

for £ =1,2.... The process I(¢) counts the total number of individuals
(migrants and their offspring) present at time ¢, with 1(0) = 0:

P(t)

I(t) = ¥ Xu(t—T).
k=1

For n =1,2,..., let
7, = inf{¢: I(t) = n}
be the time at which the birth and immigration process first reaches n. It

follows (e.g., from the representation of 7, as the sum of n independent
exponential random variables with parameters 6,6 + 1,...,0 + n — 1) that

T,/logn » 1 as.asn — o
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Now, for i = 1,2,..., let

denote the number of families of size i in the birth and immigration process at
t. For our purposes, the crucial embedding property is the fact that when there
is a total of n individuals present, the family sizes form a partition that has
distribution given by the Ewens sampling formula with parameter 6 [Tavaré
(1987)]. That is, (ay(7,), ay(t,), ..., a,(r,)) has distribution (1.1).

The intuition behind the proof is the following. For large n, 7, is close to
logn. Each family in the birth and immigration process grows exponentially,
so that if we pretend that r, actually equals log n, most of those families
founded since time (1 — u)log n will have size less than n* at time log n (or
7,) and most of those families founded before time (1 — u)log n will have size
larger than n* at time logn. Thus K,(u) is like the number of families
founded between time (1 — u)log n and time log n. This is just the number of
events in the underlying Poisson process of migrations over a time period of
length u log n. If we replace K,(-) by P(logn) —P((1 — - )logn) in (1.2),
then the theorem is just the functional central limit theorem for this Poisson
process. Other applications of branching process embeddings in the study of
urn schemes may be found, for example, in Athreya and Karlin (1968),
Athreya and Ney (1972) and Holst, Kennedy and Quine (1988).

3. Proof of the theorem. Throughout, § is fixed with 0 < § < 1/2. For
our construction,

P(r,)
K. (u) =K,(u,7,) = ¥ YXy(r, - T,) <evle")
k=1

A(r,)
(3.1) < ¥ YX(r, — Tp) <e*™8", X,(r, — T}) = e TCosn)’)
k=1

P(r,)
+ ¥ YXy(r, = T) < e~ Talogn)’},
k=1

Denote the second term on the right of (3.1) by R,(n) and note that it does not
depend on u. The first term is bounded above by

P(r,)
Z ]_{e'r,l-—Tk—(logn)‘s < eulogn}
k=1
P(r,)
= ¥ YT,>r,—ulogn— (log n)'s}
k=1
= P(1,) — P(r, —ulogn — (logn)®).
(We adopt the convention that Z(¢) = 0 if ¢ < 0.)
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In the other direction,

P(r,)
K, (u) =2P(1,) - ¥ UXu(r, = T}) > e %"}
k=1

P(r,)
(32) > g(’rn) - Z l{Xk(Tn — Tk) > e'r,.—’I'k+(logn)5}
k=1

UX, (1, — Ty) > e X, (7, — T,) < e~ T+Cogn’},
k\'n k k\'n k

P(r,)
k=1

Denote the second term on the right of (3.2) by Ry(n), and again note that it
does not depend on u. Arguing as above then gives

K, (u) 2 P(1,) — P(1, —ulogn + (log n)’) — Ry(n).
Thus, for all u € [0, 1],

P(r,) — P(1, —ulogn + (logn)’) —fulogn  Ry(n)
Vologn Vélogn

(33) =Y (u)=Y(u,7,)

P(1,) —Q(Tn —ulogn — (logn)'s) — fulogn R,(n)
< + .
Volog n Vélogn
For 0 < s < o, define the random element W (-) of D[0,x) by

P(slogn) — 0slogn

V6 logn

W.(s) =

and note that we can write (3.3) as

W(T")W(T"+l o1 )
"\log n "\ log n (log n) “

Ry(n)

V6logn

—V6 (log n)° ™% -
(3.4) <Y (u)

<W T") W( " _ (logn)®"" )
- ”(logn "\log n (log ) “

R,(n)

Vologn

+\/§(log n)'ﬁ_l/2 +
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Thus
sup |Y,(u) — (Wy(1) — Wy(1 - u))|

O<u<l

Ry(n) + Ry(n)
<

Vologn

+ V6 (log n)°~'?

r
+ sup Wn(—"——— log n a_l—u)—Wnl—u
O<uc<l log n ( ) ( )
T
+ su Wn(—"+lon's_1—u)—Wn1—u
Osur_<)1 log n (log ) ( )
T
W,| ——| - W,(1)|.
(o] - W

The Donsker invariance principle gives the convergence in distribution of
W, to standard Brownian motion W. To see the implication of this conver-
gence more easily, the Skorohod representation theorem [Ethier and Kurtz
(1986), Theorem 3.1.8] says that we may “pretend” that sup, ., _;IW(x) —
W(u)| — 0 a.s. Since 7,/logn — 1 a.s. and W is continuous, we see that the
last three terms on the right of the above inequality tend to 0 in probability.
We will show below that
(3.5) R(n) -4 0, Ry(n) »p 0 asn — o,
and hence conclude that

Osup 'Yn(u) - (Wn(l) - Wn(]' - u))' —p 0.
<u<l
From the Skorohod representation, we see immediately that Y,(-) = W(1) —
W(1 — ), which gives the desired result.
It remains to establish (3.5). We will use the following lemma.

Lemma 3.1.  Suppose that {#(¢), t > 0} is a right-continuous, uniformly
integrable nonnegative martingale with respect to a filtration {&,, t > 0}. Let
lim,_,, .#(t) = .# a.s. Then for v > 0,

(3.6) um(ting/(t) <y) <P y)+y.
Proor. We may write
(3.7) HA(t) =HA#|F,) as.

For fixed y > 0, define the stopping time o = inf{¢t > 0: .#(¢) < y}. For any
t > 0 we have

P(#<vy) = EP(#4<V7IF,,){o <t})
= P(o <t) — E(P(4> Vy|F 1, ) l{o < 1})
> P(o <t) - HE(LF,,,){o < t}))/\y
>P(o<t) -y,
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using Markov’s inequality, the representation (3.7), and the fact that by the
definition of o, .#(t A 0)l{o < t} < y. Thus

(3.8) I]J’(tin(f)',l(t) <y)=P(o <) <P(h<y)+ ¥,
completing the proof. O

If {X(¢); t > 0} is a rate 1 linear birth process, then it is well known that
#(t) = e 'X(¢) is an L, bounded martingale with respect to the filtration
{Z,, t > 0} generated by X(-). See, for example, Athreya and Ney (1972, page
111). Further, .# is a mean-one exponential random variable, so we may use
(3.6) to see that

(3.9) P( inf.(t) < v) <2Vv.
t>
ReEMARK. We thank J. W. Pitman for pointing out to us that the argument
of Dubins and Gilat (1978) may be used to show that if P(.# < y) < By for

0 <y < v, then PGnf,, ,.#(t) <vy) <2By for 0 <y < y,/2. In particular,
this strengthens the right-hand side of the inequality (3.9) to 2v.

LEMMA 3.2. Asn — o,

P(r,)

(3.10) R(n) = Z l{Xk(Tn -T,) < efn—Tk—(logn)a} S 0
k=1

and
P(1,)

(311) R2(n) = Z l{Xk(Tn — Tk) > efn—Tk-F(logn)a} —p 0.
k=1

Proor. Fix ¢ > 1 and adopt the convention that for 2 = 1,2,..., X,(¢) = 1
if £ < 0. Then
P(clogn) ,
R, (n) < 1{e~Cr—ToX —T,) < e(logn)
(3.12) ) k§1 {e r(7n %) }
+ P(1,)1{r, > clogn}.

It follows from the fact that 7,/log n — 1 a.s. that the second term on the
right of (3.12) converges to 0 almost surely. The first term is nonnegative and
bounded above by
P(clogn)

Y l{e“Xk(t) < e 1€"’ for some ¢ > O},

k=1
but (3.9) and the independence of the Poisson process &(-) and the birth
processes X,(-), k = 1,2,..., ensure that the mean of this random variable

converges to 0 as n — o, so that in particular it converges to 0 in probability,
which establishes (3.10).
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To establish (3.11), note that
P(clogn) .
R2(n) < Z l{e_(Tn_Tk)/\oXk(Tn _ Tk) > e(logn) }
k=1

+ P(r,)I{r, > clogn}.

As above, the second term converges to 0 almost surely, and the first term is
nonnegative with mean bounded above by

c6 log nIP’{ supe ‘X,(t) > e(logn)5>
¢>0

_ ]
<cOlogne &"" -0 asn -

by Doob’s inequality. O
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