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A DUALITY METHOD FOR OPTIMAL CONSUMPTION AND
INVESTMENT UNDER SHORT-SELLING PROHIBITION.
II. CONSTANT MARKET COEFFICIENTS'

By GAN-LIN XU AND STEVEN E. SHREVE
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A continuous-time, consumption/investment problem with constant
market coefficients is considered on a finite horizon. A dual problem is
defined along the lines of Part 1. The value functions for both problems are
proved to be solutions to the corresponding Hamilton-Jacobi-Bellman
equations and are provided in terms of solutions to linear, second-order,
partial differential equations. As a consequence, a mutual fund theorem is
obtained in this market, despite the prohibition of short-selling. If the
utility functions are of power form, all these results take particularly
simple forms.

1. Introduction. This paper treats a consumption/portfolio decision
problem for a single agent, endowed with some initial wealth, who can
consume the wealth at some rate C(¢) and invest it in any of the d +1
available assets. The agent may not, however, sell any stock short. The agent
is attempting to maximize a linear combination of two quantities, namely:

1. E[fe %tU,(C(?)) dt, the total expected discounted utility from consumption
over the time interval [0, T'];
2. Ee ®TU,X(T)), the expected discounted utility from terminal wealth.

There are d + 1 assets or securities available to the agent. One of them is a
bond, a security with constant instantaneous rate of return r. The other assets
are stocks, risky securities whose prices are modelled by the lognormal process
with mean rate of return b, and dispersion coefficients o;;. We assume that
the market is complete in the sense of Harrison and Pliska (1981) and
Bensoussan (1984), except that short-selling of the stocks is prohibited. We
also assume that our agent is a small investor in that his decisions do not
influence the asset prices, which are treated as exogenous.

Single agent consumption /investment problems have been investigated by a
number of authors. We refer the reader to the introduction of Xu and Shreve
(1992), hereafter referred to as Part 1, for a fuller account. When short-selling
of stocks is prohibited, Part 1 develops a duality and martingale method for
the case of general (random, time-dependent) market coefficients. It is shown
there how to construct a dual problem and how to characterize the optimal
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solution of the original primal problem in terms of the solution to the dual
problem.

In this paper, we specialize the model of Part 1 to the case of constant
market coefficients. We write down the Hamilton-Jacobi—-Bellman (HJB)
equations for both problems. The HJB equation for the dual problem can be
solved by exploiting its linearity and this leads to a solution of the (nonlinear)
HJB equation for the primal problem. Although this approach is made possible
by the relationship established in Part 1 between the primal and dual prob-
lems, the verification in Theorem 3.3 that we have actually solved the HJB
equation for the primal problem does not rely on Part 1. Thus this paper is
nearly independent of Part 1 and can be read without first reading Part 1.

In addition to providing explicit formulas for the optimal consumption and
portfolio processes, both for power and general utility functions, we show in
this paper that despite the short-selling prohibition, a mutual fund theorem
holds (Remark 3.6).

2. Primal and dual problems. In this section we formulate the prob-
lems under study and introduce notation. A more leisurely account appears in
Part 1. We also state the existence of optimal solutions to these problems.

2.1. Basic notation. Uncertainty in the market is modelled by a d-dimen-
sional Brownian motion {w(¢), #(t); 0 < t < T}, where T is a fixed, finite time
horizon and {#(¢)} is the augmentation by null sets of the filtration generated
by w. Let py(¢) (p,(¢), 1 <i < d) be the price of the bond (ith risky asset,
1 < i < d, respectively). We assume that

dpo(t
(2.1) 2ol _ 4 o<t<rT,
Po(?)
dp;(t) d .
(2.2) =b,dt+ ) o dwi(t), O0<t<T,i=1,...,d.
pi(t) j=1
Denote by & the column vector of constants (b,, ..., ;)T and denote by o the

d X d matrix of constants (o;;). The interest rate r is also constant. We
assume that o is nonsingular, and we define the relative risk coefficient

(2.3) 9207 1(b-rl),

where 1 is the vector with each component equal to 1.

Assume that at time ¢ €[0,T], our agent is endowed with some ini-
tial wealth x > 0 and he must choose a consumption /portfolio process pair
(C(s), m(s)), t < s < T (see Definition 2.1 of Part 1). In the problem at hand,
such a pair (C, 1) is admissible if and only if:

(i) stocks are not sold short, that is,

(2.4) m(s) =20, t<s<T,i=1,...,d;
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(ii) wealth remains nonnegative, that is,

(2.5) X®9(s) >0, t<s<T,
where X** is the solution to the wealth equation
(2.6) X6 — g,

dX©(s) = [rX®®(s) — C(s)] ds + #T(s)(b — r1) ds
+ 7T(s)o(s) dw(s), t<s<T.

We denote by A(¢, x) the set of all admissible pairs (C, 7) for the problem with
endowment x at initial time ¢ €[0,7] and by A the set of all portfolio
processes defined and satisfying (2.4) for all s € [0, T].

Let U, j = 1,2, be utility functions (see Definition 2.4 of Part 1). Repeating
Definition 3.1 of Part 1, we define the convex conjugate of U; by

(28) Uy 2 Sng{Uj(x) —xy} = U(L;()) —91;(y), y>0,

(2.7)

where I; is the inverse of U;. Throughout this paper, we assume that there
exist constants K and « such that

(29) U(L() +9(0) KA +y™+y%), Vy>0,j=1.2

A sufficient condition for (2.9) is that for some a > 2,
2 a
(Ui(%) (Ui (%))
lim —L "/ exists, lim 12 =0, j=1,2
xi0 U/(x) - Ul(x)

[see the Appendix of Karatzas, Lehoczky and Shreve (1987)].
The value function for the primal problem is defined to be

(2.10)

V(t, x) é Sup E{fTe—ﬁ(S—t)Ul(C(s)) ds
(2.11) (C,meAl,x) \'t

+e“s‘T“)U2(X“”‘)(T))},

where X ® is given by (2.6), (2.7) and § is a nonnegative discount factor. The
value function for the dual problem is

V(¢,y) & infE Te-s6-ng7 ye@~Xs=DZ (¢t s)) ds
~ 1 T
TEA t

(2.12)
+e—8(T—t)lj2(ye(3—r)(T—t)Zﬁ_(t, T))} ,

where y > 0 and Z.(¢, s) is the local martingale (in the parameter s) given by

s _ T
Zs oy 2 exp{—ft (6 + o7 (u)) dW(u)
(2.13) )
—%LI|0+0‘1ﬁ(u)II2du}, t<s<T.
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The relationship between the primal and dual problems is developed in detail
in Part 1. In this paper, we use only the connection in equation (2.19).

2.2. Existence results.

2.1 THEOREM. Let # be the unique minimizer of |10 + o~ 7| over # €

[0, )%, The process which is identically equal to # attains the infimum in
(2.12) forall t €[0,T] and y = 0. More specifically, with

(2.14) 620+0 A,
(2.15) Z4(t,s) 2 exp{—6(w(s) — w(t)) — 36I°(s — 1)},
(2.16) {(t,8) £ eCEDZ (¢,5),

the dual value function is given by

V(t,y) = E{ftTe_‘s‘s_’)U'l(y((t, s))ds + e 2T-U,(yi(t, T))},

0<t<T,y=0.

(2.17)

Theorem 2.1 is proved in the Appendix. The simplicity of the dual optimal
solution leads to a good understanding of the primal problem, which is the
object of real interest. Two manifestations of this understanding are the
following theorems. The proof of Theorem 2.2, given in the Appendix, depends
on Part 1. The proof of Theorem 2.3 is given in Section 3, where the optimal
consumption and investment processes are exhibited (see Theorem 3.4).

2.2 THEOREM. The dual value function is the convex conjugate of the
primal value function, that is,

(2.18) V(t,y) = sup{V(¢,x) —xy}, Vte[0,T],y=>0,

x>0

and moreover,

(2.19) V(t,x) = ing (V(t,y) +xy}, Vte[0,T],x=0.
y=

2.3 THEOREM. For every t €[0,T] and x > 0, there exists an optimal
consumption /investment pair (C,7) € A(¢, x) for the primal problem.

3. The Hamilton-Jacobi-Bellman equations. One would expect the
primal value function V(¢, x) given by (2.11) to satisfy the Hamilton—-Jacobi—
Bellman (HJB) equation

Vi(t,x) — 8V(t,x) + sup{[(rx — c) + #7(b — r1)]V,(¢, %)
c=>0
=0
(3.1 =
) o TmlPV,,(8, %) + Uge)) = 0,

0<t<T,x>0,
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along with the boundary conditions

(3.2) V(T,x) = Uy(x), x>0,

(3.3) V(t,0) =0, 0<t<T.

[In connection with (3.3), recall from Definition 2.4 of Part 1 that U,0) =
U,(0) = 0.] Indeed, if one has a nonnegative C? solution to (8.1)-(3.3), then
one can show under a mild growth condition that this solution is the primal
value function. Therefore, a common approach taken to the determination of
the value function in problems like this is to attempt to directly solve the HJB
equation.

Our approach is more circumspect. We first solve the HJB equation associ-
ated with the dual value function and then use (2.19) to determine V. Once V
has thus been found, one can verify that it satisfies (3.1)-(3.3) (see Theorem
3.3).

The HJB equation for the dual problem is

‘7t(t,y) + (6 - r)yVy(t,y) - BV(t:y)
. 1 —1,7(12,,277
(3.4) +ﬁel[lgfw) {3lle + o727 1%y2V, (2, 3))
+ Uy(y) =0, 0<t<T,y>0,
along with the boundary condition
(3.5) V(T,y) = Uy(y), y>0.
While the HJB equation (3.1) for the primal problem is nonlinear, the HJB
equation (3.4) for the dual problem turns out to be linear. This is because, as
we show in Theorem 3.1, V(¢, - ) inherits convexity from U, and U,, and so
(3.6) inf {316 + o772V, (4,5) ) = HOIPY2V, (2, 9).
7 €[0, o)
The fact that the infimum on the left-hand side of (3.6) is obtained by 7
independently of ¢ and y accounts for the simplicity of the dual optimal
solution as set forth in Theorem 2.1.

We now begin a rigorous analysis of V. The Markov process {(¢, - ) of (2.16)
has differential generator 1/|6l1%y%(62/y2) + (6 — r)y(3/dy) and we may use
this fact and (2.17) to derive a linear partial differential equation satisfied by
V. It is convenient to apply this Feynman-Kac derivation to two functions
whose difference is V, rather than to V itself. For (¢, y) € [0, T'] X (0, «), define

G(t,y) 2 E{fTe-ﬁks-”Ul(Il(yg(t, 5)))ds
(3.7 ‘
Fe ST UL (1544, T))) ),

S(t,y) & E{fTe"’(s't)y{(t, s)I,(y¢(¢,8)) ds
(3.8) !
+e“s(T")y{(t,T)Iz(y((t,T))}.



CONSUMPTION AND INVESTMENT UNDER SHORT-SELLING PROHIBITION 319

According to Lemma 7.1 of Karatzas, Lehoczky and Shreve (1987), under our
assumption (2.9), G and S are finite and continuous on [0, T'] X (0, ), of class
C%2 on [0,T) X (0,«), and are the unique solutions to the respective linear
Cauchy problems

(3.9) (-‘9— + L)G(t,y) + U(I(y)) =0, 0<t<T,y>0,

at
(3.10) CG(T,y) = Uy(I(y)), >0,
and

a

(3.11) s +L)S(t,y) + yI,(y) =0, 0<t<T,y>0,
(312) S(T’y) =yI2(y)’ Yy > 07
where L is the second-order differential operator defined by
(3.13) Lo = 3161°y%,, + (8 — r)ye, — S¢.
From (2.8) and (2.17), we have
(3.14) V(t,y) = G(t,y) — S(t,y), O0<t<T,y>0,

so V is continuous on [0, T'] X (0, »), of class C'2 on [0, T') X (0, %) and solves
the Cauchy problem

a - -
(3.15) ((—ﬁ +L)V(t,y) +U(y) =0, 0<t<T,y>0,

(3.5) V(T,5) = Uy(y), ¥>0.

3.1 THEOREM. The dual value function V is given by (3.14) and satisfies the
HJB equation (3.4).

Proor. We need only show that
(3.16) V,(t,y) >0, 0<t<T,y>0,

for this will imply (3.6) and then (3.4) reduces to (3.15). We begin by differen-
tiating (2.17) with respect to y. Because of the convexity of U,, we have for
y>0and 7 € (- 3y,0) U (0,x),

1
Inl

The right-hand side has finite expectation, so the dominated convergence
theorem and (2.8) imply that

|ﬁ2((y +n){(t,T)) - Uz(y((t,T))l <2

ﬁz(%f(t,T)) - Uz(y((t,T)) .

0 . -
5y PU(v4(.T)) = E[4(t,T)U(y¢(t, T))| = —E[£(t, T) I(3¢(2, T))].

A similar analysis applies to U, and we thus obtain from differentiation of
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(2.17) that

~Vi(t,5) = E{ftTe‘a‘S“’f(t, $)L(¥L(2, 5)) ds
(3.17) FeT T, T) (0 (6,T)))

1
=;S(t,y), 0<t<T,y>0.

Because I, and I, are strictly decreasing mappings from (0,%) onto
(0,), —V,(t,-) is also a strictly decreasing mapping from (0, ©) onto (0, ).
Indeed, the mean value theorem implies that for (¢,y) € [0,T] X (0,) and
0<e<],

1.. - T _s
— —_ —8(s—t)r2 : ’
- [Vi(t,5 +¢) = Vi(t,9)] = E{j; e ¢ (t,s)ne{ryl};l+1]|11(n((t,s))Ids

+e ¥ T=0¢2(¢ T) min |I§("7§(t,T))|}>O‘
[ 1]

nely,y+

This proves (3.16). O

The proof of Theorem 3.1 shows that —V}(t, -) has an inverse Y(¢, )
mapping (0, ©) onto (0, »), that is,
(3.18) ~V(Y () =5, Y6 -V(5y) =y,
0<t<T,x>0,y>0.

The function Y is of class C! and

(3.19)  Y,(t,x) = 0, 0<t<T,x>0.

TV ()
The expression V(¢, y) + xy is minimized over y > 0 by Y(¢, x), so by (2.19),
(3.20)  V(t,x) =V(t,Y(¢,x)) +xY(t,x), 0<¢t<T,x>0.
Differentiation in (3.20), coupled with (3.18) and (3.19), yields

Vi(t,x) = V(8,Y(t,x)), Vit x) = Y(¢,2),

3.21
( ) V.. (t,x) = — , 0<t<T,x>0.

Substitution of (3.18), (3.20) and (3.21) into (3.15) results in the equation
V(t, %) - 3V(t,x) + reVi(t, %) + Uy(Vi(, %)
(3.22) 1, V2t x)

— PP =0, 0<t<T,x>0.
2|| Il V(%) x
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To see that (3.22) is the HJB equation for the primal stochastic control
problem, we need the following lemma.

3.2 LEMMA. For every nonnegative number a, the unique minimizer of

(3.23) g(m) 2 inToo™m —anT(b - rl)
over 7 € [0,®)¢ is a(oT) 4. Furthermore, #7(c7)~'6 = 0 and
(3.24) g(a(aT)'6) = — 2?1161,

Proor. The Kuhn-Tucker conditions for the minimization of f in (5.6)
over [0,®)? imply the existence of a vector A € [0, ®)? such that A = Vf(#) =
(6T)~1, AT# = 0. For 7 € [0, »)¢, we have

g(m) =g(ar) + (m - a/\)TO'O'T(’IT —al)
+(m —a)) [ooTar — a(b - r1)]
= g(ar) + LloT(m - aM)I? + a(m —ar)"#

Because a(m — a)QTﬁ- =amw# = 0, we see that g attains its minimum at
7 =aA = a(cT)~10. Furthermore,

g(a(aT)_lé) = 1a2||0|1? - o207~ 1 (b — r1 + #) + o®T# = —3a?14]>. O
3.3 THEOREM. The primal value function V is given by

(3.25) V(t,x) = G(¢t,Y(t,x)), 0<t<T,x>0,
and satisfies the Hamilton—Jacobi-Bellman equation (3.1).

ProoF. Equation (3.25) follows from (3.20), (3.14), (3.17) and (3.18). From
Lemma 3.2 with a = —(V,(¢,x)/V,,(¢, x)), we have

1
sup {’FT(b -r)V (¢, x) + EllaTrrllexx(t, x)}

T=0
) 1 V(%)
(3.26) =V.(t,x) 1nf 37 TooTm + Tﬁw (b-r1)
B V2(t x) ay
= V(= )Il 11°.

Therefore, equation (3.1) is equivalent to (3.22). O

The supremum in the HIB equation (3.1) is attained by

(3.27) ¢ = L(V,(t, %)) = I( ¥ (¢, %))
AU IR (G
(3.28) L AT )( ) Y x )( ).
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We have thus obtained optimal consumption and portfolio processes in feed-
back form, a fact we now state precisely and verify properly.

3.4 THEOREM. Let (¢,x) €[0,T]X (0,) be given. The optimal wealth
process for the consumption /portfolio problem with initial time t and initial
wealth x is

S(s,Y(t,x){(¢,s))
Y(5, 2)2(55) s t<s<T.
This process satisfies (2.6), (2.7) with C(-) and w(-) replaced by
C*(s) £ I(Y(s, X*“*(s))),

(830, Y. X))
T (s) = _Yx(s,X“”‘)(s))(oT) 0, t<s<T.

(3.29) X®0(g) &

Proor. To simplify notation, we define the function H: [0, T'] X (0, ) —

~

(0,) by H = —V,, that is, [see (3.17)]
1
(3.31) H(t,y) = 2S8(ty), 0<t<T,y>0.

Because S is continuous on [0, T'] X (0, =) and of class C*2 on [0, T') X (0, «),
H has these properties as well: From (3.11), (3.12), we derive the formulas

Hy(t,y) + $161%y*H, (¢, y) + (8 — r + 1611”)yH, (¢, ¥)

(3.32)
~rH(t,y) +I(y) =0, 0<tsT,y>0,
(3.33) H(T,y) =I(y), y>0.
In terms of H, (3.29) becomes
(3.34) X®&9(s) = H(s,Y(t,x){(¢,58)), t<s<T.

Because d{(t,s) = (8§ — r){(t, s)ds — {(t, s)0T dw(s), It6’s lemma and (3.32)
imply

dX“9(s) = [H, + 36I*Y (¢, x)(%(¢, s) H,, + (5 — r)Y(t,x){(t, s) H,| ds
- Y(¢,%){(t,5)H 0T dw(s) ’
(3.35) = [rH(s,Y(¢,%){(t,s)) — I,(Y(¢,%){(t,5))] ds
— 112Y (¢, x)¢(¢, s) Hy(s, Y(¢,x){(2,5)) ds
— Y(t,x){(t, s)H,(s,Y(t,%){(¢,5))0T dw(s), t<s<T.

We now examine the three terms on the right-hand side of (3.35). The
functions H(s, ) and Y(s,-) are inverses [see (3.18)], so (3.34) can be
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rewritten as

(3.36) Y(s, X®(s)) = Y(¢,x){(¢t,s), t<s<T.
Therefore,
(3.37) C*(s) = I,(Y(¢,x){(¢,9)),

(3.38) rH(s,Y(¢,x)i(t,s)) — I(Y(t,x)L(¢,8)) =rX®™(s) — C*(s).
Because H(z, - ) and Y(¢, - ) are inverses, we also have

1
Y.(s, H(s,y))

From the equality #7(c7)~16 = 0 obtained in Lemma 3.2, we see that

(3.39) H/(s,y) =

(3.40) 161> = 6To=1(b — r1 + #) = 670" (b — rl).

Therefore,

(3.41) —6IPY (¢, x)¢(t, s)H, (s, Y(t,2)L(2,8)) = (7*)(s)(b — r1).
Finally,

(342) - Y(t,%){(t,5)H,(s,Y(t,2)£(2,5))6" = (7%)" ()0

Substituting (3.38), (3.41) and (3.42) into (3.35), we verify the last sentence in
the theorem.

To verify optimality for the problem with initial time ¢ and initial wealth x,
we first note that X**)(¢) = H(¢, Y(¢, x)) = x. According to (3.33),

(3.43) XE(TYy=H(T,Y(t,x){(¢,T)) = L(Y(¢,x)((¢,T)).
By (3.37), (3.43), (3.7) and (3.25), the utility associated with (C*, 7*) is

E{jTe-Ms-t)Ul(Il(Y(t,x)g(s,t))) ds + e 2T -OU,(I(Y(¢, x){(t,T)))}
=G(t,Y(t,x)) =V(¢,x). m|

3.5 REMARK. Karatzas, Lehoczky and Shreve (1987) obtain the analogues
of Theorems 3.3 and 3.4 for the problem with no prohibition on short-selling.
Under the additional assumption that the utility functions are of class C3,
Proposition 7.3 of Karatzas, Lehoczky and Shreve provides integral formulas
for G and S; these formulas can be adapted to our model by replacing 8 in
them by 6.

3.6 REMARK. The form of the optimal portfolio process in Theorem 3.4
shows that even though the market is rendered incomplete by the investor’s
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inability to sell stocks short, a so-called mutual fund theorem prevails. Let §,
be the kth component of (o-T) 1§, from Lemma 3.2, we have 6§, > 0, k =

,d. If Ed = 0, then the agent should not invest in the stocks. If
Zd 16 # 0, then a mutual fund is constructed which, through continuous
rebalancmg, always holds fraction 8,/L9_,8; of its assets in stock k&, k =

,d. The agent can realize the optlmal portfoho by investing only in the
bond and in this mutual fund. The constants §,, £ = 1,..., d, are independent
of preferences (utility functions), wealth of the investor and time horizon.

4. Power utility functions. In this subsection, we specialize the formu-
las of the previous subsection to the case of power utility functions

1 1
(4.1) U(x) = —aP, Uy(x) = —xPz, x>0,
b, )P
where p,, p, € (0, 1). We have then
. 1 . 1
(42) Ul(y) =Yy o, U2(y) =)y 92, y > 0,
q: qz
where q; = p,;/(1 — p;), j = 1, 2. Direct evaluation of (2.17) yields
ay(?) ay(t)

(4.3) V(t,y) = —y 4+ —=y %2 0<t<T,y>0,
q qz

where
1— e MeXT-D] if k(p,) + 0,
T -1t if k(p,) =0,
(4.5) ay(t) & e HPXT-D),
1 pliél?
4.6 k & —|6-m— ——
(4.6) (p) 1=p P i =p)

It is straightforward to verify that V solves the Cauchy problem (3.15), (3.5).
For each ¢t € [0, T'], the function

_Vy(t,y) = a,(t)y/ P17 + g,(t)yl/ P2 D

is strictly decreasing with lim, w(—Vy(t, y)) = © and limy_,w(—Vy(t, y) =0
Thus, there is an inverse function Y(¢, - ) as in (3.18), and the value function
for the primal problem and the optimal consumption and portfolio policies in
feedback form are given by (3.20) and (3.30). In the special case p; = p, =p
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these formulas become

X

p—-1
_— R 0<t<T,x>0,
ay(?) + az(t))

(4.7) Y(t,x) = (

(4.8) V(t,x)=( )(al(t)+a2(t))"_1x1’, 0<t<T x>0,

1-p

C*(s) = X9(s),

ay(t) + ay(t)

(4.9) 1(1 ) +ay(t)
7*(s) = mX(f’ﬂ(s)(aT)‘lé, t<s<T.

Note that the optimal consumption and portfolio policies are linear in wealth.

It is also possible to obtain explicit formulas when either U; = 0 and

U,(x) = (1/p)x? or else Uj(x) = (1/p)x? and U, = 0. In the former case, one

simply omits a,(¢) from (4.7)-(4.9); in the latter case, a,(¢) should be omitted.

APPENDIX
This Appendix provides the proofs of Theorems 2.1 and 2.2.

5.1. The mean comparison theorem. In this subsection we prove a compar-
ison theorem which will be instrumental in solving the dual problem. It is an
easy consequence of Jensen’s inequality for conditional expectations that if
M(-) is a martingale and ¢: R — R is convex and satisfies E|p(M(2))| < » for
all0 <t < T, then ¢(M(-))is a submartingale. If M is only a local martingale,
then @(M(+)) can fail to be a submartingale. To see this, let M(-) be a positive
local martingale which is not a martingale (and is therefore a supermartingale)
and let ¢ be the identity function. However, we have the following result for a
convex function of a local martingale.

5.1 LEMMA. Let {M(), (t); 0 <t < T} be a continuous, positive, local
martingale and let ¢: (0,0) > R be a nonincreasing, lower-bounded, convex
function satisfying
(5.1) Eo(M(t)) <», Vte][0,T].

Then {o(M()), #(t); 0 <t < T} is a submartingale.

Proor. Let {r,);_, be a sequence of stopping times converging up to T
almost surely such that for each n, {M(¢ A 7,), Z(¢); 0 < ¢t < T} is a martin-
gale. For ¢ > 0, define the bounded, nonincreasing, convex function ¢, by

o(e) + (x —e)D*p(e), if0<x<e,

(%) = o(x), if x > e,

where D*p denotes the right-hand derivative of ¢. Then {¢ (M(t A 7,)),
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F(#); 0 < t < T}is abounded submartingale, so for every s < t and A € F(s),
we have [,¢.(M(s A 7,))dP < [,0,(M(¢ A 7,)) dP. Now let n — o, using the
bounded convergence theorem and then let ¢ | 0, using the monotone conver-
gence theorem, to obtain [,o(M(s))dP < [,o(M(¢))dP. O

Hajek (1985) and Borkar (1987) have proved mean comparison theorems for
solutions to stochastic differential equations. In the cited references, the
dominating process is a Markov process and a martingale; in the following
theorem, the situation is reversed.

5.2 MEAN COMPARISON THEOREM. Let ¢: (0,) - R be a nonincreasing,
lower-bounded, convex function, let j be an {F(¢)}-adapted, R%-valued pro-

cesses satisfying [Flp)I® dt < o almost surely and let p € R? be a vector
such that

(5.2) lp(t)ll = 11pll, dt xdPa.e.on[0,T] X Q.

Define

Z(t) = exp{—jO‘ﬁT(s) dw(s) — %jotu,a(s)n2 ds}, 0<t<T,

Z(t) = exp{—pTw(t) — 4P}, O0<t<T.
Then
(5.3) Eo(Z(t)) 2 Ee(Z(¢)), 0<t<T.

Proor. The process Z is a local martingale. According to Lemma 5.1,
Eo(Z(2)) = ¢(Z(0)) = ¢(1) for all t €[0,T]. If p=0, then Z =1 and (5.3)
follows.

We now assume that § # 0. Consequently, [|5(¢)|| > 0 for all ¢ and we can
find an {¥(¢)}-adapted, d X d orthonormal matrix-valued process O(-) such
that

p(2) p

ol O(t) FE dt XdP a.e.on[0,T] x Q.
Define A(¢) 2 a2 /1IpII®) ds, 0 < ¢ < T, so X(t) = 1 for all ¢£. The inverse
function A~! is defined on [0, A(T)] © [0, T'] and for each = € [0,T'], A~ %(r) is
an {F(¢)}-stopping time. Set

)
UORY ey

W(r) 2 W(A~Y(r)), O0<r<T.
Relative to the filtration {#(A ~ (7))}, the process W is a martingale and

0% (s) dw(s), 0<t<T,

~ 2
L BNFION
(W, WH(r)=6,,[" "—5—ds=6,7, O<r<T.

LI =0 [0 T I
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By Lévy’s theorem [Karatzas and Shreve (1987), Theorem 3.3.16],
{W(T) F(A"X1)); 0 <7 < T} is a standard, d-dimensional Brownian motion.
According to Proposition 3.4.8 of Karatzas and Shreve (1987),

- jofz‘(rl(y)),sTdW(V) —1- f()”"”z’(s),sTdW(s)

g, | B(s)
(5.4) = 1= [1 () T (0()5) " dw(s)

—1- [V CZ(s)"(s) du(s)
0

=Z(r"Y(7)), O0<7<T.
But dZ(r) = —Z(r)pTdw(r),0 <7 < T, so

(5.5) Z(r)y=1- [’z‘(f),swa(T), 0<7<T,

and weak uniqueness of the solution to (5.5) implies that Z(A~(+)) appearing
in (5 4) has the same distribution as Z(-). Therefore, for any ¢ < [0, T],
Eo(Z(t)) = E(Z(A~'(#))). But A~ X(¢) < ¢ and Lemma 5.1 implies that ¢(Z(-))
is a submartingale, so Eo(Z(A~42))) < Eo(Z(2)). O

5.2. The optimal dual control. In this section we show that the optimal
dual control process is identically equal to the constant vector which is the
unique minimizer of

(5.6) f(#) 2 310 + o~ 7|

over 7 € [0,)?. Clearly f is a continuous, strictly convex function satisfying
lim ., . f(#) = ». Therefore, f has a unique minimizer # € [0, x)?, that is,

(5.7) 16+ o A <16+ o0 %, V#&el[0,0)
Recall from (2.14) that § 2 9 + o1

Proor OF THEOREM 2.1. Let 7+ € A be given. From (5.7) we have ||| <
16 + o '#(®)l, 0 <t <T. Applying the mean comparison theorem to the
nonincreasing, lower-bounded, convex functions z — U;(ye® "~9z) and z —
Uy(ye®~™XT=92) with (s) = 8 + o~ '#(s) and p(s) = 4, we obtain the desired
result. O

Proor oF THEOREM 2.2. Since the optimal dual control process is a con-
stant process independent of y, condition (4.21) of Part 1 is satisfied. Theorem
2.2 follows from Corollaries 4.9 and 4.11 of Part 1. O
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