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MARKET SHARE PARADOX AND HETEROGENEOUS CHAINS

By Yoav BENJAMINI AND ABBA M. KRIEGER

Tel Aviv University and University of Pennsylvania

This resolves a paradox in an application of a Markov chain model to
market share estimation.

1. Introduction. The paradox addressed here concerns data from a study
of a subpopulation of IBM mainframe users. At the time of the study, there
were three user categories of concern:

1. Customers with full-service IBM contracts, about 94% of the subpopulation.
2. Customers paying IBM for service on a per call basis, about 4%.
3. Customers using non-IBM service, about 2%.

A uniform random sample of customers was drawn from the population and
these customers were interviewed concerning their intentions for the coming
year. Estimates a; and p,; were obtained for the probability of a customer
being in category i (at the time of the survey) and the probability of a
transition from category i to category j during the next year. When the p,;
were used as elements of a transition matrix and a stationary distribution
(m,, 4, m3) Was computed, it was found that 7, was approximately 3%. The
implication that the fraction of full-service users would shrink from 94% to 3%
seemed inconceivable, so the fault of the model had to be explored.

The results obtained here show that the possibility of heterogeneity within
the population is all one needs to dispel the initial alarm. This possibility is one
that had been considered in the marketing literature [see Morrison, Massy and
Silverman (1971)], but which had been dismissed as not making enough
difference. Thus, this note also serves to adjust some conventional thinking.

Our main result, as well as the formalities needed for its careful expression,
are laid out in the next section.

2. Main results. We are concerned with two different models. First, we
have a Markov chain model where each member of a population undergoes
transitions according to a matrix P = {p,;}. A second model consists of a
heterogeneous population with individuals of S different types. The individu-
als of the sth type are assumed to undergo transitions according to a matrix
P(s) = {p;;(s)}.
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Naturally, we insist that the models be compatible in the sense that if we
generate interview data consistent with the second model and we use a
maximum likelihood estimator, we are led back to {p;;}. To formalize this we
first let a(s) denote the actual fraction of individuals from the complete
population in the sth subpopulation. Next, we let a,(s) denote the observed
fraction of individuals in the sth subpopulation that are in state i at the time
of survey. Recalling that a; is the original estimate of a customer being in
state i, we see the compatibility conditions can be given formally as

Za(s) =1,
La(s)a,(s) = a;

Za(s)ai(s)pij(s) =a;p;j.

A small technical point worth recording now is that we will assume that the
estimates a; and p,; are all strictly positive. The message is unaffected by this
assumption and some messy trivialities are also avoided.

Finally, we let A(M) be the proportion of individuals who are in state 1
when the heterogeneous model M = {a(s), a(s), P(s); s = 1,..., S} reaches
steady state. If we let A*(P) and A, (P) denote the supremum and infimum of
A(M) over all M compatible with P, then the key concern boils down to seeing
how different A*(P) and A, (P) can be.

Our main result tells us heterogeneity can indeed have a very substantial
impact on the steady state distributions.

THEOREM. For all P, we have X*(P) — A, (P) > 1/2.

3. Proof of the main result. First, we consider the case of a two state
problem. The idea of the proof is that for any P we can define heterogeneous
models compatible with P as follows:

Model M,.
apP11
a(l) 1-6 &
a(l) =a, + a1P115 a(l) = a, s p(1) = ( Do1 pzz)’
a(l)
1’ f’ﬁ 1— D110
a(2) = ayp;s, a(2) = ’ p(2) =| py P2
, 0

1 0
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Model M,.
a;
a(1)
a(l) =a; + aypy,, a(l) = Ay |’ p(1) = (p,su 1P_126)’
a(1)
0 1
a(2) = aypy, a(2) = ((1)), p(2) = 1- D228 P22d
P P2

Since A(M,) - 1 — a;p;5/2as 8 - 0and M(M,) = ay,py, /2 as § — 0, then
M(P)—A,(P)>1—ap1/2 — ayps/2 > 1/2.

When the number of states T' > 3, we again prove the theorem by describ-
ing two heterogeneous models M; and M, each with two subpopulations.
Once M, and M, are presented for T = 3, it is easy to see how to construct
M, and M, for T > 3.

Model M.
a1P11
a(l)
ay 1-6 6 0
a(l) =1-ay(1-py), a(l)= a(l) |’ p(1) =| Pn  Ps Pas|
a P31 P32 Pss
3
a(1)
1
a(2) =ay(1-pyu), a(2)=10],
0

P1d P12 — P1yd Pi3
p(2) = 1-pn 1-pn 1-pn

0 0
1 0 0
Model M,.
a,
QP22
a +a,(1 — 2
a(1) = [ 2P22 a( P33)] ’ a(l) = (1) ,
) (a; +ay)
a3(1l — ps3)

a(l)
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P11 P2 D3
_ 0 1 0
p(1) = D3y D32 ’

0

1—ps; 1—-pss

a,
1—
[as(1 = py) + a3pss] 221~ Pan)
a(2) = , a(2) = a(2) ,
. (agz+tay) o
- 3P33
a(2)
P P12 Pis
»(2) = P2 0 P23
1 - py,y 1—po
0 0 1

Since AM(M;) > 1—-a,1 —p;)/2 as § > 0 and AM(M,) =0, then A*(P) —

4. More precise result. More specifically, we can show that A*(P) =

A (P) - a2p21/2’ if T= 2,
* 0, if T> 3.

The fact that A ,(P) = 0if T > 3 follows from M, described above. The result
for A, (P) when T = 2 is the same as the result for A*(P) when T = 2, since
maximizing the proportion of individuals in state 2 is equivalent to minimizing
the proportion in state 1.

For any P, consider the transition matrix 7(P) whose first row is the same
as the first row in P and all other rows are (1,0,...,0). Clearly, A*(7(P)) >
M(P)>=1-a,1 - p;;)/2. The second inequality follows from M, described
above. Let ) be the class of transition matrices with (1,0, ..., 0) in all but row
1. It suffices to show that for any P € Q, A*(P) =1 -a,(1 - p,1)/2.If P Q
and M is compatible with P, then P(s) € Q for every s. However, the
transition matrix for the two state problem with first row (p,;,1 — p;;) and
second row (1,0) has the same steady state probability for state 1 as any
P € Q) with transition from state 1 to state 1 of p,;. Hence, we only need to
consider T = 2.
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Let M be a heterogeneous model compatible with P for the two state
problem. Then

MM) = Z“(S)le(s)/(l’zl(s) + P1a(s))
= Z“(S)[l - (1 _Pu(s))/(le(s) +p12(8))]
= E“(S)[l - al(s)(l —pu(s))/Z] =1-ay1-pu)/2.

The inequality follows from a,(s) <1 and p,(s) + p;5(s) < 2, and the last
equality follows from the compatibility conditions.

5. Conclusion. Since steady state probabilities are generally affected by
heterogeneity, it is important to collect data so that potential heterogeneity is
estimable from the data. This suggests that we collect longitudinal data (.e.,
history of states for each respondent). We can then use the EM algorithm [cf.
Dempster, Laird and Rubin (1977)] to estimate the parameters assuming that
we know the number of subpopulations. This approach has been developed by
van de Pol and Langeheine (1989). Our results suggest that parameter values
near the extreme cases in this paper be considered, particularly since it was
shown that the likelihood function for this problem potentially has many local
maxima.
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