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In this paper we prove an optimal spectral structure theorem for
stochastic matrices reversible with respect to a fixed probability measure
on a finite set and devise a new simulation algorithm for Markov random
fields. We compute the minimum value for the second largest eigenvalue of
all such matrices and characterize the class of matrices for which this
minimum is attained. In fact, they share a common right eigenvector that
can be written in terms of 7. Furthermore, by iterating this procedure, we
obtain a unique matrix which is minimal with respect to the lexicographic
order of the eigenvalues. We give a probabilistic interpretation of the
corresponding eigenvectors. Our results allow us to devise a dynamic Monte
Carlo scheme which has an optimal worst-case performance. Regarding the
simulation of lattice-based Gibbs distributions, we design a modified Gibbs
sampler, whose performance is better in terms of both weak convergence at
low temperatures and asymptotic variance of time averages at all tempera-
tures.

1. Introduction. In many situations the evaluation of expectations in
large sample spaces cannot be computed analytically or by enumerating all
possible states. One has to resort to approximations. This is when the Monte
Carlo. methods come in. For example in image analysis and image synthesis, a
direct sampling from the very big set of all possible images is impossible;
instead, dynamic Monte Carlo methods are often used. This leads us to
investigate the structure of the optimal Monte Carlo method with respect to
certain criteria. The answer to this problem constitutes our first main theo-
rem. This result gives us an idea on how to design a new simulation algorithm
for Markov random fields which is our second main result. Since the results we
obtained are quite general, we will describe our study in a general setting.

Let S be a finite set and consider the class of all stochastic matrices P on
S, which are reversible with respect to a fixed positive probability measure
on S. Typically Monte Carlo methods are based on Markov chains with = as
their equilibrium distribution.
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The set of all possible images mentioned above is a good example for such
an S. For black and white images with 64 X 64 pixels, the set S has
cardinality 2644,

We compute the minimum value for the second largest eigenvalue of all
such matrices P and characterize the class of matrices for which this mini-
mum is attained. In fact they share a common right eigenvector that can be
given in terms of the invariant distribution. Furthermore, by iterating this
procedure, we obtain a unique matrix which achieves the minimum of the
lexicographic order of the eigenvalues. We give a probabilistic interpretation of
the corresponding eigenvectors.

Our results allow us to devise a dynamic Monte Carlo scheme for the
approximation of space averages relative to 7, which has an optimal worst case
performance in terms of asymptotic variance of time averages.

Regarding the simulation of lattice-based Gibbs distributions, we design a
modified Gibbs sampler dynamics, whose performance is better in terms of
both weak convergence at low temperatures and asymptotic variance of time
averages at all temperatures.

Monte Carlo methods are developed in order to approximate

(1) (f)=X f(s)m(s),

seS

where f is a real valued function on S. A standard way to do this is by
sampling independently X(0), X(1),..., X(n — 1) from = and evaluating

1 n-1
— X(k)].
+ T /1X(0)]

Think of S as a huge set (all possible images) so that T, g f(s)m(s) is
numerically impossible and we need to resort to the ergodicity to estimate (1).

More generally, this independent sampling can be replaced by a Markov
chain on S with transition probability P whose equilibrium measure is .
One may call these methods dynamic Monte Carlo schemes as compared to the
static ones based on independent sampling [Sokal (1989)]. Among all these
methods it is convenient to choose those for which

nEM-O

{%:Z:‘,:f[X(k)] - <f>} }

is small as n 1 «. This expectation is computed according to the Markov chain
with initial distribution u, on S and transition probability P.

Throughout this paper we will only consider matrices P = {p,,} that are
rqversible relative to 7, that is,

W(s)ps,t = W(t)pt,s
for all s, ¢t in S, s #¢ It is well known [e.g., Keilson (1979)], that for
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irreducible transition matrices P,

1 -1 2 1 -1
tim (5 7UXG0) = ) | = i v, 2 o)
k=0 k=0
exists and does not depend on u,. We denote this limit by v(f, P, 7). For the
computation of this asymptotic variance, we therefore can and will assume

that u, = 7.

Contrary to classical variance reduction techniques [e.g., Rubinstein (1983)],
it is our purpose to find P, given m, which reduces v(f, P,w) without
exploiting any prior knowledge on the specific f. In this sense we are using a
minimax criterion: Our results will be optimal (within a certain class) from the
worst-case point of view w.r.t. any possible f.

Here is the outline of the paper. In the next section we state a general result
in terms of the second largest eigenvalue. We present a theorem that might be
regarded as a Frobenius-type theorem. It allows us to describe the structure of
the matrices P that have the smallest possible second largest eigenvalue and
are reversible w.r.t. some specified measure 7. This value turns out to be
negative.

We then describe the relation between asymptotic variance of time averages
and eigenvalues. This permits us to identify the class of matrices P which
minimize v( f, P, 7) for all possible observables f. It is important to underline
that given a specific f, one can sometimes exploit its properties to construct
another P with lower asymptotic variance.

The procedure can be further repeated and we describe how to build a
matrix with the lowest third eigenvalue, given that the second is already the
smallest possible and so on. This matrix gives rise to a Monte Carlo method
with smaller asymptotic variance compared with static independent sampling,
since all eigenvalues (except one) are negative.

Another important quantity is the bias of the time averages given by
A/m)LiZ0E, [ F(XED] = (f) = A/n)L 8o P*f — {f)). Note that the
mean square errors of time averages and their variances coincide up to an
order 1/n for large times n. Their difference, which is equal to the square of
the bias, is of order 1/n? The bias itself is of order 1/n. We consider one
particular case: f is the indicator function of the set {s} and the Markov chain
starts at s € S. The bias is then given by (1/nXZ2Z3p® — 7(s)), where p(¥
is the sth diagonal entry of the power matrix P*. At the end of Section 2, we
shall find the minimum of the potential ¥ ,(p{® — m(s)), over all possible
reversible matrices w.r.t. 7.

Originally we were led to look at these problems by our interest in fast
computational methods for image reconstruction, inspired by the fundamental
work of Grenander and D. and S. Geman on the Markov random field
approach to imaging. Here one has to sample from a finite lattice based Gibbs
distribution , in order to synthesize or restore an image [Grenander (1984),
Geman and Geman (1984), Geman (1990)]. The prohibitive dimension of the
state space S makes any direct sampling from 7 impossible in practice and
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one has to rely on local updating methods. A simple version reads: At every
step only one site i of the current configuration x is updated, according to a
sparse transition matrix P;. Standard assumptions on the site-visitation sched-
ule and on reversibility of P, w.r.t. 7= easily imply that the corresponding
Markov chain will converge weakly to .

Here, too, we want to compare different updating rules in terms of their
rate of weak convergence, that is, in terms of second largest eigenvalues in
absolute value of their transition matrices. This value does not always come
from a positive eigenvalue [see, e.g., Frigessi, Hwang, Sheu and di Stefano
(1990)]. Hence, for sampling, one has to consider also the smallest eigenvalue,
even for a first order estimate of the convergence rate.

In Section 3 we use our results from Section 2, to propose a modified
version of the local Gibbs sampler updating scheme of Geman and Geman
(1984). Our algorithm reduces the asymptotic variance and at low temperature
converges weakly faster than the Gibbs sampler, yet it requires only negligible
extra computational effort.

It is important to distinguish between the two objectives: (i) fast weak
convergence to equilibrium; and (ii) small asymptotic variance of time aver-
ages. A stochastic matrix P for which weak convergence is fast may have large
asymptotic variance and conversely, so it is better to use different dynamics for
the two different purposes. Note, however, that our method in Section 3
improves on the Gibbs sampler (at low temperature) in both senses.

2. Main results. Without loss of generality and for simplicity of exposi-
tion, assume that the states in S are ordered according to increasing w-mea-
sure:

0<m(l)<w(2) < -+ <w(N), where N = |S].

Denote by 1 the constant function equal to 1 [in vector notation, 1 =

1,...,17] and by 8, the Dirac function at state % [in vector notation
8,=1(0,...,1,...,0)7] with one as the only nonzero element at the kth
coordinate.

THEOREM 1. (a) The second largest eigenvalue of any stochastic matrix P,
reversible w.r.t. w, is greater than or equal to

77'(1)
11— 17'(1)

For all matrices whose second largest eigenvalue attains this lower bound, the
corresponding eigenvector is

[

es =8, — (5,01 = (1 — m(1), —m(1),..., —m(1))"

Furthermore, their first column has a zero as first entry and all other elements



614 A. FRIGESSI, C.-R. HWANG AND L. YOUNES

are equal to
(1)

1-m(1)°

(b) The construction above can be iterated to finally obtain a matrix with the
following properties: (i) all the elements along the diagonal are zero, except

possibly the last one; (ii) its eigenvalues are 1 =A; > 0> Ay, > -+ > Ay and
satisfy the property that A, , attains the smallest possible value among all
matrices (reversible w.r.t. w) that already possess the eigenvalues 1, A,, ..., A;
(iii) its columns have constant entries under the diagonal, which are, respec-
tively, —A,, ..., —Ay; (iv) its eigenvectors are

61 = 1
and

ek+1=5k_<5kll’2""’k_1>7r, k=1,“.,N'—1,

where (f1,2,...,k — 1), is the conditional expectation of f given the o-alge-
bra generated by the sets {1},...,{k — 1} under the probability ; in vector
notation,

0 o 1 m(k) m(k)
Gt DD YT TR + o +m(N) ) w(k) + o Aw(N)
k — 1terms

(k) !

Cw(k) + - +m(N) )

(¢c) Moreover, this matrix is the unique one which satisfies the previous
condition (ii).

To prove the theorem, we need a lemma. Denote

(f, 8= X f(s)g(s)m(s).

seS

LeEmMmA 1.  For every stochastic matrix P, reversible w.r.t. ,
(Pey, ey)y = —m(1)%,

where e, = 8, — {(8;)1 with equality if and only if p;; = 0.

Proor. From the reversibility and stochasticity of P,

Pe, = P[1 — (1), —m(1),..., —=(1)]"
= |pu — (1), (2) P12 —m(1),..., T‘_(N)p1N m(1)| .
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Furthermore,
(Pey, e3)n = (p1 — m(1))m(1)(1 — (1))

(1)
—v(l)z( P W(l))w(k)

= (pu - 77'(1))77'(1) = "‘"'(1)2~

This proves the lemma. O

In the preceding proof, we never used the fact that 7w(1) was the lowest
probability. The statement of the lemma is therefore true for all s € S:

(P[5, = (8,01],[8, — (8, 01])m = —m(5)%,

with equality iff p,, = 0.

Proor oF THEOREM 1. The second largest elgenvalue Ao(P) of any stochas-
tic matrix P, reversible w.r.t. to m, satisfies

(Pf, F)n
2 A-(P) = T
(2) (P)= S E

Using Lemma 1 and ey, e5), = m(1(1 — m(1)), it follows that

Ao(P) > =7 _(Wzl)

This establishes the first part of (a). Moreover, the supremum in (2) is attained
by the eigenvectors of P corresponding to the eigenvalue A,(P), since P is
self-adjoint w.r.t. (- ),. Assume A,(P)= —(7w(1)/(1 — m(1)) so that from
Lemma 1, p,; = 0. This implies e, = §; — (5,71 is a corresponding eigenvec-
tor.

By computing the equations involved in Pe, = —(7(1)/(1 — m(1))e,, we can
check that, for all j > 1, p,; = (w(j)/(1 — w(1))). This implies by detailed
balance that the entries on the first column under the diagonal are constant
and equal to w(1)/(1 — 7(1)). We have therefore proved part (a). Also, if a
matrix P has eigenvalue A,(P) = —(m(1)/(1 — w(1))), then its first row and
column are fixed, which is a first step towards the uniqueness stated in part
(c). Once we complete the proof of part (b), we will have constructed a matrix
‘whose eigenvalues are all smaller than or equal to —(w(1)/(1 — m(1))); antici-
pating this, we see that this lower bound of the second eigenvalue is attained.

We now turn to part (b). Notice that, according to the above discussion, if a
matrix has —7(1)/(1 — 7(1)) as the second largest eigenvalue, then it must
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have the form

0 G I O
1-m(1) 1-m(1)
7(1)
(3) p=|1-=(1)
: P,
(1)
1-a(1)

Now, P, is in detailed balance with the row vector (m(2),...,w(N)), and
has constant row sums. Therefore, we can repeat the same arguments as
above; the fact that the row sum in this case is not 1 does not make much
difference. Moreover, one can easily check that finding an (N — 1)-dimensional

eigenvector of P,, orthogonal to (1,...,1)T € RV~ is equivalent to finding an
N-dimensional eigenvector for P, orthogonal to e; and e,: If (x,,...,xy) are
the coordinates of the (N — 1)-dimensional eigenvector, then (0, x,, ..., xy) is

an eigenvector of P and every N-dimensional vector orthogonal to e; and e,
must have 0 as its first entry.

Therefore, the second eigenvalue of P, is the third eigenvalue of P and the
first and second rows and columns of any N X N matrix, having these
eigenvalues, are fixed. Clearly, this can be pushed further, thus obtaining at
each step a new eigenvalue that fixes a new row and column in the matrix. In
order to check that the corresponding eigenvectors are given by

7 (k)

= 0..-0 1._
Gk T m (k) + - 4m(N)

(k) (k) !
Cw(k) o +m(N) w(k) + o +m(N) |

one has to remark that the matrix P, that plays the role of P, at step % is in
detailed balance with

w(k) m(N)
(k) + - +m(N) (k) + - +m(N) )

Concerning the probabilistic interpretation of e, ; as §, — (§,11,2,...,
k — 1)., one can check it by elementary computations with conditional expec-
tations: just notice, for example, that functions that are measurable with
respect to o({1},...,{k — 1}) are linear combinations of 1, 8,,...,8,_;.

Finally, the values of A,,...,Ay can be computed. They are given in
Remark 4. From this, one easily verifies that A, > -+ > Ay
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REMARK 1. Concerning part (a) of Theorem 1, it may be surprising that, by
only fixing the second eigenvalue to be optimal, at the same time one of the
corresponding principal axes is also automatically fixed (there may, of course,
exist other eigenvectors with the same eigenvalue; see Remark 3 for an
example). This is why we interpret our result as a structural result on
stochastic matrices that reminds us of a Frobenius-type theorem.

REMARK 2. A final nonzero element on the diagonal may remain in the
matrix of part (b). In fact this happens if and only if w(N — 1) # w(N).

REMARK 3. As a simple example, consider the uniform case, w(1) = --- =
m(N) = 1/N. At the end of the above program, the matrix P will have the
form

_ . 1 1
N-1 N-1
1 1
0 e
(4) N-1 N-1
1 1 0
| N-1 N-1 ]
with eigenvalues Ay = A3 = -+ =Ay= —(1/(N — 1))

REMARK 4. On the basis of the iterative construction in the proof of

Theorem 1, it is not difficult to write down the values of Ay, ..., Ay. They are
N w(k) k-1 1 w (1)
BT T g+ 1) + - +m(N) =il w4+ 1)+ +m(N) )

If m(k — 1) = w(k), then A, = A, ;.

REMARK 5. It is not surprising that §, — {(§,)1 realizes the above bound.
In other words, this means that the most difficult quantity to estimate by time
averages is the probability of the least likely state, which is consistent with
intuition.

The next part of this section is devoted to the statistical interpretation of
Theorem 1. For completeness, we state a well-known result concerning the
asymptotic variance of time averages already mentioned in the Introduction.

0O

THEOREM 2. Let P be an irreducible and a reversible (w.r.t. m) stochastic
matrix. Let X(0), X(1),... be a Markov chain on S with transition matrix P
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and f: S = R. For any initial distribution,

v(f, P,m)

lim n var(—l— nilf[X(k)])
np_o

n—oo

={(I-P) " {I+P)(f- (A1, f- (O

Proor. See, for example, Keilson (1979) or Caracciolo, Pelisetto and Sokal
(1989) and Peskun (1973). O

Easy computations show that the above limit is equal to
N 1+4,

(5) )»

k=2 1 = Ay

<f’ ék>121"

where Pe, = A,é,, llé,ll, = 1. This formula links the asymptotic variance
v( f, P, ) to the eigenvalues and eigenvectors of P.

Clearly, in order to make the asymptotic variance small, it is useful to use
dynamics P with possibly all negative and small eigenvalues (except the
largest one which is 1). In this sense, one should interpret the common remark
that ‘“negative eigenvalues help” in terms of asymptotic variance and not of
weak convergence, for which the second largest eigenvalue in absolute value
matters.

The next result states precisely what we anticipated in the Introduction
concerning variance reduction.

COROLLARY 1. Let P be a stochastic matrix, reversible w.r.t. w. Let v(P, )
be the maximum asymptotic variance of (1/n)L %25 f[X(R)] for norm 1 func-
tions f. Then

v(P,7) =1 - 2m(1),

and any matrix that realizes this equality must have the properties given in
Theorem 1(a) and hence be of the form (8).

Proor. By expression (5), v(P,w) = (1 + 1,)/(1 — Ay); using A, =
—(m(1)/(1 — m(1))), that is, the best possible value, we get the desired result.
O

REMARK 6. Any matrix of type (3) will lead to a worst-case asymptotic
variance v(M, ) = 1 — 27(1). Whenever no specific knowledge of f is avail-
able, this is optimal. We like to stress that for specific functions f, Markov
chains with smaller asymptotic variance can be constructed.

There is a general and very easy way to find a P which for a specific given f
. does better than, say, the static P, (with all rows equal to 7). For this, assume
that ( f) = 0; denote by A the orthogonal projection operator in the direction
f whose entries are a,; = w(j) f; ;. Then, the row sums of A are all 0 and A
is reversible w.r.t. 7. Consider now the matrix P, = P, — €A, with £ > 0. This
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P_ will be a stochastic matrix, reversible w.r.t. = if all its entries are nonnega-
tive, that is, for small enough ¢. Now f is an eigenvector of P,, with
eigenvalue —¢|| f I and

1-elfl2
1+elfI2

The largest ¢ that can be chosen is such that, for all i, j, ¢ f; f; < 1. This gives
e = 1/max; f Thus we obtain a P, such that

max f2 - || fIl
T A

Two essential remarks should be added at this point. First, P, is of no
practical use, because one has to know { f) in order to compute it (we assumed
(f> = 0). Moreover, in general, this P, is not the best possible for f. However,
it can be better than the matrix we described in Theorem 1, where no
information on [ was used.

For illustration, consider the following example: Take N = 3, 7 = (3, %, %)
and f = (0,3, —2)T. The matrix given in Theorem 1 is

v(f,P,m) = 2.

I

2 3

0 5 3

1 4
M=|i o ¢
108 4

5 15 15

and one has Mf = — 2f, so that v(f, M, w) = %l fl2. The ¢ given above is 3
and the matrix P, is such that v(f, P.,7) = 2| fII2 < v(f, M, ).

REMARK 7. From a computational point of view, running the chain based
on (3) or even the one based on the matrix described in Theorem 1(b) may be
of no greater effort than some alternative methods. For example, consider the
uniform case (4) again as compared to

1 1
N N
1 1
I_N N_

Notice that some off-line computing is necessary, in general, in order to
compute the underdiagonal column values. Of course, one may decide to
modify only part of the matrix. We just claim that, whenever a static Monte
Carlo method is useful and computationally feasible, it is possible to adopt a
simple dynamic Monte Carlo method, thus reducing the worst-case asymptotic
variance at no significant computational extra cost. The interest lies in its
general purpose, blind (w.r.t. special f’s) behavior.
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REMARK 8. Variance reduction techniques are often proposed and applied
in Monte Carlo methods. They generally turn out to be of a static type
[Rubinstein (1983)]. One of the most interesting approaches is called impor-
tance sampling. The idea is to express { f), as L ,(f(s)m(s)/g(s))g(s), where
&(s) is a suitably chosen probability measure, and to approximate this by

172 F(X(R))m(X(R))
mr=o g(X(k)) ’
where (X(0),..., X(n — 1)) is a sample from g(-). The optimal g which
minimizes the asymptotic variance is given by
If(s)lm(s)
ZAF ()l (t)
Of course sampling from g(s) is as hard as computing { ), hence one will
design approximations Z(s) that resemble g(s) but are computationally feasi-
ble. Our approach here is quite different and difficult to compare in general,
since 8(s) has to be specified [for the optimal g(s), the variance is zero].

We conclude this section with a theorem that gives the minimum value of
the bias for a particular choice of f.

&(s) =

PROPOSITION 1. Let %, be the set of all irreducible aperiodic stochastic
n)

matrices, in detailed balance w.r.t. w. If P € #,, denote by P{Y the kth
diagonal term of P". Then

(1 - m(k))?, if m(k) < 3,

inf Y (PR - (k)= {Tr(k)(l ~n(k), if (k)=

PeZ, n=0

Proor. For any m-reversible stochastic matrix @, we have that (Qf,, f,) =
w(k)Xqy, — m(k)), where f, =, — m(k) (see Lemma 1).
Therefore, if P € Z_,

1
L (PR - m(k) = —=( L P'fi, i)

n=>0 m(k) n=0 -

1
——(I-=P) £y, Fudn

Let ¢(P) = {(I — P)"'f,, f,)x; the problem is thus to find the infinum of ¢
over %, . As ¢(P) is also defined if P is not aperiodic, let %#_ be the set of
Jirreducible and mr-reversible stochastic matrices. This is a convex set. Let ¢ be
defined on #_ and let

¥(P) = {Pfy, fi)n-
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It is not difficult to check that ¢ is a convex function on %, (it is twice
differentiable); for P € #_, denote by C(P) the set of matrices H for which
P+ AH € #_, for small enough A > 0. The directional derivative of ¢ at P in
the direction H is equal to

¢ (P)(H) =(H(I-P) 'f,,(I-P) 'f,). forall He C(P).

The directional derivative of ¢ is of course ¢'(P)XH) = {Hf}, fi )=
A necessary and sufficient condition for P to be a minimum of ¢ (respec-
tively, of ) over #_ is that for all H € C(P),

¢(P)(H) =20, (¥'(P)(H)=0).

We shall prove the following fact: There exists a P € #_, such that ¢ attains
its minimum at P and Pf, = Af,. This will imply that for H € C(P),
@(P)XH) = (1/Q - M))¢'(PXH), thus ¢(PXH) > 0 and P will be a mini-
mum also for ¢.

In order to obtain the minimum of ¢, first remark that (P) =
(prr — m(k)w(k), so that we have to find the least possible value of p,, over
Z_. This value, of course, has to be nonnegative, but it is not always possible
to reach 0, as is shown by the following trivial estimate:

g -y ™D ot _ 2m(k) -1
=1 zgkpkl ' Ek W(k)plk— (k) lgk m(k)

This lower bound is positive as soon as 7(k) > ;. Notice that 7(k) > 3 is only
possible for the most probable state, namely 2 = N, since we have ordered S
according to increasing probabilities.

In fact, one has

(6) infp,, = max(O,
R,

k.

2w (k) — 1)
m(k) )

We shall prove (6) by using the trick given in Remark 6. This will provide at
the same time a P for which ¢ is minimum and f, is an eigenvector, so that
we will also get the minimum of ¢.

Denote by f3;,. .., frn the coordinates of f,: One has f,, = 1 — m(k) and

fry = —m(k) for I # k. Consider the projection matrix A over f,; its entries
are a;; = m(j)f;; f;- Denote by P, the matrix P, — ¢A, where P, has all
rows equal to m(1),...,m(N). We ‘know that P is a stochastic matrlx for

e < (1/max; fk ). Its eigenvalues are 1, —¢llf II and 0 with multiplicity
N — 2, so that P e #.. Denote by P, the matrix P, for

1 1

max; fi;  max(m(k)%, (1 - w(k)))
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A simple computation implies that the kth diagonal term of P, is precisely
that one given in (6).
Moreover,

Iz w(k)  1-w(k)
max 2, N\ 1-m(k)’ (k) |’

so that, if w(k) # 3, P, € #,. If w(k) = §, one can approximate P, by P, for
¢ <(1/max f?). This proves that

0L o(P) = (k) inf, T (P - m(k)) = o(,).

m™n>0

Now,

A=

P, =
#(Fu) 1+ ”fk||12r/max fk2j

gives the result of the proposition.

REMARK 9. The methods in the previous proof can be used for some other
functions in order to obtain lower bounds on ¥ L P"*f, f ). Unfortunately, this
does not work for all £, because it is not true in general that (Pf, f ). attains
its minimum for some P such that Pf = Af.

However, here is an example of f for which it works. Let f = e, one of the
eigenvectors of Theorem 1. If P € #,_, (Pe,, e,), only depends on p, ; for
i,j >k (the k —1 first coordinates of e, are 0). Let M be the matrix
constructed in part (b) of Theorem 1; it is not hard to see that it is constructed
so that (Me,, e, ), is minimum. As e, is an eigenvector of M, (X, Pe,, e;)n
also attains its minimum at M.

REMARK 10. Consider the asymptotic variance of the time average for a
fixed f (with (f) = 0), which is given by ((I — P)"'(I + P)f, f),. For this
function of P (which is also convex), whenever the methods of Proposition 1
are applicable (see Remark 9), they also provide a P for which the asymptotic
variance is minimum. For example, the matrix P, obtained in the preceding
proof is the best in %2, for estimating (k). Its serious drawback is that it
already depends on (k).

3. Markov random field simulation. We now specialize our discussion
to the simulation of Markov random fields on a finite graph. For this, we need
some new notation. :

Let D be a finite lattice (say, D c Z?). Let S, be a finite set (e.g., the colors)
and S = (S,)? (the set of all possible pictures). An element x of S will thus
be a{D|-tuple, x = (x,), < p, x,, € S,. We consider the measure 7 on S given
by m(x) = exp(—(U(x)/T))/Z;, where Z; is a normalizing constant.

Typically, S is a very large set, so large that it is impossible to sample
directly from ; therefore, in this case, the methods presented in the previous
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section are impracticable. In most applications the function U is chosen to
have nice local properties:

U(x) = = X ux),

where ¢ runs over some family of (small) subsets of D (cliques) and u .(x) only
depends on x,, o € c. U is often referred to as the energy function and «, as
the potential function, in statistical mechanics.

This implies that the conditional probabilities m,(x,lx,, p # o) at site o
given the rest of the configuration are easy to compute; they depend only on a
small number of coordinates x,. Equivalently, we can say that it is easy to
compute the differences U(x) — U(x'), when x and x' differ only at one site.

Hence, Monte Carlo methods for simulating Markov random fields are made
up of elementary steps, each of them consisting of the random updating of the
current configuration at only one site. Such methods are presented and
studied widely in the literature; see, for example, Geman and Geman (1984),
Geman (1990), Sokal (1989). Frigessi, Hwang, Sheu and di Stefano (1990)
compare - some widely used algorithms in terms of rigorous rate of weak
convergence; see also Gelfand and Smith (1990) for interesting applications of
the Gibbs sampler outside image analysis.

One of the most popular algorithms is the Gibbs sampler, where each
elementary step acts as follows: A site o is chosen to be updated; the new
value at this site is drawn at random according to the conditional distribution
at site o, m,(-|x,, p # o). In this paper we assume that the site to be updated
is chosen uniformly at random. With this assumption, we can consider the
following construction: Each elementary (local) update corresponds to a proba-
bility kernel P_; every elementary step of the algorithm consists of choosing a
site o at random and applying P,. This step therefore corresponds to the
matrix

4 ! Y P
|D| oD 7
Our intent is to use the ideas of the preceding section to improve on P, but
only acting at the local level. In other words, we try to improve the Gibbs
sampler, staying within the class of feasible Monte Carlo algorithms. In fact,
we will show how it is possible not only to reduce the asymptotic variance of
time averages, but also to accelerate the weak convergence for small T. For
this last point, we use methods from Frigessi, Hwang, Sheu and di Stefano
(1990) for weak convergence comparisons.

Let us now focus on the updating at a site o. The matrix P, = (p,(x,y)) is

defined as

Po(%,5) = 35 YT (Volyps 0 # 0)

s exp[-U(y)/T]
" e T el U() /T

where N,(x) ={y:y, =x,,p # o}.
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Order all possible configurations as
S =g, X Xygs s Xy XLty 1s e XL}
with
L=1Sol, L=0UP"" and {x,,q,.- ,%ps10} = Ny(2,041)-

With this ordering, P, is a block diagonal matrix, each block corresponding to
a single N,(x), that is, to a fixed configuration outside o. We are going to
modify the entries of these blocks as compared to those of the Gibbs sampler.

Indeed, each of these blocks has rank one, because every row is given by
m,(-lx,, p # o). Here, we retrieve the structure of the static matrix of the
previous section; we will use, on this matrix, the construction of Theorem 1(a).

For this, fix an x € S and the set N, (x) (in fact, only the coordinates X,
p # o are relevant). Let U,, be the maximal energy of configurations w1th1n
N_(x). Call H the set of those y for which U(y) = U,, and h = |H|. The
elements of H are therefore those for which (y,lx,, p # o) attains its mini-
mum.

We iterate the construction of Theorem 1 over the set of all least likely
states in each block. This gives:

1. For all y € H, replace p(y, y) with 0.
2. If z ¢ H, then replace p(z, z) by

p(e2) ~ b 22D iy,

(One can check that this is a positive number.)
3. If y € H and z # y, replace p(y, z) by

p(y,2)
1-p(y,y)

and p(z,y) by

| p(y,y)
1-p(y,y)

4. Ifz¢ H, y ¢ H and z # y, then leave p(y, z) and p(z, y) unchanged.

Steps (1) and (3) follow from Remark 4 of Theorem 1.

At this point, it is clear that ordering the configurations in order to make
the above transformations is not necessary. This is fortunate, because this
ordering would depend on the particular site o € D.

After performing the changes 1-4 for each different N,(x), we obtain a new
local updating transition probability P Thus, we get a new simulation
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method for Markov random fields, given by

P= ! B,
ID I oeD
It is easy to check that P is still reversible w.r.t. 7. In order to state a theorem
on some properties of P, we need some definitions concerning the local minima
of U as given in Frigessi, Hwang, Sheu and di Stefano (1990).
For x # v, a path from x to y is a sequence x = x;, Xy, ..., x, = y such that
x;+1 € N,(x;) for some o; and x; *x; for i #j.

A conﬁg'uratlon xeSisa local minimum of U if for any y with U(y) <
U(x) and any path from x to y, there exists z, belonging to this path such that
U(z) > U(x). Two local minima are equivalent if they can be linked by a path
of constant energy. An equivalence class is called a bottom.

We can now state the theorem. Recall that the Gibbs sampler is based on P
and that we denoted by v(f, P, ) the asymptotic variance of the time aver-
ages of f for the Markov chain with transition P.

THEOREM 3. The matrix P constructed above is such that:
(a) For any nonconstant f,

o(f, B,m) <v(f,P,m).

As a consequence, the second eigenvalue of B, A 2(P), is strictly smaller than
the second eigenvalue of P.

() If T (the temperature) is small enough and U has at least two bottoms,
then the second eigenvalue in absolute value of P, p2(P) is strictly smaller
than the second eigenvalue in absolute value of P.

The theorem therefore states that this modified Gibbs sampler is always
better than the original one in terms of both asymptotic variance of time
averages and weak convergence, at least at low temperatures.

Notice that it is not necessarily true that p, = [A,| (the largest absolute
value might come from a negative eigenvalue); however, this equality holds for
P at least at low temperature.

Proor oF THEOREM 3. According to Caracciolo, Pelisetto and Sokal (1989),
it suffices to show that { Pf, f ). > {Pf, ). for all f such that {(f) =0 and
f+0.

We first prove the nonstrict inequality in (a) for each P, and P,, and
because of the block-diagonal structure of these matrices, it suffices to prove it
for each elementary block. With such blocks, things become simpler: Denoting
the two corresponding blocks of P, and B, by G and ‘G, we want to show that
(Gf, fYw = {GFf, f)n for any l-d1mens1onal vector f, with equality only if f is
+ constant. Indeed we have [see, e.g., Caracciolo, Pelisetto and Sokal (1989)]

(I-6)f, Fm= T w(De(fi-F)

i<j
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and a similar formula for G. The fact that the off diagonal terms of G are not
smaller than the off diagonal terms of G implies the desired inequality. In fact,
notice that we constructed G by strictly increasing the off " diagonal terms of
the first row; hence we get that equality is possible only if f; =f, for all i. We
therefore have proved that, for all f, {Pf, f )= = {Bf, f)n.

If f+ 0, then f is not constant because { f ) = 0. Thus there exist a site o
and two configurations x and y only differing at site o, such that f(x) # f(y),
because any two configurations can be connected by a path. Therefore, if we
take the blocks G and G corresponding to N,(x), then {(Gf, [ ) > (Gf, o,
where £ is the restriction of f to N,(x). This 1mphes that ( Pf, f ) > {Pf, [ u.

We turn to (b). Since we know that P-Pis positive, we only have to show
that the second eigenvalue in absolute value of P comes from the second
largest positive one, namely A,(P). This will be shown by proving that A,(P)
tends to 1 if T' tends to 0, while the other eigenvalues are bounded away from
-1.

For this, the methods developed in Frigessi, Hwang, Sheu and di Stefano
[(1990), Theorem 5] can be applied with minor modifications. We shall there-
fore only briefly sketch the proof of (b).

The assumption we made on the bottom of U implies that, when T = 0, the
Markov chain associated with P has more than one ergodic class; in fact, each
bottom is an ergodic class. This implies that the second eigenvalue of P tends
to 1 when T tends to 0.

It remains to show that, if a state x is not a local minimum of U, then it is
transient, and there is a positive probability at T = 0 that the chain starting
from x reaches a local minimum: This will imply that there cannot be
eigenvalues equal to —1 at T = 0. We refer once again to Frigessi, Hwang,
Sheu and di Stefano (1990). 3

Let us now turn to a practical description of the algorithm associated to P.
In some simple cases (e.g., Ising model), it is possible to tabulate the transition
probabilities associated with P. However, this is in general not realistic, and
the transformations that lead to P must be made on line during the simula-
tion. For convenience, we describe the algorithm in terms of energy.

Assume that the current configuration is x. (i) Take at random a site o € D.
(ii) Within N_(x), which contains ! = |S,| elements, look for the maximum U,
of U(-) and compute

Z- ¥ exp[__.
yEN,(x) T

Let h = |{y € N.(x): U(y) = U,}| and a = exp[-U,,/T]. (iii) If U(x) = U,
then choose y € N, (x) \ {x} at random with probability

expl ~U(y)/T]
Z.—a ’
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else if U(x) < U,,, choose y € N, (x) at random with probability

a
Zx -« ’ lf U(y) B Um,
exp(—U(x)/T) al 2 a if
z, [Zx—a Zx]’ T
exp(—U(y)/T
xp( Z(y)/ ), ify#xand U(y) <U,,.

The extra computational cost, when compared to the Gibbs sampler, is small.
The number of exponentials to be computed is the same; moreover, depending
on U(x), up to four extra floating point additions and multiplications may be
needed. Finally, we have to compute the local maximum of U. In practice, for
the usual Gibbs sampler, it is recommended to find the minimum of the energy
U, before the local updating and to update by using the relative energy
U(x) — U,;,, in order to avoid numerical overflows resulting from the compu-
tation of exp( A) for some large A. In our case, again, computing the maximum

at the same time adds a very small extra cost.

REMARK 11. In the definition of the modified Gibbs sampler, we did not
complete all the procedure described in part (b) of Theorem 1, for two reasons:
The first is that we are not sure that, from any configuration which is not a
local minimum of the energy, this new Markov chain would reach a bottom
with positive probability. Our proof cannot be extended to show that this new
stochastic matrix has no eigenvalue — 1 at temperature 0. The second reason is
practical: Each new step of the procedure of Theorem 1(b) would involve more
and more computational cost. We therefore restrict ourselves to only one step,
which is easy to implement.

ReEMARK 12. We do not know how to compare the algorithm of Theorem 3
with another commonly used Monte Carlo method for Markov random field
simulation, namely the Metropolis algorithm [Geman (1990)].
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