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LIGHT TRAFFIC EQUIVALENCE IN SINGLE-SERVER QUEUES

BY SOREN ASMUSSEN

Chalmers University of Technology

A light traffic limit theorem is proved for random walks in a triangular
array setting similar to the heavy traffic situation, the basic assumption
being on the moments in the right tail of the increment distribution. When
specialized to GI/G/1 queues, this result is shown to contain the known
types of light traffic behaviour in this setting (Daley and Rolski) as well as
some additional ones. Intuitively, the results state that typically delay in
light traffic occurs with just one customer in the system, and then as a
result of long service times and/or short interarrival times in a balance
which depends on the particular parameters of the model. Particular
attention is given to queues with phase-type service times, for example of
Coxian type.

1. Introduction. The study of light traffic limit theorems for queues goes
back at least to [5], but compared to heavy traffic approximations, which were
extensively studied and applied in the 1970s and 1980s, the area has remained
relatively unexplored for many years. However, the interest in light traffic
phenomena has been renewed in recent years, starting with the work of
Burman and Smith [6, 7] and Daley and Rolski [9]. Besides the intrinsic
interest of the topic, one main motivation has been to study queues in
moderate traffic by interpolating between the light traffic and heavy traffic
approximations; see [8], [17], [19] and [21]. Further important references in the
area include Wolff [22], Pinedo and Wolff [14] and Reiman and Simon [16, 18].

To indicate the flavour of the topic, consider the GI/G/1 queue with
generic service time U, generic interarrival time T and generic steady-state
waiting time W. Intuitively, light traffic means that 7' is much larger than U,
implying that typically, customers do not have to wait at all so that p, =
P(W > 0) is close to 0. The problem is to study W in the unlikely event that
W > 0, and the crux for this may be argued to be formalizing the relation
(1.1) W=(U-T)",
which comes out by a number of intuitive or semi-mathematical lines of
thought [e.g., one may note that W = (U — T')™ exactly in the typical case of
the preceding customer arriving to an idle system].

In Daley and Rolski [9], the mathematical setting for (1.1) is to provide
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556 S. ASMUSSEN

in a triangular array setting where U = U™, T = T®™ (and hence W = W)
depend on a parameter y tending to « such that T ultimately dominates
U™). More precisely, Daley and Rolski [9] consider the dilation case

(1.3) U»=U,, T®=49T,,

with U,, T, independent of y (by rescaling, this situation is equivalent to
U=¢U,, T=T,, ¢ > 0). It is noted in [9] that (1.2) holds for M/G/1 or
GI/M /1 queues, but also counterexamples (of D/G /1 type) are given, show-
ing that (1.2) may fail even in the simple setting of (1.3). These investigations
are continued by Daley and Rolski in [10] and [11], but the picture which
emerges is more diverse. For example in [10], asymptotic formulas for EW are
given subject to thinning of the arrival process and in the special case

(1.4) P(Ty, <x) =cy x° x -0,

of (1.3) [here c, is a constant dependent on the distribution A, of T; as in
[10], the class of distributions satisfying (1.4) is denoted ./, in the following].
From these and related results, Daley and Rolski [10] draw some general
conclusions such as:

“The dominant feature of light traffic characteristics is their dependence on
the clustering tendency . .. of the arrival process’’;
¢ ...there do not exist perfectly general conditions for...[(1.2)].”

Discussions of these matters with Daryl Daley in the spring of 1988 and with
Tomasz Rolski in the fall of 1989 provided the stimulus for the present
research.

The points that we hope to make with the present paper are the following:

1. The relation (1.1) between W and (U — T)" is at the core of light traffic
limit theory. Furthermore, it is a distributional property and does not refer
to expected values as in (1.2) alone. Some indications of this are in fact
already present in [10] and, even more, in [11], and the spirit is certainly
also rather much the same as in [18].

2. One can comprise all known instances of light traffic behaviour in single-
server queues into a single random walk triangular array setting (just as in
the heavy traffic case; cf. [1], Chapter VIIL.6).

3. Light traffic behaviour is the result of a delicate interaction between short
interarrival times (clustering) and long service times—in some situations
one of these features may be the predominant one (say short interarrival
times in GI/D /1 or long service times in D/G /1), in others both may be
present (e.g., Example 3.2 below).

The paper is organized as follows. In Section 2 we introduce the notion of
light traffic equivalence which is our distributional setting, and a light traffic
limit theorem for random walks is proved under a certain condition (somewhat
reminiscent of uniform integrability) on the moments in the right tail in the
family of increment distributions. Section 3 deals with GI/G/1 queues: We
investigate the form of the basic condition in a number of cases (in particular,
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we show how a number of results of Daley and Rolski [9, 10] come out as
special cases), and we give examples showing some of the possible types of
behaviour exhibited by interarrival times and service times when delay occurs
in light traffic. In Section 4 we study the specific form of the light traffic
approximations for the GI/PH /1 queue. It is shown that the light traffic limit
is phase-type with the same phase generator as the service time distribution,
and we derive computationally tractable expressions for the entrance distribu-
tion and p,= P(W > 0). In particular, Coxian distributions are exploited, and
we introduce a class .2 of distributions which fade away at the origin faster
than for any of the classes ., (e.g., T isin . if T > ¢ for some ¢ > 0). The
main result for GI/PH /1 queues in this setting states that when the interar-
rival distribution is in /2, then the light traffic approximation is simply
exponential. Finally, some concluding discussion is given in Section 5.

The following notation is used throughout the paper: E[ X; A] means E XI(A);
for a given distribution function F, F denotes the tail, F(x) = 1 — F(x), and
F(-|x) denotes the overshoot distribution, F(y|x) = F(y + x)/F(x).

2. Light traffic equivalence in random walks. To formalize our re-
sults, we need the following notion.

DeFINITION 2.1.  Two families {R™)}, . ,,{8™}, ., of random variables with
values in [0, ) are distributional light traffic equivalent if

P(R™ > 0)

(2.1) P(R®>0) -0, P(S™ > 0) - 0, —_—P(S(“’) >0) -1

as y — « and the total variation distance
(2.2) [P(R™ € -|R™ > 0) - P(S e -|S™ > 0)|

converges to 0 as y — «. The families are light traffic equivalent of order p if
the moments of order g < p behave asymptotically equivalent when y — « as
well,

ER™?

W—)l, 0<gq<p.

(2.3)

For basic facts about total variation convergence, see the appendix of [1].
Note that it is not essential for the definition that R, S are defined w.p.1;
for defective random variables then, for example, the event { R > 0} means
that R is defined and is greater than 0. Examples of this occur in connection
with ladder variables below. A

The concept may, of course, also be relevant outside the area of light traffic
limit theorems for queues, and for this reason Daley and Rolski used the term
asymptotic conditional equivalence in a revision of [11] following the first
‘version of this paper.

Now consider a triangular array {S{"’} of random walks with increments
XM, X, ..., increment distributions F®(x) = (X < x), and define
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M® = max,_o . S Our goal for light traffic analysis is then to show that
M® and X" are llght traffic equivalent, and this will be shown to hold true
under conditions of the following type.

ConpiTiON .27 (p). For all ¢ with 0 < ¢ < p,

e [E[X‘“/)qﬂ; X0 > K] e [2x7* IFO)(dx)
Kre ool EXO, XD >0]  Kie gt JoxFD(dx)

One may note that Condition .Z7(p) with the denominator removed and
the integration carried out over {x: |x| > K} instead of {x: x > K} means
uniform integrability of the (p + 1)th moment which the setting of heavy
traffic limit theorems is exactly the required regularity condition needed for
the study of the pth moment of M; cf. [4] and [1], Chapter VIIL.6. If, as will
typically be the case, the denominator (considered as a function of ) is of the
same order of magnitude as 5’ = P(X® > 0), we are back to uniform
integrability, only now in the conditional distribution F(-|0) of X given
X > 0 [in particular, .Z.77(0) always means that the family {F (- [0)}, ., is
uniformly integrable]. An example of this type of behaviour which, it would
appear, would cover a wide range of examples is given in Corollary 2.1 (some
cases not included are studied in Corollary 3.5 and Example 3.2). Condition
£ would fail, typically, if F exhibits wild fluctuations in the overshoot
distributions. See, for example, Example 3.1 below.

Here is our main result for the random walk setting.

THEOREM 2.1. Assume that X’ -, — ® when y — », and that Condition
Z27(0) holds. Then M and X" are distributional light traffic equivalent.
If Condition £ (p) also holds, then M and X" are light traffic equiva-
lent of order p.

For the proof, we shall employ a Wiener—Hopf inspired argument, the
essence of which is to first express M as a geometric sum of ascending
ladder heights which in terms of distributions means

(2.4) (]_ - ”G(Y)”) G(V)*"

n=0

(this idea is advocated at an early historical stage in [12]) and next to express
the ascending ladder height distribution G¢” in terms of the renewal measure
U = £3GY™" associated with the descending ladder height distribution G
(for further closely related applications of this technique, see [3], [1], pages 184
and 185, and [23]). Here as usual G{(x) = P(S® < x), where 7, = inf{n > 1:
S(Y) > 0}

Define p@’ = P(M® > 0), p?° = B(X™ > 0). Then also p?’ = |G| in
view of (2.4).
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Lemma 2.1, Assume that X -, — « when y — », and that Condition
ZJ(0) holds. Then the ascending ladder height S’ and X" are distribu-

tional light traffic equivalent. If also Condition LI p) holds, then S and
X" are light traffic equivalent of order p.

Proor. Itisstandard ([1], page 173) that G is the restriction of F™ x« U
to (0, ») so that we can write G’ = H™ + K ‘7) where H’ is the restriction
to (0,) of F™ (i.e., H™ is the contribution from the atom of U’ at 0) and
K = FO« Z“’G“”*" For simplicity of notation, let R be the measure
R(dx) = £%_,GY""(d(—x)) on (0,%). Then for z > 0,

KY(z) = Z f FO(z — x)GY""(dx)

n=1"—%
-/ “F(z + x) RP(dx)
(2.5)
= [[RO(y ~2)F(dy)

< me("’)(y)F(”( dy).
To proceed from (2.5), we need to show that
(2.6) RY(#) < oM()(1 + ¢),

where ¢"(¢) is bounded, nondecreasing and tends to 0 for any fixed ¢ as
-y = . First X -, — o implies S —, — « (with high probability S
coincides with X{?). In particular, G(V’( t) — 0 for all # > 0. Since R™(1) <
G(—1X1 + R™(1)), this implies that R(1) is bounded. Similarly,

RY(n) —R™(n - 1) < {GY(1 - n) - GP(-n)}(1 + RM(1))
so that
RY(n) < GY(—n)n(1 + RM(1)),

and from these estimates (2.6) follows.
Letting z = 0 in (2.5), we get for K > 1,

IKDN 5o (y)(1 +y) F(dy)

i <
e g = )
JgyF™(dy)
< lnyn_)s:olp (1+ K)e™(K) + 2¢(o )W
JgyF @ (dy)
= lim sup 29" () —————7—.
y— o ( ) IOF(Y)(dy)

Letting K — o, this converges to 0 according to .2.77(0). That the require-
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ments corresponding to (2.1) and (2.2) are satisfied now follows easily from
ﬁ(z) = ||H(7)|| - 0.

For (2.3), fix ¢ < p and write m(H®™) = [§x7H®(dx). Then we must show
m(GY)/m(H™) — 1. Multiplying (2.5) by gz?~ !, inserting (2.6) and integrat-
ing, we get similarly as above that

m(K®)  [5qz7 " dz [[¢7(y)(1 + ) F(dy)
<
m(H) = m(H)

_ 3651 + 3)y"F(dy)
[oyIF P (dy)

Jgy?"'FY(dy)

< (1 +K)K%P(K) + 2¢7(x) [Ey FD(dy)
0

o m(E™) oy SV E ()
lim sup -y = im sup 267 = gy

Letting K 1« and using -9 (p) completes the proof. O

ProOF OF THEOREM 2.1. Since p’ = [|G{||, the requirements for distribu-
tional light traffic equivalence [corresponding to (2.1) and (2.2)] are immediate
consequences of (2.4) and Lemma 2.1. For (2.3), we must show EW®*/
m(H®) - 1. By (2.4),

(2.7) EWO' = (1-p?)m(GY) + (1 -pY) L [:x"G&”*"(dx)-
n=2

As in [1], page 184, we can bound the second term by

< om0
ngzn”"G‘f’” 6T " o(m(GY)).
Thus (2.7) becomes
EW?" = m(GY) + o(m(GY)) = m(H™)(1 + o(1)). ]

COROLLARY 2.1. Suppose that there exists a distribution G which has finite
(p + 1)th moment such that for any vy the conditional distribution F®(-|0) of
X given X > 0 is stochastically dominated by G, and suppose further that
lim inf F?(g|0) > 0 for some ¢ > 0. Then Condition -7 (p) holds.

y > o

Proor. The corollary is an obvious consequence of the inequality
[gxPTIF(x)  pYYgaPtG(dx)

< = . m]
JexPF)(x) PPePFD(£)0)

i

" 8. Light traffic behaviour of GI/G /1 queues. Now consider a sys-
tem (triangular array) of GI/G/1 queues in the notation of the Introduction.
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Denote the interarrival distribution by A’ and assume throughout that the
service time U or equivalently the service-time distribution B is fixed, that is,
does not depend on the parameter y. Then, in view of the well-known random
walk representation of the waiting time, Theorem 2.1 states that W and
(U= T®)* are light traffic equivalent provided X = U — T satisfies
Condition #.7". We shall here carry out the relevant translation to conditions
in terms of A®, B, show that the main cases considered by Daley and Rolski
[9, 10] are included in Theorem 2.1 (Corollaries 3.1 and 3.2) and give some
examples of a different spirit (Examples 3.1 and 3.2). Also we look into the
problem of describing the conditional distribution of U, T given X = U —
T > 0 for the purpose of providing a more intuitive description of how delay
occurs in light traffic.

The first example is thinning of the arrival where the results of [10] are
given in terms of the renewal function H = L7A*".

CoROLLARY 3.1. Given a GI/G/1 queueing system specified in terms of

U, T, define another G1/G/1 system by thinning of the arrival process with
retention probability 1/y. That is, T = T, + -+ + Tnw, where N is inde-

pendent of Ty, Ty, ... with PIN® =k) =1 —1/y)*"'/y. Then W and
(U = TY* are distributional light traffic equivalent provided that EU? < «,
in which case

1
(31)  pP=P(W?>0)=P(U-T) >0)=—EHU),
Y

where H(u) = 2A**(u) is the renewal function. If furthermore EUP*? < o,
then also light traffic equivalence of order p holds, in which case

1
(32)  EWO’ =E((U-T") ") = €[ py? "H(U - y) dy.
Y ‘0

Proor. Obviously,
I E—1 sk
PU-TP>y)=[ L =(1-1/y)""A*(u - y)B(du)
Yy k=17

for y > 0 so that

(3.3) yP(U =T > )1 [ H(u - y)B(du), -
y
In particular, monotone convergence yields
I Jgx? " 'FY(dx) I Jg(p +1)yPP(U - T > y)dy
) (3 4) lrjl_)s::p f{fx”F(”(dx) N ‘ll;l—)sol:.p ﬁ;pyp—lp(U - T > y) dy

_ J&(p + 1)y?[yH(u — y)B(du) dy
Jopy? Y H(u — y)B(du) dy
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Now according to the renewal theorem, we have H(u) < ¢; + c,u, and thus
the numerator in (8.4) can be bounded by c, [z u”*2B(du) which tends to 0 as
K 70 when EU?*2 < », and thus .Z.7(p) holds. It only remains to prove that
p and E(U — T™)*)? behave as asserted in (3.1) and (3.2). Interchanging
the order of integrations, this comes out as a special case of (3.3) for p©*’ and
by inspecting the denominator of (3.4) for E(U — T™)")*. O

In the rest of this section, we consider the dilation case T = yT, with
A,(t) = P(T, <t) independent of y. Recall the definition (1.4) of the class
.

COROLLARY 3.2. Assume T =yT, with T, in the class .. Then
W and (U — T™)* are distributional light traffic equivalent provided that
EU**! < «, in which case

" c
(3.5) pY =P(W® > 0) = P((U-T™)" >0) = Z2EU".
Y

If furthermore EU**P*! < «, then also light traffic equivalence of order p
holds, in which case

P pca #(a +1,p)

o

Y
where #(a + 1, p) = [4x*(1 — x)P "' dx is the beta function.

(3.6) EWO” = E(U-T™)") EU«*P,

Proor. For y > 0,

© u——y

P(U - yT, >y) = [ A*(T)B(du).

y

Letting y = 0, we get

o u o
yp = [ YA, (—)B(du) > ca, [ u"B(du)
0 Y 0
[using dominated convergence and sup, A . (¢)/t* < c]. Similarly,

yE(U-T ) > _/:pyp—ldycA*_/m(u — y)*B(du),
y

which after some calculations reduces to (3.6). It only remains to verify
condition .29 (p), which follows easily from

o o © u_y
yo [ P IFO(dy) =y [ (p+ DyPdy [ A.|——=|B(du)
K K y Y

> [((p+DyPdyes [ (u—y)"B(du). D
K y
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CoroLLARY 3.3. Assume T =T, with T, in the class /. If
EU**! < w, then for 0 <t < u,

[¢y(t/y)"B(dy)
Joy“B(dy)

[P’(USu,T* <

U—'yT*>0)—>

x| e+

Proor. This follows by combining the previous estimates with

t u t u
P(Usu,T* < —) =f A*(—)B(dy) ='y_”cA*f t*B(dy). O
Y 0 Y 0

REMARK 3.1. The intuitive content of Corollary 3.3 is the following: If
delay occurs at all in light traffic, then typically the preceding customer
entered an empty system, his service time U = u was chosen from the
distribution B, with density u*/EU“ w.r.t. B(du) and the time T ago when
he arrived has density a(t/u)*"! on (0, »). In terms of T',, this is the same as
saying that T, exhibits atypical behaviour by being concentrated on (0, u/7y)
(thus T, is one order of magnitude smaller than typical), whereas U pertains
to the typical order of magnitude (but is moderately larger than typical by
being chosen from B, which is stochastically larger than B).

REMARK 3.2. As a trivial example of behaviour opposite to Example 3.1,
consider the D/M/1 queue, say T, = 1, where the distribution of U — yT
given U — yT > 0 is exponential. Thus if delay occurs in light traffic, then U
is greater than y and thus atypically large (on the contrary the behaviour of T
is deterministic and thus trivial). Slightly more complicated examples of this
type are in Section 4.

Here is a fairly general result allowing for a completely arbitrary arrival
mechanism.

COROLLARY 3.4. Assume that there exists a distribution G with finite
(p + Dth moment such that the overshoot distribution B(-|b) is stochastically
dominated by G for all b, and also that B(&|b) > & for some &,8 > 0 and all b.
Then W and (U — T™)* are distributional light traffic equivalent when
p = 0 whereas if p > 0, then also light traffic equivalence of order p holds.

Proor. For y > 0,
O P(U-T®>y)=pPP(U>TY +yU>TY) <pPG(y),

P(U = T > &) = pQP(U > T + 6lU > T) > pPs.
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Hence

. JgxP T IFO (dx) i J&(p + 1)yPP(U = T > y)dy
P TR FO(dx) et [P FO(dx)
_Jk(p + 1)y*G(y) dy

Se?

and letting K — « shows that Condition .27 (p) is satisfied. O

ExampLE 3.1. It seems reasonable to ask whether it is really necessary (as
in Corollary 3.4) to impose conditions on the family of overshoot distributions
{B(-18)},> o, or whether instead a sufficiently strong moment condition on B
alone would suffice (this question is further motivated by the fact that the
counterexamples in [10] have infinite third moment). The following example
strongly supports, however, the relevance of conditions on the overshoots. In
fact, we shall exhibit a service-time distribution B such that [ e* B(dx) is
finite but (1.2) fails in the D/G/1 queue. To this end, let T™ = yT, with
T, =1 and let B be concentrated on n, =3, n, =3-4,...,n, =38 -4% ...
with weights p, = ce *"", where ¢™1 = £=e~*"". Then

f e*B(dx) = Y pyett=cy e * <o,

0 k=0 k=0
Y pi(3- 4l — 4k) = 2p,4* = 2c4k et
=k

E(U, + Uy — T® - T¢) > KU - 2 4)

E(U — T4»)"

~

=Y p(38-4 -2 4F) =pat =cate "
l=k

Thus liminfES$’"/ES{ > 2 >0, and since EW = L7ES{"/n (Spitzer’s
identity [1], page 177), it follows that (1.2) cannot hold.

__ A second question raised by Corollary 3.4 is the role of the condition
B(¢lb) = 6. The following result allows us to dispense with this in a number of
cases (see also Example 3.2 below for a concrete case).

COROLLARY 3.5. Assume that U has a nondecreasing failure rate. Then
Condition £ (p) is satisfied for all p, and hence W and (U — T™)* are
light traffic equivalent (distributional and of any order p).

Proor. The case where the failure rate of U has a finite limit as u — » is
covered by Corollary 3.4, and hence we may assume that the limit is . It is
then easy to see that the failure rate r(x) of X = U — T is defined for
all x > 0, nondecreasing in x for fixed y and satisfies r"(x) — », x — ». Let
A = rOX(1) and consider K > 1. By monotonicity, we have F™(x[0) > e A%
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when x < 1, and hence

[ xPFO(x) 2 FPE[ X" A 1XD > 0]
0

. 1 _A»
Zp(;’)f xPe "% dx

Y

A(v)p+1 / yPe > dy
(using a change of variables and A’ -  in the last step). Similarly, P(X® >
K) < p e XX-D and

il o]
~ _ _ O
f xP+1F(Y)(x) Sp(ﬁ)e XK 1)] x”“)t‘”e Ax K’dx
K K

50 A

p+ *®
- p+lgo-y
AP /K)p)y e dy.

That 2.7 (p) holds now follows from

) (62]
e/\7 ® A

lim sup o5 “y"“e Vdy = llmsup ((I{')t‘”)erl _K"m) =0. O
2 KXY

ExampLE 3.2. We take P(U > u) = e ', T® = yT,, (T, <t) = e~/
(since the failure rate at U = u is 2u, Corollary 3.5 immediately shows that we
have light traffic equivalence of all orders). We shall show that conditionally
upon U — yT, > 0, we have

U

[here K = 472/% is the unique point where ¢(k) =k~'/%2 + k2 attains its
minimum]. We thereby provide an example where it is necessary to have both
long service times and short interarrival times if delay is to occur in light
traffic, and we observe the somewhat peculiar phenomenon that EW® is of
smaller order of magnitude than p®’ = P(W® > 0).

Obviously,

P(U — yT, > 0) > P(T < Ky~%/%, U > Ky¥/%) = e77"?¢),
Furthermore, let L > K. Then

1
Y5 2t3/2

P(U - yT, >0, T, > Ly~ */%) —[ e Vg7 gy,

. Substituting s = ty*/5, we have -

1 1

—= + 7 = 72/5(—\/= + 32) = v*%p(s) < v*%(L)
s

vVt
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when t > Ly~*/5. Thus
P(U~-yT, >0,T, > Ly *?%) - y8/8
P(U - 4T, > 0) = 2132
which tends to 0 when y — » because ¢(L) > ¢(K). Similarly,
P(U - yT, > 0,U > Ly'/%)
P(U — 4T, > 0)

e YL —e(K))
’

-0

so that
P(T, <Ky *5 U< KyY5U - yT, > 0) — 1.
That (3.7) holds now follows from
mP(T, <(1-e)tT, <t) =0,  mP(U, > (1+e)ull, >u) = 0.

4. Light traffic approximations for GI/PH /1 queues. We now as-
sume that U = U™ = U, has a phase-type distribution, say with representa-
tion (7, Q, E) not dependent on the parameter y. In the standard setup ([13]
or [1], Chapter VIIL.6), this means that we may think of U as the time until
absorption in & in a Markov process which moves on a finite state space E
according to the intensity matrix Q, has initial distribution = (written as a row
vector) concentrated on E(we = 1 where e is the column vector with all 1’s)
and is eventually absorbed in & ¢ E. Note that Q is a subintensity (meaning
Qe < 0) since we may identify the entries of ¢ = —Qe with the exit rates
E - 5.

Standard analytical identities for the distribution function, the density, the
moment generating function, resp. the moments, are

(4.1) B(t) =P(U<t) =1-me%e,

(4.2) b(t) = B'(t) = me®q,

(4.3) Bls] = [ e B(dt) = m(~sI - Q) e,
0

(4.4) EU™ = B™[0] = n!n(-Q) "e.

Some further crucial properties of phase-type distributions are given by the
following lemma.

LemMA 4.1.  Let B be phase-type with representation (1, Q, E). Then:
(a) There exist n > 0,k =0,1,... and ¢, such that
B(t) =ctke™, ¢t .
‘ '(b) There exist Cy, €3, ¢4 and c5 such that

(cz + cat*)e™™ < B(t) < (cq4 + c5t*)e™™  forallt.
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(¢) There exist cg and c, such that
B(slt) < (cg + c78*)e™™  forallsandt.

(d) B(slt) = e™" when t — ® with s fixed.

Proor. The lemma is essentially well known. For example, part (a) follows
from the Perron-Frobenius theory (with £ = 0) if Q is irreducible and can be
obtained for the general case by writing Q in the Jordan canonical form. For
part (b), one can first apply part (a) to get the desired result for all sufficiently
large ¢ and next adjust the constants to apply to all ¢ Part (¢) follows from
part (b) for ¢ > t,, whereas for ¢ < ¢, we can bound B(s + ¢) from above using
part (b) and B(¢) from below by B(¢,). Finally, part (d) is an easy consequence
of part (a). O

In the definition of a phase-type distribution, it is occasionally convenient to
allow 7 to be defective, me < 1. This may either be interpreted as the
phase-type distribution having the defect 1 — e (as for ladder variables) or an
atom of size 1 — e at 0 (this occurs for the waiting time W in Theorem 4.1
below). We recall that A denotes the interarrival distribution and A its
moment-generating function [having possibly a matrix-valued argument as in
(4.5) below]. The following representation of waiting-time distribution was
recently obtained in [2] and is substantially simpler than those of the matrix-
geometric literature (e.g., [15] and references therein; see, however, also [20]).

THEOREM 4.1. W is phase-type with representation (v, Q + qv"), E),
where v is the unique subprobability vector satisfying

(4.5) v = wAV[Q + qv®] = / 7 @ AM(dp).
0
Note that in the GI/M /1 case, Theorem 4.1 reduces to the classical solution
of the waiting-time problem which states that
P(W® >x) =pQe ", where n@ = pu(1 - p?),

u is the service intensity and p¢? is the solution of

(4.6) pY = AV[u(1 - p?)|.
Indeed, here E reduces to one point and we have v =p@), u = -Q =g,
7 =1.

The intuitive content of Corollary 4.1 below is that in light traffic one can
" neglect v on the r.h.s of (4.5) so that

(47) 7 = WA(Y)[Q] _ j’“’w eQ A(y)( dt)
0
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is useful as an approximation to » and hence
(4.8) ﬁ(_"_)') = / T th eA('Y)(dt) = '(’)’)e
0

is useful as an approximation to p$’ = v™e. Note the interpretation of 7
given by part (b) of the following easily proved lemma.

Lemma 4.2. (a) The distribution of (U — x)™* is (defective) phase-type with
representation (w e, Q, E).

(b) The distribution of (U — T™)* is (defective) phase-type with represen-
tation (5™, Q, E).

Combining Lemmas 4.1(b) and 4.2(b) with Corollary 3.4, we now get the
following corollary.

CoRrOLLARY 4.1. Consider the GI1/PH /1 queue in light traffic and assume
that T™ —, © when y - «, with U™ = U, = U or equivalently the phase-
type representation fixed. Then W is light traffic equivalent (distributional
and of any order p) to a phase-type random variable with representation
&M, Q, E).

ExaMpLE 4.1. Assume that the service time U has a Coxian distribution
corresponding to the phase diagram

> > > > > a >
! 1-r @2 1-ry Xp-1 1-r, p

I R

Equivalently, E = {(1,..., p}, m is degenerate at state 1 and

-a;, B 0 0 0
0 _az ﬁz tee 0 0
=109 o o - ~ay_ 1 Bp-i|’
o 0 0 - 0 @,

where B; = a;(1 — r;). We shall assume that no two a;’s are equal so that Q
has diagonal form ‘

p
. (4.9) Q=Y —a;h?P e ud,
i=1

where p® and h® are the left (row), resp. right (column), eigenvectors of Q
corresponding to the eigenvalue —e;, normalized by u”A® = 1. By elemen-
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tary calculations, it is readily checked that

0, J<i,
1, j=i,

(i) —
M Bi”’Bj—l P>
(aji1—a;) (aj - ;) ’ ’
3,' "'3;'—1 j<i
Ao = (aj_ai)"'(ai—l_ai)’ ’
Jj . .
1’ J =1,
0, Jj>1.

Since (4.9) implies that

p

(4.10) e = Y et B @ u»,
i=1
14

(4.11) b= Z RO,

it follows that the light traffic approximation for W is phase-type with
representation (7, Q, E) with 7 given by (4.11) or, equivalently, by the coordi-
nate representation

p .. B,
(412) 7 =Y A[- o Picy

L Al o ay — a) (e — ) () =)

This distribution is not defective Coxian since 7 is not concentrated at state 1,
but rather a mixture £ 77; BY), where B is the Coxian distribution obtained

from the given one B = B® by deleting phases 1,...,j — 1.
Note also that the diagonal form allows moments to be calculated readily.
Thus, combining with (4.4), we get

p A
(4.13) EW"=n!Y A[—a;]Au® (- Q" E [aa] .
i=1 — ;
where
¥ = BPuVe
- f By Bica
j=1 (e~ a;)) (e —a) (g — ) () —ay) .

Efven though the model of Example 4.1 is fairly general and the solution
reasonably simple, there may be cases where alternative expressions are more
convenient and illuminating. Consider first the class ./, of [10].
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COROLLARY 4.2. Assume T = yT, with T, in the class ... Then W is
light traffic equivalent to the phase-type distribution with representation
(y~%cs 9, Q, E), where 7' = I'(a + Dw(—-Q) ™"

[Note that when « is not an integer, (—Q)~® may still be given a meaning
in the standard functional analytic sense.]

Proor. Using integration by parts, we get

50 = [Tm e Adr)
0

= — [ymQe®" A(t) dt
0

u

a4l

Here y“A(u /) is bounded with limit ¢, u* and the components of e decay
exponentially fast. Thus, by dominated convergence,

)du.

x
7 = y“"/ Qe c,y udu
0

=y T(a+1)c, Q(—Q) “ ' =y %, 7. O
As a_motivating example for the following, consider the D/PH/1 queue
where B(x|yT,) = e ™" in view of Lemma 4.2(d) so that
P(W? >x) = P(U > yT, +x) =EB(xlyTy)B(yTy)
e EB(yT,) = e~ p.

That is, in the limit W’ is conditionally exponential. To generalize this, we
shall invoke the following concept.

U

DEFINITION 4.1. A random variable T, with m.g.f. A,[s] belongs to the
class .2 if

A

Ax[—vu]
(4.14) —— > 0 asy — owhenu > v,
Ai[-yv]

Y AP —yu]

4.15 —_————
(4.15) VAP vl

-0 asy—>owhen0 <! <k.

Then, with 7, & and ¢, as in Lemma 4.1(a), we obtain the following
corollary.

COROLLARY 4.3. Assume T = yT, with T, in the class /. Then W is
light traffic equivalent to the exponential distribution with density
cry AP —ynn e .
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Proor. Using the whole Jordan canonical form of Q, we may write

k

B(t) = Y, cp_jiitle ™+ 0(e™ ™M),
l=1
k

b(¢) = Y ¢, tle ™ + O(e™™t),
=1

where 0 < n; <7, ¢’ = ¢,. Then

0

BY = [ B(yt)A.(dt)
l

0
k ~ A

Y oY AP —yn] + O(AP[-ym,)),

=1

which by assumption behaves like clykA(*k)[ —vyn). Furthermore, we may write

k
b(yt+x)=e ™) c@, t'e "+ 0(e ™t),
=1 .

where ¢ = ¢{’ = n¢, (the remaining ¢® depend on x). Thus similarly, we
get the density of W at x as

[ byt +x) A, (db)
0
k A A
=e ™ ) ¢, ' AP[—yn] + O(A‘xf’[—vm])
=1
~ e " cPyPAP[—yn]n e ™ = ey AP[—yn]n e, u!

Easy estimates show that any distribution A, with support contained in
[e,0) is in . More generally, we have the following proposition.

ProposITION 4.1. A sufficient condition for a distribution A, to be in 7/
is

r
(4.16) A, (-) =o(e™") forallr <w,s>0.
Y

Proor. Choose s,& > 0 with § = A, (s) — A,(s — &) > 0. Then when vy is
so large that r/y <s — ¢,

J5/7(yt) e Ay (dt) _ [5/7eT™ Au(dE) _ Ax(r/v)
[, (vt) e Ay(dt) T Iy Ag(dE) T e
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for l =0,1,.... In particular,
Al=yu] _ e Ac(dr)
A [—yv]  [5,eT Al(dt) T
YA[-yul _ [(t) e Au(dn) 1
VAP[—yul [ (yt) e A (dt) T r*TY

—r(u—v)
b

and the desired conclusion follows by letting r — «. O

A sufficient condition for (4.16) and hence the %, property is a,(¢) =
O™, t > 0, for some « > 1 (here a, = A, is the density). An example not
covered by this is the inverse Gaussian distribution where

A J-ul= exp{fc - V2¢ + u}

([1], page 263) and the .2 property follows by easy explicit calculus. Note that
here a,(¢) is essentially of the order of magnitude e ~°*/2* when ¢ — 0, so that
we are on the border of (4.16).

5. Concluding remarks. Since the results of Section 4 and those of
Reiman and Simon [18] for the dual problem of phase-type arrivals are more
explicit and easier to compute than for general GI/G/1 queues, it seems
reasonable to ask whether one could not simply approximate either U or T by
a phase-type random variable and use the resulting simplification in analysis.
Using the explicit solution (say Theorem 4.1) for a fixed queueing system, this
procedure is basically correct (the steady-state characteristics are continuous
under weak conditions; see, e.g., [3] and the references therein), but for the
purpose of light traffic approximations it seems that one can easily obtain quite
misleading results. Suppose, for example, that U is exponential with rate 7
and T = yT, with T, = 1 so that P(W® > 0) = e~"", say by Corollary 4.3.
If we approximate the distribution of T, by an Erlang distribution with %
phases (with % large) and mean 1, (3.5) leads to P(W® > 0) = O(y ~*) which
is of a different order of magnitude. For a given moderately small traffic
intensity p, the difference may or may not be really crucial, but the effect is
certainly worrying if one goes all the way to the light traffic limit as is done, for
example, for computing the constants underlying the interpolation approxima-
tions in [8], [17] and [21]. Some empirical investigations seem to be needed
here.

Similar examples are easily constructed to show that the fact that a
phase-type approximation may not mimic the tail behaviour of U may be fatal.
In short, light traffic behaviour is sensitive to certain small changes in the
distribution. Thus our point in Section 4 is certainly not to say that phase-type
approximations are always the proper tool in light traffic, but rather to provide
some more detailed examples of light traffic behaviour. The lesson for the
practitioner to be learned is that phase-type (or other types of) approximations
should be done with care in light traffic, and it is crucial that one gets a good



LIGHT TRAFFIC EQUIVALENCE IN SINGLE-SERVER QUEUES 573

fit of the tail of the service-time distribution and the behaviour near 0 of the
interarrival-time distribution (note, however, that the tail of the service-time
distribution matters somewhat less when the interarrival distribution is in,
say, ., rather than in ./; compare Corollaries 3.2 and 4.3).

For practical purposes, the GI/G/1 queue is sometimes argued to be a toy
model, and it would seem that at present the work of Reiman and Simon [18]
has the greatest potential in the direction of incorporating very complex
models in light traffic analysis. However, a Markovian structure (often
paramount to phase-type assumptions) is needed in [18]. For non-Markovian
models, one can readily guess what the extensions of the results of the present
paper to the many-server queue GI/G /% should be. Proofs of parts of this are
in [11], but the general case is still open. For even more general queueing
systems having general stationary arrival streams, even the intuition behind
the present paper (the effect of the single customer) breaks down.
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